Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910209
Ministry of Agriculture
A1_FPBT_2023_006
University of Chemistry and Technology
PubMed
38248933
PubMed Central
PMC10817577
DOI
10.3390/jof10010023
PII: jof10010023
Knihovny.cz E-zdroje
- Klíčová slova
- ATR-FTIR spectroscopy, basidiocarp, biochemical composition, medicinal fungus Ganoderma, triterpenoids,
- Publikační typ
- časopisecké články MeSH
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was proposed for rapid, versatile, and non-invasive screening of Ganoderma basidiocarps to assess their potential for specific applications. Fifteen species and strains of this fungus were selected for analysis, and fine sections at different parts of young and mature basidiocarps were obtained. The spectra of fungal samples showed significant differences interpreted in terms of biochemical composition using characteristic bands of proteins, polysaccharides, lipids, and triterpenoids. Obviously, for the transverse sections in trama, especially in the basal part, the most intense bands at 950-1200 cm-1 corresponded to polysaccharide vibrations, while for the superficial sections, the bands of carbonyl and aliphatic groups of triterpenoids at 1310-1470, 1550-1740, and 2850-2980 cm-1 predominated. The pilei, especially hymenium tubes, apparently contained more proteins than the bases and stipes, as evidenced by the intense bands of amide vibrations at 1648 and 1545-1550 cm-1. The specificity of the Ganoderma basidiocarp is a densely pigmented surface layer rich in triterpenoids, as proved by ATR-FTIR spectroscopy. The spectral differences corresponding to the specificity of the triterpenoid composition may indicate the prospects of individual strains and species of this genus for cultivation and further use in food, cosmetics, or medicine.
Zobrazit více v PubMed
Sułkowska-Ziaja K., Balik M., Szczepkowski A., Trepa M., Zengin G., Kała K., Muszyńska B. A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity. 2023;15:882. doi: 10.3390/d15080882. DOI
Wang L., Li J.Q., Zhang J., Li Z.M., Liu H.G., Wang Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020;10:42084–42097. doi: 10.1039/D0RA07219B. PubMed DOI PMC
Ahmad R., Riaz M., Khan A., Aljamea A., Algheryafi M., Sewaket D., Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother. Res. 2021;35:6030–6062. doi: 10.1002/ptr.7215. PubMed DOI
El Sheikha A.F. Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: Current scenario and future perspectives. Foods. 2022;11:1030. doi: 10.3390/foods11071030. PubMed DOI PMC
Boh B., Berovic M., Zhang J., Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Ann. Rev. 2007;13:265–301. doi: 10.1016/S1387-2656(07)13010-6. PubMed DOI
Li L.D., Mao P.W., Shao K.D., Bai X.H., Zhou X.W. Ganoderma proteins and their potential applications in cosmetics. Appl. Microbial. Biotechnol. 2019;103:9239–9250. doi: 10.1007/s00253-019-10171-z. PubMed DOI
Guo Z.J., Liu Y., Yang J.Y., Jin M.Y., Mao P.W., Zhou X.W. Evaluating the Application Potential of a Recombinant Ganoderma Protein as Bioactive Ingredients in Cosmetics. Molecules. 2023;28:3272. doi: 10.3390/molecules28073272. PubMed DOI PMC
Li Q., Zhang T., Li L., Bao Z., Tu W., Xiang P., Wu Q., Li P., Cao M., Huang W. Comparative mitogenomic analysis reveals intraspecific, interspecific variations and genetic diversity of medical fungus Ganoderma. J. Fungi. 2022;8:781. doi: 10.3390/jof8080781. PubMed DOI PMC
Pristaš P., Beck T., Nosalová L., Gaperová S., Gáper J. How Different Molecular Markers Estimate the Diversity of European Species of the Ganoderma Genus. J. Fungi. 2023;9:1023. doi: 10.3390/jof9101023. PubMed DOI PMC
Veljović S., Veljović M., Nikićević N., Despotović S., Radulović S., Nikšić M., Filipović L. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. J. Food Sci. Technol. 2017;54:1312–1320. doi: 10.1007/s13197-017-2559-y. PubMed DOI PMC
Bhardwaj A., Srivastava M., Pal M., Sharma Y.K., Bhattacharya S., Tulsawani R., Sugadev R. Screening of Indian lingzhi or reishi medicinal mushroom, Ganoderma lucidum (agaricomycetes): A upc 2-sqd-ms approach. Int. J. Med. Mushrooms. 2016;18:177–189. doi: 10.1615/IntJMedMushrooms.v18.i2.80. PubMed DOI
Hung W.T., Wang S.H., Chen C.H., Yang W.B. Structure determination of β-glucans from Ganoderma lucidum with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Molecules. 2008;13:1538–1550. doi: 10.3390/molecules13081538. PubMed DOI PMC
Náplavová K., Beck T., Pristaš P., Gáperová S., Šebesta M., Piknová M., Gáper J. Molecular data reveal unrecognized diversity in the European Ganoderma resinaceum. Forests. 2020;11:850. doi: 10.3390/f11080850. DOI
Li Z., Shi Y., Zhang X., Xu J., Wang H., Zhao L., Wang Y. Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays. Front. Pharmacol. 2020;11:287. doi: 10.3389/fphar.2020.00287. PubMed DOI PMC
Bleha R., Třešnáková L., Sushytskyi L., Capek P., Čopíková J., Klouček P., Jablonský I., Synytsya A. Polysaccharides from basidiocarps of the polypore fungus Ganoderma resinaceum: Isolation and structure. Polymers. 2022;14:255. doi: 10.3390/polym14020255. PubMed DOI PMC
Huang Y., Li X., Peng X., Adegoke A.T., Chen J., Su H., Hu G., Wei G., Qiu M. NMR-based structural classification, identification, and quantification of triterpenoids from edible mushroom Ganoderma resinaceum. J. Agric. Food Chem. 2020;68:2816–2825. doi: 10.1021/acs.jafc.9b07791. PubMed DOI
Shi Q.Q., Huang Y.J., Su H.G., Gao Y., Lu S.Y., Peng X.R., Li X.N., Zhou L., Qiu M.H. Structurally diverse lanostane triterpenoids from medicinal and edible mushroom Ganoderma resinaceum Boud. Bioorg. Chem. 2020;100:103871. doi: 10.1016/j.bioorg.2020.103871. PubMed DOI
Zhou L., Chen H.P., Li X., Liu J.K. Ganoaustralins A and B, Unusual Aromatic Triterpenes from the Mushroom Ganoderma australe. Pharmaceuticals. 2022;15:1520. doi: 10.3390/ph15121520. PubMed DOI PMC
Zhou L., Akbar S., Wang M.X., Chen H.P., Liu J.K. Tetra-, penta-, and hexa-nor-lanostane triterpenes from the medicinal fungus Ganoderma australe. Nat. Prod. Bioprospect. 2022;12:32. doi: 10.1007/s13659-022-00356-x. PubMed DOI PMC
Elkhateeb W.A., Daba G.M., Sheir D., El-Dein A.N., Fayad W., Elmahdy E.M., Shaheen M.N., Thomas P.W., Wen T.C. GC-MS analysis and in-vitro hypocholesterolemic, anti-rotavirus, anti-human colon carcinoma activities of the crude extract of a Japanese Ganoderma spp. Egypt. Pharm. J. 2019;18:102–110. doi: 10.4103/epj.epj_50_18. DOI
Wu L., Liang W., Chen W., Li S., Cui Y., Qi Q., Zhang L. Screening and analysis of the marker components in Ganoderma lucidum by HPLC and HPLC-MSn with the aid of chemometrics. Molecules. 2017;22:584. doi: 10.3390/molecules22040584. PubMed DOI PMC
Chan K.M., Yue G.G.L., Li P., Wong E.C.W., Lee J.K.M., Kennelly E.J., Bik-San Lau C. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool. J. Chromatogr. A. 2017;1487:162–167. doi: 10.1016/j.chroma.2017.01.044. PubMed DOI
Biswal R.P., Dandamudi R.B., Patnana D.P., Pandey M., Vutukuri V.R.K. Metabolic fingerprinting of Ganoderma spp. using UHPLC-ESI-QTOF-MS and its chemometric analysis. Phytochemistry. 2022;199:113169. doi: 10.1016/j.phytochem.2022.113169. PubMed DOI
Zhang B., Zhou J., Li Q., Gan B., Peng W., Zhang X., Tan W., Jiang L., Li X. Manganese affects the growth and metabolism of Ganoderma lucidum based on LC-MS analysis. PeerJ. 2019;7:e6846. doi: 10.7717/peerj.6846. PubMed DOI PMC
Wubshet S.G., Johansen K.T., Nyberg N.T., Jaroszewski J.W. Direct 13C NMR detection in HPLC hyphenation mode: Analysis of Ganoderma lucidum terpenoids. J. Nat. Prod. 2012;75:876–882. doi: 10.1021/np200915c. PubMed DOI
Kosa G., Shapaval V., Kohler A., Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra-and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb. Cell Fact. 2017;16:195. doi: 10.1186/s12934-017-0817-3. PubMed DOI PMC
Rudakiya D.M., Gupte A. Assessment of white rot fungus mediated hardwood degradation by FTIR spectroscopy and multivariate analysis. J. Microbial. Methods. 2019;157:123–130. doi: 10.1016/j.mimet.2019.01.007. PubMed DOI
Baeva E., Bleha R., Sedliaková M., Sushytskyi L., Švec I., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Evaluation of the cultivated mushroom Pleurotus ostreatus Basidiocarps using vibration spectroscopy and chemometrics. Appl. Sci. 2020;10:8156. doi: 10.3390/app10228156. DOI
Wang X., Chen X., Qi Z., Liu X., Li W., Wang S. A study of Ganoderma lucidum spores by FTIR microspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;91:285–289. doi: 10.1016/j.saa.2012.02.004. PubMed DOI
Chen X., Liu X., Sheng D., Huang D., Li W., Wang X. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;97:667–672. doi: 10.1016/j.saa.2012.07.046. PubMed DOI
Ma J., Fu Z., Ma P., Su Y., Zhang Q. Breaking and characteristics of Ganoderma lucidum spores by high speed centrifugal shearing pulverizer. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007;22:617–621. doi: 10.1007/s11595-006-4617-6. DOI
Qiu G., Lan J., Zhang W., Wen L., Keong C.Y., Chen X. Determination on tree species selection for Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) cultivation by fourier transform infrared and two-dimensional infrared correlation spectroscopy. Int. J. Med. Mushrooms. 2023;25:65–76. doi: 10.1615/IntJMedMushrooms.2022046594. PubMed DOI
Choong Y.K., Sun S.Q., Zhou Q., Ismail Z., Rashid B.A.A., Tao J.X. Determination of storage stability of the crude extracts of Ganoderma lucidum using FTIR and 2D-IR spectroscopy. Vibr. Spectrosc. 2011;57:87–96. doi: 10.1016/j.vibspec.2011.05.008. DOI
Choong Y.K., Chen X., Jamal J.A., Wang Q., Lan J. Preliminary results of determination of chemical changes on Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Higher Basidiomycetes) carried by Shenzhou I spaceship with FTIR and 2D-IR correlation spectroscopy. Int. J. Med. Mushrooms. 2012;14:295–305. doi: 10.1615/IntJMedMushr.v14.i3.60. PubMed DOI
Choong Y.K., Sun S.Q., Zhou Q., Lan J., Lee H.L., Chen X.D. Verification of Ganoderma (lingzhi) commercial products by Fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy. J. Mol. Struct. 2014;1069:60–72. doi: 10.1016/j.molstruc.2013.11.049. DOI
Li X.P., Li J., Liu H., Wang Y.Z. A new analytical method for discrimination of species in Ganodermataceae mushrooms. Int. J. Food Prop. 2020;23:227–240. doi: 10.1080/10942912.2020.1722159. DOI
Zhu Y., Tan A.T.L. Discrimination of wild-grown and cultivated Ganoderma lucidum by Fourier transform infrared spectroscopy and chemometric methods. Am. J. Anal. Chem. 2015;6:480–491. doi: 10.4236/ajac.2015.65047. DOI
Zhu Y., Tan A.T.L. Chemometric feature selection and classification of Ganoderma lucidum spores and fruiting body using ATR-FTIR spectroscopy. Am. J. Anal. Chem. 2015;6:830–840. doi: 10.4236/ajac.2015.610079. DOI
Baeva E., Bleha R., Lavrova E., Sushytskyi L., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization. Molecules. 2019;24:2740. doi: 10.3390/molecules24152740. PubMed DOI PMC
Margreth M., Schlink R., Steinbach A. Water determination by Karl Fischer titration. In: Gad S., editor. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing. John Wiley & Sons; Hoboken, NJ, USA: 2010. pp. 1–34.
McCleary B.V., Draga A. Measurement of β-glucan in mushrooms and mycelia products. J. AOAC Int. 2016;99:364–373. doi: 10.5740/jaoacint.15-0289. PubMed DOI
Mirończuk-Chodakowska I., Witkowska A.M. Evaluation of Polish wild mushrooms as beta-glucan sources. Int. J. Environ. Res. Public Health. 2020;17:7299. doi: 10.3390/ijerph17197299. PubMed DOI PMC
Sari M., Prange A., Lelley J.I., Hambitzer R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017;216:45–51. doi: 10.1016/j.foodchem.2016.08.010. PubMed DOI
Kvasnička F., Kouřimská L., Bleha R., Škvorová P., Kulma M., Rajchl A. Electrophoretic determination of chitin in insects. J. Chromatogr. A. 2023;1695:463952. doi: 10.1016/j.chroma.2023.463952. PubMed DOI
Tshinyangu K.K., Hennebert G.L. Protein and chitin nitrogen contents and protein content in Pleurotus ostreatus var. columbinus. Food Chem. 1996;57:223–227. doi: 10.1016/0308-8146(95)00202-2. DOI
Gomba G.K., Synytsya A., Švecová P., Coimbra M.A., Čopíková J. Distinction of fungal polysaccharides by N/C ratio and mid infrared spectroscopy. Int. J. Biol. Macromol. 2015;80:271–281. doi: 10.1016/j.ijbiomac.2015.05.059. PubMed DOI
Synytsya A., Míčková K., Synytsya A., Jablonský I., Spěváček J., Erban V., Kovářiková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Gutiérrez A., Prieto A., Martínez A.T. Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus. Carbohydr. Res. 1996;281:143–154. doi: 10.1016/0008-6215(95)00342-8. PubMed DOI
Šandula J., Kogan G., Kacurakova M., Machova E. Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr. Res. 1999;38:247–253. doi: 10.1016/S0144-8617(98)00099-X. DOI
Hong T., Yin J.Y., Nie S.P., Xie M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. 2021;12:100168. doi: 10.1016/j.fochx.2021.100168. PubMed DOI PMC
Vasylieva A., Doroshenko I., Vaskivskyi Y., Chernolevska Y., Pogorelov V. FTIR study of condensed water structure. J. Mol. Struct. 2012;1167:232–238. doi: 10.1016/j.molstruc.2018.05.002. DOI
Ricci A., Olejar K.J., Parpinello G.P., Kilmartin P.A., Versari A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. App. Spectrosc. Rev. 2015;50:407–442. doi: 10.1080/05704928.2014.1000461. DOI
Su H.G., Peng X.R., Shi Q.Q., Huang Y.J., Zhou L., Qiu M.H. Lanostane triterpenoids with anti-inflammatory activities from Ganoderma lucidum. Phytochemistry. 2020;173:112256. doi: 10.1016/j.phytochem.2019.112256. PubMed DOI
Wu T.S., Shi L.S., Kuo S.C. Cytotoxicity of Ganoderma lucidum triterpenes. J. Nat. Prod. 2001;64:1121–1122. doi: 10.1021/np010115w. PubMed DOI
Boukaoud A., Chiba Y., Sebbar D. A periodic DFT study of IR spectra of amino acids: An approach toward a better understanding of the NH and OH stretching regions. Vibr. Spectrosc. 2021;116:103280. doi: 10.1016/j.vibspec.2021.103280. DOI
Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007;39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x. PubMed DOI
Forfang K., Zimmermann B., Kosa G., Kohler A., Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS ONE. 2017;12:e0170611. doi: 10.1371/journal.pone.0170611. PubMed DOI PMC
Nakagawa T., Zhu Q., Tamrakar S., Amen Y., Mori Y., Suhara H., Kaneko S., Kawashima H., Okuzono K., Inoue Y., et al. Changes in content of triterpenoids and polysaccharides in Ganoderma lingzhi at different growth stages. J. Nat. Med. 2018;72:734–744. doi: 10.1007/s11418-018-1213-y. PubMed DOI
Zhou S., Tang Q., Tang C., Liu Y., Ma F., Zhang X., Zhang J. Triterpenes and soluble polysaccharide changes in lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), during fruiting growth. Int. J. Med. Mushrooms. 2018;20:859–871. doi: 10.1615/IntJMedMushrooms.2018027357. PubMed DOI
Xu L., Li J., Chang M., Cheng Y., Geng X., Meng J., Zhu M. Comparison of physicochemical and biochemical properties of natural and arginine-modified melanin from medicinal mushroom Ganoderma lucidum. J. Basic Microbiol. 2020;60:1014–1028. doi: 10.1002/jobm.202000430. PubMed DOI
Liang C., Tian D., Liu Y., Li H., Zhu J., Li M., Xin M., Xia J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019;174:130–141. doi: 10.1016/j.ejmech.2019.04.039. PubMed DOI
Kim J.W., Kim H.I., Kim J.H., Kwon O.C., Son E.S., Lee C.S., Park Y.J. Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. Int. J. Mol. Sci. 2016;17:1798. doi: 10.3390/ijms17111798. PubMed DOI PMC
Zhang L., Ding Z., Xu P., Wang Y., Gu Z., Qian Z., Shi G., Zhang K. Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganoderma lucidum is a novel tyrosinase inhibitor. Biotechnol. Bioproc. Eng. 2011;16:457–461. doi: 10.1007/s12257-010-0345-z. DOI
He H., Yao G., Ma Y., Feng N., Zhou S., Huang Q. Experimental and theoretical study of the Raman spectra of ganoderic acid T. J. Struct. Chem. 2019;60:1407–1415. doi: 10.1134/S0022476619090051. DOI
Yao G., Ma Y., Muhammad M., Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019;210:372–380. doi: 10.1016/j.saa.2018.11.019. PubMed DOI
Li C., Li Y., Sun H.H. New ganoderic acids, bioactive triterpenoid metabolites from the mushroom Ganoderma lucidum. Nat. Prod. Res. 2006;20:985–991. doi: 10.1080/14786410600921466. PubMed DOI
Niedermeyer T.H., Lindequist U., Mentel R., Gördes D., Schmidt E., Thurow K., Lalk M. Antiviral Terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005;68:1728–1731. doi: 10.1021/np0501886. PubMed DOI
Ma L.F., Yan J.J., Lang H.Y., Jin L.C., Qiu F.J., Wang Y.J., Xi Z.F., Shan W.G., Zhan Z.J., Ying Y.M. Bioassay-guided isolation of lanostane-type triterpenoids as α-glucosidase inhibitors from Ganoderma hainanense. Phytochem. Lett. 2019;29:154–159. doi: 10.1016/j.phytol.2018.12.007. DOI
Qiao Y., Zhang X.M., Qiu M.H. Two novel lanostane triterpenoids from Ganoderma sinense. Molecules. 2007;12:2038–2046. doi: 10.3390/12082038. PubMed DOI PMC
Zhang J., Yin W., Liu H. Extraction, characterization and stability of a melanin-like pigment from Ganoderma lucidum fruit bodies. Acta Edulis Fungi. 2017;24:93–97.
Wang T., Deng L., Li S., Tan T. Structural characterization of a water-insoluble α-(1 → 3)-D-glucan isolated from the Penicillium chrysogenum. Carbohydr. Polym. 2007;67:133–137. doi: 10.1016/j.carbpol.2006.05.001. DOI
Unursaikhan S., Xu X., Zeng F., Zhang L. Antitumor activities of O-sulphonated derivatives of (1 → 3)-glucans from different Lentinus edodes. Biosci. Biotechnol. Biochem. 2006;70:38–46. doi: 10.1271/bbb.70.38. PubMed DOI
Li Y.Y., Mi Z.Y., Tang Y., Wang G., Li D.S., Tang Y.J. Lanostanoids isolated from Ganoderma lucidum mycelium cultured by submerged fermentation. Helv. Chim. Acta. 2009;92:1586–1593. doi: 10.1002/hlca.200900028. DOI
Xia Q., Zhang H., Sun X., Zhao H., Wu L., Zhu D., Yang G., Shao Y., Zhang X., Mao X., et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules. 2014;19:17478–17535. doi: 10.3390/molecules191117478. PubMed DOI PMC
Ma B., Ren W., Zhou Y., Ma J., Ruan Y., Wen C.N. Triterpenoids from the spores of Ganoderma lucidum. N. Am. J. Med. Sci. 2011;3:495. doi: 10.4297/najms.2011.3495. PubMed DOI PMC
Hsu C.L., Yen G.C. Ganoderic acid and lucidenic acid (triterpenoid) Enzymes. 2014;36:33–56. doi: 10.1016/B978-0-12-802215-3.00003-3. PubMed DOI
Peng X., Liu J., Xia J., Wang C., Li X., Deng Y., Bao N.M., Zhang Z.R., Qiu M.H. Lanostane triterpenoids from Ganoderma hainanense JD Zhao. Phytochemistry. 2015;114:137–145. doi: 10.1016/j.phytochem.2014.10.009. PubMed DOI
Gu L., Zheng Y., Lian D., Zhong X., Liu X. Production of triterpenoids from Ganoderma lucidum: Elicitation strategy and signal transduction. Process. Biochem. 2018;69:22–32. doi: 10.1016/j.procbio.2018.03.019. DOI
Cîntă-Pînzaru S., Dehelean C.A., Soica C., Culea M., Borcan F. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS. Chem. Central J. 2012;6:67. doi: 10.1186/1752-153X-6-67. PubMed DOI PMC
Dehelean C., Pînzaru S.C., Peev C., Soica C., Antal D.S. Characterization of birch tree leaves, buds and bark dry extracts with antitumor activity. J. Optoelectron. Adv. Mater. 2007;9:783.
Melo I.R.S., Teixeira A.M.R., Junior D.S., Santos H.S., Albuquerque M.R.J.R., Bandeira P.N., Rodrigues A.S., Braz-Filho R., Gusmao G.O.M., Silva J.H., et al. FT-Raman and FTIR-ATR spectroscopies and DFT calculations of triterpene acetyl aleuritolic acid. J. Mol. Struct. 2014;1058:221–227. doi: 10.1016/j.molstruc.2013.11.023. DOI
Max J.J., Chapados C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A. 2004;108:3324–3337. doi: 10.1021/jp036401t. DOI
Chen D.H., Shiou W.Y., Wang K.C., Huang S.Y., Shie Y.T., Tsai C.M., Shie J.F., Chen K.D. Chemotaxonomy of triterpenoid pattern of HPLC of Ganoderma lucidum and Ganoderma tsugae. J. Chin. Chem. Soc. 1999;46:47–51. doi: 10.1002/jccs.199900006. DOI
Kubota T., Asaka Y., Miura I., Mori H. Structures of ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum (FR.) KARST. Helv. Chim. Acta. 1982;65:611–619. doi: 10.1002/hlca.19820650221. DOI
Fǎlǎmaş A., Pînzaru S.C., Dehelean C.A., Peev C.I., Soica C. Betulin and its natural resource as potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy. J. Raman Spectrosc. 2011;42:97–107. doi: 10.1002/jrs.2658. DOI
Agarwal Y.K., Verma P.K., Khan E.H., Shafi S. Infrared spectra of C6-spiro steroidal tetrazines. [(accessed on 25 December 2023)];Indian J. Phys. 2003 77:215–221. Available online: http://hdl.handle.net/10821/6697.
Castaneda S., Alvarenga E.S., Demuner A.J., Guimaraes L.M. Vibrational spectra and theoretical calculations of a natural pentacyclic triterpene alcool isolated from Mucuna pruriens. Struct. Chem. 2020;3:599–607. doi: 10.1007/s11224-019-01431-9. DOI
Jamróz M.K., Jamróz M.H., Dobrowolski J.C., Gliński J.A., Davey M.H., Wawer I. Novel and unusual triterpene from Black Cohosh. Determination of structure of 9, 10-seco-9, 19-cyclolanostane xyloside (cimipodocarpaside) by NMR, IR and Raman spectroscopy and DFT calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011;78:107–112. doi: 10.1016/j.saa.2010.09.005. PubMed DOI
Chaman M., Verma P.K. Vibrational spectra of cholesterol derivative and its assignments. [(accessed on 25 December 2023)];Indian J. Phys. 2004 78:1129–1135. Available online: http://hdl.handle.net/10821/7110.