Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2019, 21-SVV/2020, and 21-SVV/2021.
Specific University Research of UCT Prague
QK1910209
Ministry of Agriculture of the Czech Republic
PubMed
35054662
PubMed Central
PMC8778809
DOI
10.3390/polym14020255
PII: polym14020255
Knihovny.cz E-zdroje
- Klíčová slova
- Ganoderma resinaceum, polysaccharides, spectroscopy, wood decay fungi,
- Publikační typ
- časopisecké články MeSH
In this study, we focused on the isolation and structural characterization of polysaccharides from a basidiocarp of polypore fungus Ganoderma resinaceum. Polysaccharide fractions were obtained by successive extractions with cold water at room temperature (20 °C), hot water under reflux (100 °C), and a solution of 1 mol L-1 sodium hydroxide. The purity of all fractions was controlled mainly by Fourier transform infrared (FTIR) spectroscopy, and their composition and structure were characterized by organic elemental analysis; neutral sugar and methylation analyses by gas chromatography equipped with flame ionization detector (GC/FID) and mass spectrometry detector (GC/MS), respectively; and by correlation nuclear magnetic resonance (NMR) spectroscopy. The aqueous extracts contained two main polysaccharides identified as a branched O-2-β-d-mannosyl-(1→6)-α-d-galactan and a highly branched (1→3)(1→4)(1→6)-β-d-glucan. Mannogalactan predominated in the cold water extract, and β-d-glucan was the main product of the hot water extract. The hot water soluble fraction was further separated by preparative anion exchange chromatography into three sub-fractions; two of them were identified as branched β-d-glucans with a structure similar to the corresponding polysaccharide of the original fraction. The alkaline extract contained a linear (1→3)-α-d-glucan and a weakly branched (1→3)-β-d-glucan having terminal β-d-glucosyl residues attached to O-6 of the backbone. The insoluble part after all extractions was identified as a polysaccharide complex containing chitin and β-d-glucans.
Department of Carbohydrates and Cereals UCT Prague 166 28 Prague Czech Republic
Institute of Chemistry Slovak Academy of Sciences Dúbravská cesta 9 842 38 Bratislava Slovakia
Zobrazit více v PubMed
Wang L., Li J.Q., Zhang J., Li Z.M., Liu H.G., Wang Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020;10:42084–42097. doi: 10.1039/D0RA07219B. PubMed DOI PMC
Wińska K., Mączka W., Gabryelska K., Grabarczyk M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules. 2019;24:4075. doi: 10.3390/molecules24224075. PubMed DOI PMC
Hapuarachchi K.K., Elkhateeb W.A., Karunarathna S.C., Cheng C.R., Bandara A.R., Kakumyan P., Cheng C.R., Bandara A.R., Kakumyan P., Hyde K.D., et al. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere. 2018;9:1025–1052. doi: 10.5943/mycosphere/9/5/6. DOI
Rai M.K., Gaikwad S., Nagaonkar D., dos Santos C.A. Current advances in the antimicrobial potential of species of genus Ganoderma (higher Basidiomycetes) against human pathogenic microorganisms. Int. J. Med. Mushrooms. 2015;17:921–932. doi: 10.1615/IntJMedMushrooms.v17.i10.20. PubMed DOI
Beck T., Gáper J., Šebesta M., Gáperová S. Host preferences of wood-decaying fungi of the genus Ganoderma in the urban areas of Slovakia. Ann. Univ. Paedagog. Crac. Studia Nat. 2018;3:22–37. doi: 10.24917/25438832.3.2. DOI
Zhou X.W., Cong W.R., Su K.Q., Zhang Y.M. Ligninolytic enzymes from Ganoderma spp.: Current status and potential applications. Crit. Rev. Microbiol. 2013;39:416–426. doi: 10.3109/1040841X.2012.722606. PubMed DOI
De Souza Silva C.M.M., De Melo I.S., De Oliveira P.R. Ligninolytic enzyme production by Ganoderma spp. Enzym. Microb. Technol. 2005;37:324–329. doi: 10.1016/j.enzmictec.2004.12.007. DOI
Murugesan K., Nam I., Kim Y., Chang Y. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enz. Microb. Technol. 2007;40:1662–1672. doi: 10.1016/j.enzmictec.2006.08.028. DOI
Deflorio G., Johnson C., Fink S., Schwarze F.W.M.R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 2008;255:2373–2383. doi: 10.1016/j.foreco.2007.12.040. DOI
Xu Z.T., Chen X.U., Zhong Z.F., Che L.D., Wang Y.T. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011;39:15–27. doi: 10.1142/S0192415X11008610. PubMed DOI
Seweryn E., Ziała A., Gamian A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients. 2021;13:2725. doi: 10.3390/nu13082725. PubMed DOI PMC
Bhat Z.A., Wani A.H., War J.M., Bhat M.Y. Mayor bioactive properties of Ganoderma polysaccharides. A review. Asian J. Pharm. Clin. Res. 2021;14:11–24. doi: 10.22159/ajpcr.2021.v14i3.40390. DOI
Zhang J., Liu Y., Tang Q., Zhou S., Feng J., Chen H. Polysaccharide of Ganoderma and its bioactivities. In: Lin Z., Yang B., editors. Ganoderma and Health. Advances in Experimental Medicine and Biology. Volume 1181. Springer; Singapore: 2019. pp. 107–134. PubMed
Cör D., Knez Ž., Knez Hrnčič M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules. 2018;23:649. doi: 10.3390/molecules23030649. PubMed DOI PMC
Ferreira I.C., Heleno S.A., Reis F.S., Stojkovic D., Queiroz M.J.R., Vasconcelos M.H., Sokovic M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry. 2015;114:38–55. doi: 10.1016/j.phytochem.2014.10.011. PubMed DOI
Benkeblia N. Ganoderma lucidum polysaccharides and terpenoids: Profile and health benefits. J. Food Nutr. Diet. 2015;1:1–6. doi: 10.19104/jfnd.2015.101. DOI
Camargo M.R., Kaneno R. Antitumor properties of Ganoderma lucidum polysaccharides and terpenoids. Annu. Rev. Biomed. Sci. 2011;13:1–8.
Nie S., Zhang H., Li W., Xie M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre. 2013;1:10–20. doi: 10.1016/j.bcdf.2013.01.001. DOI
Liang C., Tian D., Liu Y., Li H., Zhu J., Li M., Xin M., Xia J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019;174:130–141. doi: 10.1016/j.ejmech.2019.04.039. PubMed DOI
Peng X., Qiu M. Meroterpenoids from Ganoderma species: A review of last five years. Nat. Prod. Bioprosp. 2018;8:137–149. doi: 10.1007/s13659-018-0164-z. PubMed DOI PMC
Ryu E.A., Choi J.H., Seong G.U., Chung S.K. Isolation of polyphenol compounds from Ganoderma lucidum and pancreatic lipase inhibitory activities. J. Korean Soc. Food Sci. Nutr. 2020;49:28–34. doi: 10.3746/jkfn.2020.49.1.28. DOI
Cho J.H., Lee J.Y., Lee M.J., Oh H.N., Kang D.H., Jhune C.S. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J. Mushroom. 2013;11:164–170. doi: 10.14480/JM.2013.11.3.164. DOI
Baby S., Johnson A.J., Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66–101. doi: 10.1016/j.phytochem.2015.03.010. PubMed DOI
Sharma C., Bhardwaj N., Sharma A., Tuli H.S., Batra P., Beniwal V., Gupta G.K., Sharma A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019;17:100268. doi: 10.1016/j.hermed.2019.100268. DOI
Ahmad M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018;107:507–519. doi: 10.1016/j.biopha.2018.08.036. PubMed DOI
Paterson R.R.M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001. doi: 10.1016/j.phytochem.2006.07.004. PubMed DOI
Kiss A., Mirmazloum I., Naár Z., Némedi E. Supplementation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) extract enhanced the medicinal values and prebiotic index of hungarian acacia honey. Int. J. Med. Mushrooms. 2019:21. doi: 10.1615/IntJMedMushrooms.2019032897. PubMed DOI
Prasad S., Rathore H., Sharma S., Yadav A.S. Medicinal mushrooms as a source of novel functional food. Int. J. Food Sci. Nutr. Diet. 2015;4:221–225.
Perera P.K., Li Y. Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct. Foods Health Dis. 2011;1:161–171. doi: 10.31989/ffhd.v1i4.133. DOI
Gow N.A., Latge J.P., Munro C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectrum. 2017;5 doi: 10.1128/microbiolspec.FUNK-0035-2016. PubMed DOI PMC
Free S.J. Fungal cell wall organization and biosynthesis. Adv. Genet. 2013;81:33–82. PubMed
Latgé J.P. The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 2007;66:279–290. doi: 10.1111/j.1365-2958.2007.05872.x. PubMed DOI
Ren Y., Bai Y., Zhang Z., Cai W., Del Rio Flores A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules. 2019;24:3122. doi: 10.3390/molecules24173122. PubMed DOI PMC
Wang J., Ma Z., Zhang L., Fang Y., Jiang F., Phillips G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011;86:844–851. doi: 10.1016/j.carbpol.2011.05.031. DOI
Pan K., Jiang Q., Liu G., Miao X., Zhong D. Optimization extraction of Ganoderma lucidum polysaccharides rides and its immunity and antioxidant activities. Int. J. Biol. Macromol. 2013;55:301–306. doi: 10.1016/j.ijbiomac.2013.01.022. PubMed DOI
Baeva E., Bleha R., Lavrova E., Sushytskyi L., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization. Molecules. 2019;24:2740. doi: 10.3390/molecules24152740. PubMed DOI PMC
Yan J.K., Ding Z.C., Gao X., Wang Y.Y., Yang Y., Wu D., Zhang H.N. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydr. Polym. 2018;193:373–382. doi: 10.1016/j.carbpol.2018.04.019. PubMed DOI
Huang S.Q., Li J.W., Wang Z., Pan H.X., Chen J.X., Ning Z.X. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules. 2010;15:3694–3708. doi: 10.3390/molecules15053694. PubMed DOI PMC
Leong Y.K., Yang F.C., Chang J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021;251:117006. doi: 10.1016/j.carbpol.2020.117006. PubMed DOI
Chikari F., Han J., Wang Y., Ao W. Synergized subcritical-ultrasound-assisted aqueous two-phase extraction, purification, and characterization of Lentinus edodes polysaccharides. Process Biochem. 2020;95:297–306. doi: 10.1016/j.procbio.2020.03.009. DOI
Lin Y., Zeng H., Wang K., Lin H., Li P., Huang Y., Zhou S., Zhang W., Chen C., Fan H. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int. J. Biol. Macromol. 2019;136:305–315. doi: 10.1016/j.ijbiomac.2019.06.064. PubMed DOI
Kang Q., Chen S., Li S., Wang B., Liu X., Hao L., Lu J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol. 2019;124:1137–1144. doi: 10.1016/j.ijbiomac.2018.11.215. PubMed DOI
Do D.T., Lam D.H., Nguyen T., Phuong Mai T.T., Phan L.T.M., Vuong H.T., Nguyen D.V., Linh N.T., Hoang M.N., Mai T.P., et al. Utilization of response surface methodology in optimization of polysaccharides extraction from Vietnamese Red Ganoderma lucidum by ultrasound-assisted enzymatic method and examination of bioactivities of the extract. Sci. World J. 2021;2021:7594092. doi: 10.1155/2021/7594092. PubMed DOI PMC
Huang S., Ning Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010;47:336–341. doi: 10.1016/j.ijbiomac.2010.03.019. PubMed DOI
Matsunaga Y., Wahyudiono, Machmudah S., Sasaki M., Goto M. Hot compressed water extraction of polysaccharides from Ganoderma lucidum using a semibatch reactor. Asia-Pac. J. Chem. Eng. 2014;9:125–133. doi: 10.1002/apj.1752. DOI
Zeng X., Li P., Chen X., Kang Y., Xie Y., Li X., Xie T., Zhang Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int. J. Biol. Macromol. 2019;126:867–876. doi: 10.1016/j.ijbiomac.2018.12.222. PubMed DOI
Synytsya A., Novak M. Structural diversity of fungal glucans. Carbohydr. Polym. 2013;92:792–809. doi: 10.1016/j.carbpol.2012.09.077. PubMed DOI
Synytsya A., Novak M. Structural analysis of glucans. Ann. Transl. Med. 2014;2:17. PubMed PMC
Chen Y., Ou X., Yang J., Bi S., Peng B., Wen Y., Song L., Li C., Yu R., Zhu J. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int. J. Biol. Macromol. 2020;158:1204–1215. doi: 10.1016/j.ijbiomac.2020.05.028. PubMed DOI
Yi P., Li N., Wan J.B., Zhang D., Li M., Yan C. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense. Carbohydr. Polym. 2015;121:183–189. doi: 10.1016/j.carbpol.2014.11.034. PubMed DOI
Chuang C.M., Wang H.E., Chang C.H., Peng C.C., Ker Y.B., Lai J.E., Chen K.C., Peng R.Y. Sacchachitin, a novel chitin-polysaccharide conjugate macromolecule present in Ganoderma lucidum: Purification, composition, and properties. Pharm. Biol. 2013;51:84–95. doi: 10.3109/13880209.2012.711840. PubMed DOI
Zhang H., Nie S.P., Yin J.Y., Wang Y.X., Xie M.Y. Structural characterization of a heterogalactan purified from fruiting bodies of Ganoderma atrum. Food Hydrocol. 2014;36:339–347. doi: 10.1016/j.foodhyd.2013.08.029. DOI
Nara K., Kato Y. Structural characterization of a heterogalactan from antler-shaped Ganoderma lucidum. J. Appl. Glycosci. 2015;62:149–151. doi: 10.5458/jag.jag.JAG-2015_009. DOI
Tel-Çayan G., Muhammad A., Deveci E., Duru M.E., Öztürk M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. Int. J. Biol. Macromol. 2020;165:2395–2403. doi: 10.1016/j.ijbiomac.2020.10.040. PubMed DOI
Lai L., Yang D. Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi (Ganoderma lucidum) Food Hydrocol. 2007;21:739–746. doi: 10.1016/j.foodhyd.2006.09.009. DOI
Lu J., He R., Sun P., Zhang F., Linhardt R.J., Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 2020;150:765–774. doi: 10.1016/j.ijbiomac.2020.02.035. PubMed DOI
Sohretoglu D., Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents Med. Chem. 2018;18:667–674. doi: 10.2174/1871520617666171113121246. PubMed DOI PMC
Ren L., Zhang J., Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021;340:127933. doi: 10.1016/j.foodchem.2020.127933. PubMed DOI
Hennicke F., Cheikh-Ali Z., Liebisch T., Maciá-Vicente J.G., Bode H.B., Piepenbring M. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry. 2016;127:29–37. doi: 10.1016/j.phytochem.2016.03.012. PubMed DOI
Eo S.K., Kim Y.S., Lee C.K., Han S.S. Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J. Ethnopharmacol. 1999;68:175–181. doi: 10.1016/S0378-8741(99)00086-0. PubMed DOI
Eo S.K., Kim Y.S., Lee C.K., Han S.S. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 2000;72:475–481. doi: 10.1016/S0378-8741(00)00266-X. PubMed DOI
Khan I., Huang G., Li X., Leong W., Xia W., Hsiao W.W. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Foods. 2018;41:191–201. doi: 10.1016/j.jff.2017.12.046. DOI
Liu Y., Li Y., Zhang W., Sun M., Zhang Z. Hypoglycemic effect of inulin combined with Ganoderma lucidum polysaccharides in T2DM rats. J. Funct. Foods. 2019;55:381–390. doi: 10.1016/j.jff.2019.02.036. DOI
Xiao C., Wu Q., Xie Y., Tan J., Ding Y., Bai L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ. Food Funct. 2018;9:6495–6507. doi: 10.1039/C8FO01656A. PubMed DOI
Xiao C., Wu Q.P., Cai W., Tan J.B., Yang X.B., Zhang J.M. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch. Pharm. Res. 2012;35:1793–1801. doi: 10.1007/s12272-012-1012-z. PubMed DOI
Ma H.T., Hsieh J.F., Chen S.T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113. doi: 10.1016/j.phytochem.2015.02.017. PubMed DOI
Joseph S., Sabulal B., George V., Antony K.R., Janardhanan K.K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm. 2011;61:335–342. doi: 10.2478/v10007-011-0030-6. PubMed DOI
Huang X.J., Nie S.P. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 2015;6:3205–3217. doi: 10.1039/C5FO00678C. PubMed DOI
Chen B., Ke B., Ye L., Jin S., Jie F., Zhao L., Wu X. Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China. Sci. Hortic. 2017;224:109–114. doi: 10.1016/j.scienta.2017.06.002. DOI
Sushytskyi L., Lukáč P., Synytsya A., Bleha R., Rajsiglová L., Capek P., Pohl R., Vannucci L., Čopíková J., Kaštánek P. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae) Carbohydr. Polym. 2020;246:116588. doi: 10.1016/j.carbpol.2020.116588. PubMed DOI
Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S.I., Lee Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005;339:69–72. doi: 10.1016/j.ab.2004.12.001. PubMed DOI
Englyst H.N., Cummings J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 1984;109:937–942. doi: 10.1039/an9840900937. PubMed DOI
Jansson P.E., Kenne L., Liedgren H., Lindberg B., Lonngren J. A practical guide to the methylation analysis of carbohydrates. Chem. Commun. (Stockholm Univ.) 1976;8:1–75.
Ciucanu I., Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984;131:209–217. doi: 10.1016/0008-6215(84)85242-8. DOI
Purdie T., Irvine J.C. The Alkylation of Sugars. Chem. Soc. Trans. 1903;83:1021–1037. doi: 10.1039/CT9038301021. DOI
Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–489. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI
Mokhtari-Hosseini Z.B., Hatamian-Zarmi A., Mohammadnejad J., Ebrahimi-Hosseinzadeh B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep. Biochem. Biotechnol. 2018;48:662–670. doi: 10.1080/10826068.2018.1487847. PubMed DOI
Smiderle F.R., Morales D., Gil-Ramírez A., Jesus L.I., Gilbert-Lopez B., Iacominy M., Soler-Rivas C. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydr. Polym. 2017;156:165–174. doi: 10.1016/j.carbpol.2016.09.029. PubMed DOI
Gao X., Qi J., Ho C.T., Li B., Mu J., Zhang Y., Hu H., Mo W., Chen Z., Xie Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr. Polym. 2020;249:116874. doi: 10.1016/j.carbpol.2020.116874. PubMed DOI
Zhang H., Li W.J., Nie S.P., Chen Y., Wang Y.X., Xie M.Y. Structural characterisation of a novel bioactive polysaccharide from Ganoderma atrum. Carbohydr. Polym. 2012;88:1047–1054. doi: 10.1016/j.carbpol.2012.01.061. DOI
Li J., Gu F., Cai C., Hu M., Fan L., Hao J., Yu G. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2020;143:806–813. doi: 10.1016/j.ijbiomac.2019.09.141. PubMed DOI
Bekiaris G., Tagkouli D., Koutrotsios G., Kalogeropoulos N., Zervakis G.I. Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis. Foods. 2020;9:535. doi: 10.3390/foods9040535. PubMed DOI PMC
Gonzaga M.L.C., Menezes T.M., de Souza J.R.R., Ricardo N.M., Soares S.D.A. Structural characterization of β-glucans isolated from Agaricus blazei Murill using NMR and FTIR spectroscopy. Bioact. Carbohydr. Diet. Fibre. 2013;2:152–156. doi: 10.1016/j.bcdf.2013.10.005. DOI
Synytsya A., Míčková K., Synytsya A., Jablonsky I., Speváček J., Erban V., Kovářiková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Galichet A., Sockalingum G.D., Belarbi A., Manfait M. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol. Let. 2001;197:179–186. doi: 10.1111/j.1574-6968.2001.tb10601.x. PubMed DOI
Grdadolnik J. Saturation effects in FTIR spectroscopy: Intensity of amide I and amide II bands in protein spectra. Acta Chim. Slov. 2003;50:777–788.
Synytsya A., Čopíková J., Matějka P., Machovič V.J. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003;54:97–106. doi: 10.1016/S0144-8617(03)00158-9. DOI
Jansson P.E., Kenne L., Widmalm G. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H-and 13C-NMR data. Carbohydr. Res. 1989;188:169–191. doi: 10.1016/0008-6215(89)84069-8. PubMed DOI
Chen J., Zhou J., Zhang L., Nakamura Y., Norisuye T. Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polym. J. 1998;30:838–842. doi: 10.1295/polymj.30.838. DOI
Smiderle F.R., Olsen L.M., Carbonero E.R., Marcon R., Baggio C.H., Freitas C.S., Santos A.R.S., Torri G., Gorin P.A.J., Iacomini M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: Structure and antinociceptive effect. Phytochemistry. 2008;69:2731–2736. doi: 10.1016/j.phytochem.2008.08.006. PubMed DOI
Rosado F.R., Carbonero E.R., Claudino R.F., Tischer C.A., Kemmelmeier C., Iacomini M. The presence of partially 3-O-methylated mannogalactan from the fruit bodies of edible basidiomycetes Pleurotus ostreatus ‘florida’ Berk. and Pleurotus ostreatoroseus Sing. FEMS Microbiol. Lett. 2003;221:119–124. doi: 10.1016/S0378-1097(03)00161-7. PubMed DOI
Amaral A.E.A., Carbonero E.R., Simao R.C.G., Kadowaki M.K., Sassaki G.L., Osaku C.A., Gorin P.A.J., Iacomini M. An unusual water-soluble b-glucan from the basidiocarp of the fungus Ganoderma resinaceum. Carbohydr. Polym. 2008;72:473–478. doi: 10.1016/j.carbpol.2007.09.016. DOI
Bao X., Liu C., Fang J., Li X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 2001;332:67–74. doi: 10.1016/S0008-6215(01)00075-1. PubMed DOI
Sone Y., Okuda R., Wada N., Kishida E., Misaki A. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the crowing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985;49:2641–2653.
Dong Q., Wang Y., Shi L., Yao J., Li J., Ma F., Ding K. A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 2012;353:100–105. doi: 10.1016/j.carres.2012.02.029. PubMed DOI
Ukai S., Yokoyama S., Hara C., Kiho T. Structure of an alkali-soluble polysaccharide from the fruit body of Ganoderma japonicum Lloyd. Carbohydr. Res. 1982;105:237–245. doi: 10.1016/S0008-6215(00)84971-X. DOI
Peng Y., Zhang L., Zhang Y., Xu X., Kennedy J.F. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr. Polym. 2005;59:351–356. doi: 10.1016/j.carbpol.2004.10.004. DOI