Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure

. 2022 Jan 08 ; 14 (2) : . [epub] 20220108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054662

Grantová podpora
21-SVV/2019, 21-SVV/2020, and 21-SVV/2021. Specific University Research of UCT Prague
QK1910209 Ministry of Agriculture of the Czech Republic

In this study, we focused on the isolation and structural characterization of polysaccharides from a basidiocarp of polypore fungus Ganoderma resinaceum. Polysaccharide fractions were obtained by successive extractions with cold water at room temperature (20 °C), hot water under reflux (100 °C), and a solution of 1 mol L-1 sodium hydroxide. The purity of all fractions was controlled mainly by Fourier transform infrared (FTIR) spectroscopy, and their composition and structure were characterized by organic elemental analysis; neutral sugar and methylation analyses by gas chromatography equipped with flame ionization detector (GC/FID) and mass spectrometry detector (GC/MS), respectively; and by correlation nuclear magnetic resonance (NMR) spectroscopy. The aqueous extracts contained two main polysaccharides identified as a branched O-2-β-d-mannosyl-(1→6)-α-d-galactan and a highly branched (1→3)(1→4)(1→6)-β-d-glucan. Mannogalactan predominated in the cold water extract, and β-d-glucan was the main product of the hot water extract. The hot water soluble fraction was further separated by preparative anion exchange chromatography into three sub-fractions; two of them were identified as branched β-d-glucans with a structure similar to the corresponding polysaccharide of the original fraction. The alkaline extract contained a linear (1→3)-α-d-glucan and a weakly branched (1→3)-β-d-glucan having terminal β-d-glucosyl residues attached to O-6 of the backbone. The insoluble part after all extractions was identified as a polysaccharide complex containing chitin and β-d-glucans.

Zobrazit více v PubMed

Wang L., Li J.Q., Zhang J., Li Z.M., Liu H.G., Wang Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020;10:42084–42097. doi: 10.1039/D0RA07219B. PubMed DOI PMC

Wińska K., Mączka W., Gabryelska K., Grabarczyk M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules. 2019;24:4075. doi: 10.3390/molecules24224075. PubMed DOI PMC

Hapuarachchi K.K., Elkhateeb W.A., Karunarathna S.C., Cheng C.R., Bandara A.R., Kakumyan P., Cheng C.R., Bandara A.R., Kakumyan P., Hyde K.D., et al. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere. 2018;9:1025–1052. doi: 10.5943/mycosphere/9/5/6. DOI

Rai M.K., Gaikwad S., Nagaonkar D., dos Santos C.A. Current advances in the antimicrobial potential of species of genus Ganoderma (higher Basidiomycetes) against human pathogenic microorganisms. Int. J. Med. Mushrooms. 2015;17:921–932. doi: 10.1615/IntJMedMushrooms.v17.i10.20. PubMed DOI

Beck T., Gáper J., Šebesta M., Gáperová S. Host preferences of wood-decaying fungi of the genus Ganoderma in the urban areas of Slovakia. Ann. Univ. Paedagog. Crac. Studia Nat. 2018;3:22–37. doi: 10.24917/25438832.3.2. DOI

Zhou X.W., Cong W.R., Su K.Q., Zhang Y.M. Ligninolytic enzymes from Ganoderma spp.: Current status and potential applications. Crit. Rev. Microbiol. 2013;39:416–426. doi: 10.3109/1040841X.2012.722606. PubMed DOI

De Souza Silva C.M.M., De Melo I.S., De Oliveira P.R. Ligninolytic enzyme production by Ganoderma spp. Enzym. Microb. Technol. 2005;37:324–329. doi: 10.1016/j.enzmictec.2004.12.007. DOI

Murugesan K., Nam I., Kim Y., Chang Y. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enz. Microb. Technol. 2007;40:1662–1672. doi: 10.1016/j.enzmictec.2006.08.028. DOI

Deflorio G., Johnson C., Fink S., Schwarze F.W.M.R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 2008;255:2373–2383. doi: 10.1016/j.foreco.2007.12.040. DOI

Xu Z.T., Chen X.U., Zhong Z.F., Che L.D., Wang Y.T. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011;39:15–27. doi: 10.1142/S0192415X11008610. PubMed DOI

Seweryn E., Ziała A., Gamian A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients. 2021;13:2725. doi: 10.3390/nu13082725. PubMed DOI PMC

Bhat Z.A., Wani A.H., War J.M., Bhat M.Y. Mayor bioactive properties of Ganoderma polysaccharides. A review. Asian J. Pharm. Clin. Res. 2021;14:11–24. doi: 10.22159/ajpcr.2021.v14i3.40390. DOI

Zhang J., Liu Y., Tang Q., Zhou S., Feng J., Chen H. Polysaccharide of Ganoderma and its bioactivities. In: Lin Z., Yang B., editors. Ganoderma and Health. Advances in Experimental Medicine and Biology. Volume 1181. Springer; Singapore: 2019. pp. 107–134. PubMed

Cör D., Knez Ž., Knez Hrnčič M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules. 2018;23:649. doi: 10.3390/molecules23030649. PubMed DOI PMC

Ferreira I.C., Heleno S.A., Reis F.S., Stojkovic D., Queiroz M.J.R., Vasconcelos M.H., Sokovic M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry. 2015;114:38–55. doi: 10.1016/j.phytochem.2014.10.011. PubMed DOI

Benkeblia N. Ganoderma lucidum polysaccharides and terpenoids: Profile and health benefits. J. Food Nutr. Diet. 2015;1:1–6. doi: 10.19104/jfnd.2015.101. DOI

Camargo M.R., Kaneno R. Antitumor properties of Ganoderma lucidum polysaccharides and terpenoids. Annu. Rev. Biomed. Sci. 2011;13:1–8.

Nie S., Zhang H., Li W., Xie M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre. 2013;1:10–20. doi: 10.1016/j.bcdf.2013.01.001. DOI

Liang C., Tian D., Liu Y., Li H., Zhu J., Li M., Xin M., Xia J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019;174:130–141. doi: 10.1016/j.ejmech.2019.04.039. PubMed DOI

Peng X., Qiu M. Meroterpenoids from Ganoderma species: A review of last five years. Nat. Prod. Bioprosp. 2018;8:137–149. doi: 10.1007/s13659-018-0164-z. PubMed DOI PMC

Ryu E.A., Choi J.H., Seong G.U., Chung S.K. Isolation of polyphenol compounds from Ganoderma lucidum and pancreatic lipase inhibitory activities. J. Korean Soc. Food Sci. Nutr. 2020;49:28–34. doi: 10.3746/jkfn.2020.49.1.28. DOI

Cho J.H., Lee J.Y., Lee M.J., Oh H.N., Kang D.H., Jhune C.S. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J. Mushroom. 2013;11:164–170. doi: 10.14480/JM.2013.11.3.164. DOI

Baby S., Johnson A.J., Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66–101. doi: 10.1016/j.phytochem.2015.03.010. PubMed DOI

Sharma C., Bhardwaj N., Sharma A., Tuli H.S., Batra P., Beniwal V., Gupta G.K., Sharma A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019;17:100268. doi: 10.1016/j.hermed.2019.100268. DOI

Ahmad M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018;107:507–519. doi: 10.1016/j.biopha.2018.08.036. PubMed DOI

Paterson R.R.M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001. doi: 10.1016/j.phytochem.2006.07.004. PubMed DOI

Kiss A., Mirmazloum I., Naár Z., Némedi E. Supplementation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) extract enhanced the medicinal values and prebiotic index of hungarian acacia honey. Int. J. Med. Mushrooms. 2019:21. doi: 10.1615/IntJMedMushrooms.2019032897. PubMed DOI

Prasad S., Rathore H., Sharma S., Yadav A.S. Medicinal mushrooms as a source of novel functional food. Int. J. Food Sci. Nutr. Diet. 2015;4:221–225.

Perera P.K., Li Y. Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct. Foods Health Dis. 2011;1:161–171. doi: 10.31989/ffhd.v1i4.133. DOI

Gow N.A., Latge J.P., Munro C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectrum. 2017;5 doi: 10.1128/microbiolspec.FUNK-0035-2016. PubMed DOI PMC

Free S.J. Fungal cell wall organization and biosynthesis. Adv. Genet. 2013;81:33–82. PubMed

Latgé J.P. The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 2007;66:279–290. doi: 10.1111/j.1365-2958.2007.05872.x. PubMed DOI

Ren Y., Bai Y., Zhang Z., Cai W., Del Rio Flores A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules. 2019;24:3122. doi: 10.3390/molecules24173122. PubMed DOI PMC

Wang J., Ma Z., Zhang L., Fang Y., Jiang F., Phillips G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011;86:844–851. doi: 10.1016/j.carbpol.2011.05.031. DOI

Pan K., Jiang Q., Liu G., Miao X., Zhong D. Optimization extraction of Ganoderma lucidum polysaccharides rides and its immunity and antioxidant activities. Int. J. Biol. Macromol. 2013;55:301–306. doi: 10.1016/j.ijbiomac.2013.01.022. PubMed DOI

Baeva E., Bleha R., Lavrova E., Sushytskyi L., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization. Molecules. 2019;24:2740. doi: 10.3390/molecules24152740. PubMed DOI PMC

Yan J.K., Ding Z.C., Gao X., Wang Y.Y., Yang Y., Wu D., Zhang H.N. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydr. Polym. 2018;193:373–382. doi: 10.1016/j.carbpol.2018.04.019. PubMed DOI

Huang S.Q., Li J.W., Wang Z., Pan H.X., Chen J.X., Ning Z.X. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules. 2010;15:3694–3708. doi: 10.3390/molecules15053694. PubMed DOI PMC

Leong Y.K., Yang F.C., Chang J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021;251:117006. doi: 10.1016/j.carbpol.2020.117006. PubMed DOI

Chikari F., Han J., Wang Y., Ao W. Synergized subcritical-ultrasound-assisted aqueous two-phase extraction, purification, and characterization of Lentinus edodes polysaccharides. Process Biochem. 2020;95:297–306. doi: 10.1016/j.procbio.2020.03.009. DOI

Lin Y., Zeng H., Wang K., Lin H., Li P., Huang Y., Zhou S., Zhang W., Chen C., Fan H. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int. J. Biol. Macromol. 2019;136:305–315. doi: 10.1016/j.ijbiomac.2019.06.064. PubMed DOI

Kang Q., Chen S., Li S., Wang B., Liu X., Hao L., Lu J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol. 2019;124:1137–1144. doi: 10.1016/j.ijbiomac.2018.11.215. PubMed DOI

Do D.T., Lam D.H., Nguyen T., Phuong Mai T.T., Phan L.T.M., Vuong H.T., Nguyen D.V., Linh N.T., Hoang M.N., Mai T.P., et al. Utilization of response surface methodology in optimization of polysaccharides extraction from Vietnamese Red Ganoderma lucidum by ultrasound-assisted enzymatic method and examination of bioactivities of the extract. Sci. World J. 2021;2021:7594092. doi: 10.1155/2021/7594092. PubMed DOI PMC

Huang S., Ning Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010;47:336–341. doi: 10.1016/j.ijbiomac.2010.03.019. PubMed DOI

Matsunaga Y., Wahyudiono, Machmudah S., Sasaki M., Goto M. Hot compressed water extraction of polysaccharides from Ganoderma lucidum using a semibatch reactor. Asia-Pac. J. Chem. Eng. 2014;9:125–133. doi: 10.1002/apj.1752. DOI

Zeng X., Li P., Chen X., Kang Y., Xie Y., Li X., Xie T., Zhang Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int. J. Biol. Macromol. 2019;126:867–876. doi: 10.1016/j.ijbiomac.2018.12.222. PubMed DOI

Synytsya A., Novak M. Structural diversity of fungal glucans. Carbohydr. Polym. 2013;92:792–809. doi: 10.1016/j.carbpol.2012.09.077. PubMed DOI

Synytsya A., Novak M. Structural analysis of glucans. Ann. Transl. Med. 2014;2:17. PubMed PMC

Chen Y., Ou X., Yang J., Bi S., Peng B., Wen Y., Song L., Li C., Yu R., Zhu J. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int. J. Biol. Macromol. 2020;158:1204–1215. doi: 10.1016/j.ijbiomac.2020.05.028. PubMed DOI

Yi P., Li N., Wan J.B., Zhang D., Li M., Yan C. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense. Carbohydr. Polym. 2015;121:183–189. doi: 10.1016/j.carbpol.2014.11.034. PubMed DOI

Chuang C.M., Wang H.E., Chang C.H., Peng C.C., Ker Y.B., Lai J.E., Chen K.C., Peng R.Y. Sacchachitin, a novel chitin-polysaccharide conjugate macromolecule present in Ganoderma lucidum: Purification, composition, and properties. Pharm. Biol. 2013;51:84–95. doi: 10.3109/13880209.2012.711840. PubMed DOI

Zhang H., Nie S.P., Yin J.Y., Wang Y.X., Xie M.Y. Structural characterization of a heterogalactan purified from fruiting bodies of Ganoderma atrum. Food Hydrocol. 2014;36:339–347. doi: 10.1016/j.foodhyd.2013.08.029. DOI

Nara K., Kato Y. Structural characterization of a heterogalactan from antler-shaped Ganoderma lucidum. J. Appl. Glycosci. 2015;62:149–151. doi: 10.5458/jag.jag.JAG-2015_009. DOI

Tel-Çayan G., Muhammad A., Deveci E., Duru M.E., Öztürk M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. Int. J. Biol. Macromol. 2020;165:2395–2403. doi: 10.1016/j.ijbiomac.2020.10.040. PubMed DOI

Lai L., Yang D. Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi (Ganoderma lucidum) Food Hydrocol. 2007;21:739–746. doi: 10.1016/j.foodhyd.2006.09.009. DOI

Lu J., He R., Sun P., Zhang F., Linhardt R.J., Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 2020;150:765–774. doi: 10.1016/j.ijbiomac.2020.02.035. PubMed DOI

Sohretoglu D., Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents Med. Chem. 2018;18:667–674. doi: 10.2174/1871520617666171113121246. PubMed DOI PMC

Ren L., Zhang J., Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021;340:127933. doi: 10.1016/j.foodchem.2020.127933. PubMed DOI

Hennicke F., Cheikh-Ali Z., Liebisch T., Maciá-Vicente J.G., Bode H.B., Piepenbring M. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry. 2016;127:29–37. doi: 10.1016/j.phytochem.2016.03.012. PubMed DOI

Eo S.K., Kim Y.S., Lee C.K., Han S.S. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J. Ethnopharmacol. 1999;68:175–181. doi: 10.1016/S0378-8741(99)00086-0. PubMed DOI

Eo S.K., Kim Y.S., Lee C.K., Han S.S. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 2000;72:475–481. doi: 10.1016/S0378-8741(00)00266-X. PubMed DOI

Khan I., Huang G., Li X., Leong W., Xia W., Hsiao W.W. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Foods. 2018;41:191–201. doi: 10.1016/j.jff.2017.12.046. DOI

Liu Y., Li Y., Zhang W., Sun M., Zhang Z. Hypoglycemic effect of inulin combined with Ganoderma lucidum polysaccharides in T2DM rats. J. Funct. Foods. 2019;55:381–390. doi: 10.1016/j.jff.2019.02.036. DOI

Xiao C., Wu Q., Xie Y., Tan J., Ding Y., Bai L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ. Food Funct. 2018;9:6495–6507. doi: 10.1039/C8FO01656A. PubMed DOI

Xiao C., Wu Q.P., Cai W., Tan J.B., Yang X.B., Zhang J.M. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch. Pharm. Res. 2012;35:1793–1801. doi: 10.1007/s12272-012-1012-z. PubMed DOI

Ma H.T., Hsieh J.F., Chen S.T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113. doi: 10.1016/j.phytochem.2015.02.017. PubMed DOI

Joseph S., Sabulal B., George V., Antony K.R., Janardhanan K.K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm. 2011;61:335–342. doi: 10.2478/v10007-011-0030-6. PubMed DOI

Huang X.J., Nie S.P. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 2015;6:3205–3217. doi: 10.1039/C5FO00678C. PubMed DOI

Chen B., Ke B., Ye L., Jin S., Jie F., Zhao L., Wu X. Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China. Sci. Hortic. 2017;224:109–114. doi: 10.1016/j.scienta.2017.06.002. DOI

Sushytskyi L., Lukáč P., Synytsya A., Bleha R., Rajsiglová L., Capek P., Pohl R., Vannucci L., Čopíková J., Kaštánek P. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae) Carbohydr. Polym. 2020;246:116588. doi: 10.1016/j.carbpol.2020.116588. PubMed DOI

Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S.I., Lee Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005;339:69–72. doi: 10.1016/j.ab.2004.12.001. PubMed DOI

Englyst H.N., Cummings J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 1984;109:937–942. doi: 10.1039/an9840900937. PubMed DOI

Jansson P.E., Kenne L., Liedgren H., Lindberg B., Lonngren J. A practical guide to the methylation analysis of carbohydrates. Chem. Commun. (Stockholm Univ.) 1976;8:1–75.

Ciucanu I., Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984;131:209–217. doi: 10.1016/0008-6215(84)85242-8. DOI

Purdie T., Irvine J.C. The Alkylation of Sugars. Chem. Soc. Trans. 1903;83:1021–1037. doi: 10.1039/CT9038301021. DOI

Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–489. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI

Mokhtari-Hosseini Z.B., Hatamian-Zarmi A., Mohammadnejad J., Ebrahimi-Hosseinzadeh B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep. Biochem. Biotechnol. 2018;48:662–670. doi: 10.1080/10826068.2018.1487847. PubMed DOI

Smiderle F.R., Morales D., Gil-Ramírez A., Jesus L.I., Gilbert-Lopez B., Iacominy M., Soler-Rivas C. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydr. Polym. 2017;156:165–174. doi: 10.1016/j.carbpol.2016.09.029. PubMed DOI

Gao X., Qi J., Ho C.T., Li B., Mu J., Zhang Y., Hu H., Mo W., Chen Z., Xie Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr. Polym. 2020;249:116874. doi: 10.1016/j.carbpol.2020.116874. PubMed DOI

Zhang H., Li W.J., Nie S.P., Chen Y., Wang Y.X., Xie M.Y. Structural characterisation of a novel bioactive polysaccharide from Ganoderma atrum. Carbohydr. Polym. 2012;88:1047–1054. doi: 10.1016/j.carbpol.2012.01.061. DOI

Li J., Gu F., Cai C., Hu M., Fan L., Hao J., Yu G. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2020;143:806–813. doi: 10.1016/j.ijbiomac.2019.09.141. PubMed DOI

Bekiaris G., Tagkouli D., Koutrotsios G., Kalogeropoulos N., Zervakis G.I. Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis. Foods. 2020;9:535. doi: 10.3390/foods9040535. PubMed DOI PMC

Gonzaga M.L.C., Menezes T.M., de Souza J.R.R., Ricardo N.M., Soares S.D.A. Structural characterization of β-glucans isolated from Agaricus blazei Murill using NMR and FTIR spectroscopy. Bioact. Carbohydr. Diet. Fibre. 2013;2:152–156. doi: 10.1016/j.bcdf.2013.10.005. DOI

Synytsya A., Míčková K., Synytsya A., Jablonsky I., Speváček J., Erban V., Kovářiková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI

Galichet A., Sockalingum G.D., Belarbi A., Manfait M. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol. Let. 2001;197:179–186. doi: 10.1111/j.1574-6968.2001.tb10601.x. PubMed DOI

Grdadolnik J. Saturation effects in FTIR spectroscopy: Intensity of amide I and amide II bands in protein spectra. Acta Chim. Slov. 2003;50:777–788.

Synytsya A., Čopíková J., Matějka P., Machovič V.J. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003;54:97–106. doi: 10.1016/S0144-8617(03)00158-9. DOI

Jansson P.E., Kenne L., Widmalm G. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H-and 13C-NMR data. Carbohydr. Res. 1989;188:169–191. doi: 10.1016/0008-6215(89)84069-8. PubMed DOI

Chen J., Zhou J., Zhang L., Nakamura Y., Norisuye T. Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polym. J. 1998;30:838–842. doi: 10.1295/polymj.30.838. DOI

Smiderle F.R., Olsen L.M., Carbonero E.R., Marcon R., Baggio C.H., Freitas C.S., Santos A.R.S., Torri G., Gorin P.A.J., Iacomini M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: Structure and antinociceptive effect. Phytochemistry. 2008;69:2731–2736. doi: 10.1016/j.phytochem.2008.08.006. PubMed DOI

Rosado F.R., Carbonero E.R., Claudino R.F., Tischer C.A., Kemmelmeier C., Iacomini M. The presence of partially 3-O-methylated mannogalactan from the fruit bodies of edible basidiomycetes Pleurotus ostreatus ‘florida’ Berk. and Pleurotus ostreatoroseus Sing. FEMS Microbiol. Lett. 2003;221:119–124. doi: 10.1016/S0378-1097(03)00161-7. PubMed DOI

Amaral A.E.A., Carbonero E.R., Simao R.C.G., Kadowaki M.K., Sassaki G.L., Osaku C.A., Gorin P.A.J., Iacomini M. An unusual water-soluble b-glucan from the basidiocarp of the fungus Ganoderma resinaceum. Carbohydr. Polym. 2008;72:473–478. doi: 10.1016/j.carbpol.2007.09.016. DOI

Bao X., Liu C., Fang J., Li X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 2001;332:67–74. doi: 10.1016/S0008-6215(01)00075-1. PubMed DOI

Sone Y., Okuda R., Wada N., Kishida E., Misaki A. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the crowing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985;49:2641–2653.

Dong Q., Wang Y., Shi L., Yao J., Li J., Ma F., Ding K. A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 2012;353:100–105. doi: 10.1016/j.carres.2012.02.029. PubMed DOI

Ukai S., Yokoyama S., Hara C., Kiho T. Structure of an alkali-soluble polysaccharide from the fruit body of Ganoderma japonicum Lloyd. Carbohydr. Res. 1982;105:237–245. doi: 10.1016/S0008-6215(00)84971-X. DOI

Peng Y., Zhang L., Zhang Y., Xu X., Kennedy J.F. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr. Polym. 2005;59:351–356. doi: 10.1016/j.carbpol.2004.10.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...