Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK1910209
Ministerstvo Zemědělství
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31357717
PubMed Central
PMC6696160
DOI
10.3390/molecules24152740
PII: molecules24152740
Knihovny.cz E-resources
- Keywords
- basidiocarps, fractionation, glucans, mannogalactan, oyster mushrooms, polysaccharides,
- MeSH
- Chemical Fractionation MeSH
- Chromatography MeSH
- Fungal Polysaccharides chemistry isolation & purification MeSH
- Phytochemicals chemistry isolation & purification MeSH
- Glucans chemistry MeSH
- Molecular Structure MeSH
- Monosaccharides chemistry MeSH
- Pleurotus chemistry MeSH
- Fruiting Bodies, Fungal chemistry MeSH
- Spectrum Analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fungal Polysaccharides MeSH
- Phytochemicals MeSH
- Glucans MeSH
- Monosaccharides MeSH
Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.
See more in PubMed
Wasser S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002;60:258–274. PubMed
Karácsonyi Š., Kuniak Ľ. Polysaccharides of Pleurotus ostreatus: Isolation and structure of pleuran, an alkali-insoluble β-D-glucan. Carbohydr. Polym. 1994;24:107–111. doi: 10.1016/0144-8617(94)90019-1. DOI
Bobek P., Ozdín Ĺ., Kuniak Ĺ. Effect of oyster mushroom and isolated β-glucan on lipid peroxidation and on the activities of antioxidative enzymes in rats fed the cholesterol diet. J. Nutr. Biochem. 1997;8:469–471. doi: 10.1016/S0955-2863(97)00058-2. DOI
Jesenak M., Majtan J., Rennerova Z., Kyselovic J., Banovcin P., Hrubisko M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol. 2013;15:395–399. doi: 10.1016/j.intimp.2012.11.020. PubMed DOI
Majtan J. Pleuran (β-glucan from Pleurotus ostreatus): An effective nutritional supplement against upper respiratory tract infections? Med. Sport Sci. 2012;59:57–61. PubMed
Bergendiova K., Tibenska E., Majtan J. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur. J. Appl. Physiol. 2011;111:2033–2040. doi: 10.1007/s00421-011-1837-z. PubMed DOI
Synytsya A., Míčková K., Synytsya A., Jablonský I., Spěváček J., Erban V., Kováříková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Akyuz M., Kirbag S. Antimicrobial activity of Pleurotus eryngii var. ferulae grown on various agro-wastes. Eur. Asian J. BioSci. 2009;3:58–63.
Dey B., Bhunia S.K., Maity K.K., Patra S., Mandal S., Maiti S., Maiti T.K., Sikdar S.R., Islam S.S. Glucans of Pleurotus florida blue variant: Isolation, purification, characterization and immunological studies. Int. J. Biol. Macromol. 2012;50:591–597. doi: 10.1016/j.ijbiomac.2012.01.031. PubMed DOI
Santos-Neves J.C., Pereira M.I., Carbonero E.R., Gracher A.H.P., Alquini G., Gorin P.A., Sasssaki G.L., Iacomini M. A novel branched αβ-glucan isolated from the basidiocarps of the edible mushroom Pleurotus florida. Carbohydr. Polym. 2008;73:309–314. doi: 10.1016/j.carbpol.2007.11.030. PubMed DOI
Carbonero E.R., Gracher A.H.P., Smiderle F.R., Rosado F.R., Sassaki G.L., Gorin P.A., Iacomini M. A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohydr. Polym. 2006;66:252–257. doi: 10.1016/j.carbpol.2006.03.009. DOI
Smiderle F.R., Olsen L.M., Carbonero E.R., Baggio C.H., Freitas C.S., Marcon R., Santos A.R.S., Gorin P.A., Iacomini M. Anti-inflammatory and analgesic properties in a rodent model of a (1→3),(1→6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur. J. Pharmacol. 2008;597:86–91. doi: 10.1016/j.ejphar.2008.08.028. PubMed DOI
Lavi I., Levinson D., Peri I., Tekoah Y., Hadar Y., Schwartz B. Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl. Microbiol. Biotechnol. 2010;85:1977–1990. doi: 10.1007/s00253-009-2296-x. PubMed DOI
Wong S.M., Wong K.K., Chiu L.C.M., Cheung P.C.K. Non-starch polysaccharides from different developmental stages of Pleurotus tuber-regium inhibited the growth of human acute promyelocytic leukemia HL-60 cells by cell-cycle arrest and/or apoptotic induction. Carbohydr. Polym. 2007;68:206–217. doi: 10.1016/j.carbpol.2006.12.018. DOI
Carbonero E.R., Ruthes A.C., Freitas C.S., Utrilla P., Gálvez J., da Silva E.V., Sassaki G.L., Gorin P.A.J., Iacomini M. Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotus sajor-caju. Carbohydr. Polym. 2012;90:814–819. doi: 10.1016/j.carbpol.2012.06.005. PubMed DOI
Pramanik M., Chakraborty I., Mondal S., Islam S.S. Structural analysis of a water-soluble glucan (Fr. I) of an edible mushroom, Pleurotus sajor-caju. Carbohydr. Res. 2007;342:2670–2675. doi: 10.1016/j.carres.2007.08.012. PubMed DOI
Silveira M.L., Smiderle F.R., Moraes C.P., Borato D.G., Baggio C.H., Ruthes A.C., Wisbeck E., Sassaki G.L., Cipriani T.R., Furlan S.A., et al. Structural characterization and anti-inflammatory activity of a linear β-d-glucan isolated from Pleurotus sajor-caju. Carbohydr. Polym. 2014;113:588–596. doi: 10.1016/j.carbpol.2014.07.057. PubMed DOI
Smiderle F.R., Olsen L.M., Carbonero E.R., Marcon R., Baggio C.H., Freitas C.S., Santos A.R.S., Torri G., Gorin P.A.J., Iacomini M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: Structure and antinociceptive effect. Phytochemistry. 2008;69:2731–2736. doi: 10.1016/j.phytochem.2008.08.006. PubMed DOI
Zhang A.Q., Xu M., Fu L., Sun P.L. Structural elucidation of a novel mannogalactan isolated from the fruiting bodies of Pleurotus geesteranus. Carbohydr. Polym. 2013;92:236–240. doi: 10.1016/j.carbpol.2012.08.105. PubMed DOI
Palacios I., García-Lafuente A., Guillamón E., Villares A. Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydr. Res. 2012;358:72–77. doi: 10.1016/j.carres.2012.06.016. PubMed DOI
Corrêa R.C.G., Brugnari T., Bracht A., Peralta R.M., Ferreira I.C. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016;50:103–117. doi: 10.1016/j.tifs.2016.01.012. DOI
Patel Y., Naraian R., Singh V.K. Medicinal properties of Pleurotus species (oyster mushroom): A review. World J. Fungal Plant Biol. 2012;3:1–12.
Snarr B., Qureshi S., Sheppard D. Immune recognition of fungal polysaccharides. J. Fungi. 2017;3:47. doi: 10.3390/jof3030047. PubMed DOI PMC
Goodridge H.S., Wolf A.J., Underhill D.M. β-Glucan recognition by the innate immune system. Immunol. Rev. 2009;230:38–50. doi: 10.1111/j.1600-065X.2009.00793.x. PubMed DOI PMC
Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC
Rappleye C.A., Eissenberg L.G., Goldman W.E. Histoplasma capsulatum α-(1, 3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl. Acad. Sci. USA. 2007;104:1366–1370. doi: 10.1073/pnas.0609848104. PubMed DOI PMC
Gomba G.K., Synytsya A., Švecová P., Coimbra M.A., Čopíková J. Distinction of fungal polysaccharides by N/C ratio and mid infrared spectroscopy. Int. J. Biol. Macromol. 2015;80:271–281. doi: 10.1016/j.ijbiomac.2015.05.059. PubMed DOI
Synytsya A., Míčková K., Jablonsky I., Sluková M., Copikova J. Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J. Food Sci. 2008;26:441–446. doi: 10.17221/1361-CJFS. DOI
Rout D., Mondal S., Chakraborty I., Islam S.S. The structure of a polysaccharide from Fraction-II of an edible mushroom, Pleurotus florida. Carbohydr. Res. 2006;341:995–1002. doi: 10.1016/j.carres.2006.02.026. PubMed DOI
Zhang A.Q., Zhang Y., Yang J.H., Sun P.L. Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii. Carbohydr. Polym. 2013;92:2239–2244. doi: 10.1016/j.carbpol.2012.11.069. PubMed DOI
Rosado F.R., Carbonero E.R., Claudino R.F., Tischer C.A., Kemmelmeier C., Iacomini M. The presence of partially 3-O-methylated mannogalactan from the fruit bodies of edible basidiomycetes Pleurotus ostreatus ‘florida’Berk. and Pleurotus ostreatoroseus Sing. FEMS Microbiol. Lett. 2003;221:119–124. doi: 10.1016/S0378-1097(03)00161-7. PubMed DOI
Sun Y., Liu J. Purification, structure and immunobiological activity of a water-soluble polysaccharide from the fruiting body of Pleurotus ostreatus. Bioresour. Technol. 2009;100:983–986. doi: 10.1016/j.biortech.2008.06.036. PubMed DOI
Maity K.K., Patra S., Dey B., Bhunia S.K., Mandal S., Das D., Majumdar D.K., Maiti S., Maiti T.K., Islam S.S. A heteropolysaccharide from aqueous extract of an edible mushroom, Pleurotus ostreatus cultivar: Structural and biological studies. Carbohydr. Res. 2011;346:366–372. doi: 10.1016/j.carres.2010.10.026. PubMed DOI
Pramanik M., Mondal S., Chakraborty I., Rout D., Islam S.S. Structural investigation of a polysaccharide (Fr. II) isolated from the aqueous extract of an edible mushroom Pleurotus sajor-caju. Carbohydr. Res. 2005;340:629–636. doi: 10.1016/j.carres.2004.12.032. PubMed DOI
Chen J.N., Wang Y.T., Wu J.S.B. A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J. Agric. Food Chem. 2009;57:6706–6711. doi: 10.1021/jf901284s. PubMed DOI
Chen J.N., de Mejia E.G., Wu J.S.B. Inhibitory effect of a glycoprotein isolated from golden oyster mushroom (Pleurotus citrinopileatus) on the lipopolysaccharide-induced inflammatory reaction in RAW 264.7 macrophage. J. Agric. Food Chem. 2011;59:7092–7097. doi: 10.1021/jf201335g. PubMed DOI
Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sinica. 2007;39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x. PubMed DOI
Figueiro S.D., Góes J.C., Moreira R.A., Sombra A.S.B. On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films. Carbohydr. Polym. 2004;56:313–320. doi: 10.1016/j.carbpol.2004.01.011. DOI
Cerqueira M.A., Souza B.W., Simões J., Teixeira J.A., Domingues M.R.M., Coimbra M.A., Vicente A.A. Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydr. Polym. 2011;83:179–185. doi: 10.1016/j.carbpol.2010.07.036. DOI
Gutiérrez A., Prieto A., Martínez A.T. Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus. Carbohydr. Res. 1996;281:143–154. doi: 10.1016/0008-6215(95)00342-8. PubMed DOI
Šandula J., Kogan G., Kačuráková M., Machová E. Microbial (1→3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr. Res. 1999;38:247–253. doi: 10.1016/S0144-8617(98)00099-X. DOI
Wang T., Deng L., Li S., Tan T. Structural characterization of a water insoluble α-(1→3)-d-glucan isolated from the Penicillium chrysogenum. Carbohydr. Polym. 2007;67:133–137. doi: 10.1016/j.carbpol.2006.05.001. DOI
Das D., Mondal S., Roy S.K., Maiti D., Bhunia B., Maiti T.K., Sikdar S.R., Islam S.S. A (1→6)-β-glucan from a somatic hybrid of Pleurotus florida and Volvariella volvacea: Isolation, characterization, and study of immunoenhancing properties. Carbohydr. Res. 2010;345:974–978. doi: 10.1016/j.carres.2010.02.028. PubMed DOI
Cárdenas G., Cabrera G., Taboada E., Miranda S.P. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polymer Sci. 2004;93:1876–1885. doi: 10.1002/app.20647. DOI
Zhang L., Zhang M., Dong J., Guo J., Song Y., Cheung P.C.K. Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium. Biopolym. Orig. Res. Biomol. 2001;59:457–464. doi: 10.1002/1097-0282(200111)59:6<457::AID-BIP1050>3.0.CO;2-I. PubMed DOI
Fan D., Ma W., Wang L., Huang J., Zhao J., Zhang H., Chen W. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch-Stärke. 2012;64:598–606. doi: 10.1002/star.201100200. DOI
Nilsson G.S., Gorton L., Bergquist K.E., Nilsson U. Determination of the degree of branching in normal and amylopectin type potato starch with 1H-NMR spectroscopy improved resolution and two-dimensional spectroscopy. Starch-Stärke. 1996;48:352–357. doi: 10.1002/star.19960481003. DOI
Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S.I., Lee Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005;339:69–72. doi: 10.1016/j.ab.2004.12.001. PubMed DOI
Schiavone M., Vax A., Formosa C., Martin-Yken H., Dague E., François J.M. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res. 2014;14:933–947. doi: 10.1111/1567-1364.12182. PubMed DOI
Ivshin V.P., Artamonova S.D., Ivshina T.N., Sharnina F.F. Methods for isolation of chitin-glucan complexes from higher fungi native biomass. Polymer Sci. Ser. B. 2007;49:305–310. doi: 10.1134/S1560090407110097. DOI
Passos C.P., Coimbra M.A. Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr. Polym. 2013;94:626–633. doi: 10.1016/j.carbpol.2013.01.088. PubMed DOI