Factors Influencing the Production of Extracellular Polysaccharides by the Green Algae Dictyosphaerium chlorelloides and Their Isolation, Purification, and Composition

. 2022 Jul 21 ; 10 (7) : . [epub] 20220721

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889192

Grantová podpora
QK1910300 Ministry of Agriculture

Odkazy

PubMed 35889192
PubMed Central PMC9316870
DOI 10.3390/microorganisms10071473
PII: microorganisms10071473
Knihovny.cz E-zdroje

The freshwater green microalgae, Dictyosphaerium chlorelloides (CCALA 330), has the ability to produce extracellular polysaccharides (EPS). Conditions for optimum growth and EPS overproduction were determined in laboratory-scale tubular photobioreactors (PBR) with a working volume of 300 mL. Multiple limitations in nutrient supply were proven to be an effective method for EPS overproduction. Salinity stress was also applied to the culture, but no significant increase in EPS production was observed. The effects of different nitrogen sources were examined and the microalgae exhibited the fastest growth and EPS production in medium containing ammonium nitrate. Under determined optimal conditions, EPS concentration reached 10 g/L (71% of the total biomass) and a total biomass of 14 g/L at the end of 17 days cultivation. Pilot-scale cultivation was also carried out in a column type airlift photobioreactor (PBR) with a working volume of 60 L. A new and efficient methodology was developed for separating cells from the EPS-containing culture broth. Due to the strong attachment between cells and EPS, high-pressure homogenization was carried out before a centrifugation process. The EPS in the supernatant was subsequently purified using ultrafiltration. The green microalgae Dictyosphaerium chlorelloides may therefore be appropriate for the commercial production of EPS.

Zobrazit více v PubMed

Ginzberg A., Cohen M., Sod-Moriah A., Shany S., Rosenshtrauch A., Arad M. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol levels and modified fatty acids composition in egg yolk. J. Appl. Phycol. 2000;12:325–330. doi: 10.1023/A:1008102622276. DOI

Guzman S., Gato A., Lamela M., Freire-Garabal M., Calleja M. Anti-Inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2003;17:665–670. doi: 10.1002/ptr.1227. PubMed DOI

Hayashi K., Hayashi T., Kojima I. A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus. AIDS Res. Hum. Retrovir. 1996;12:1463–1471. doi: 10.1089/aid.1996.12.1463. PubMed DOI

Majee S.B., Avlani D., Biswas G.R. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulphated polysaccharides from marine algae and bacteria. Afr. J. Pharm. Pharmacol. 2017;11:68–77.

Pejin B., Tešanović K., Jakovljević D., Kaišarević S., Šibul F., Rašeta M., Karaman M. The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Nat. Prod. Res. 2019;33:750–754. doi: 10.1080/14786419.2017.1405417. PubMed DOI

Huang J., Liu L., Yu Y., Lin W., Chen B., Li M. Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in alloxan-induced diabetic mice. J. Fujian Norm. Univ. 2006;22:77–80.

Kanekiyo K., Lee B., Hayashi K., Takenaka H., Hayakawa Y., Endo S., Hayashi T. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 2005;68:1037–1041. doi: 10.1021/np050056c. PubMed DOI

Karaman M., Janjušević L., Jakovljević D., Šibul F., Boris Pejin B. Anti-hydroxyl radical activity, redox potential and anti-AChE activity of Amanita strobiliformis polysaccharide extract. Nat. Prod. Res. 2019;33:1522–1526. doi: 10.1080/14786419.2017.1422183. PubMed DOI

Kim M., Yim J., Kim S., Kim H., Lee W., Kim S., Kang P., Lee C. In vitro inhibition of influenza A virus infection by marine microalga-derived sulphated polysaccharide p-KG03. Antivir. Res. 2012;93:253–259. doi: 10.1016/j.antiviral.2011.12.006. PubMed DOI

Angelis S., Novak A., Sydney E., Soccol V., Carvalho J., Pandey A., Noseda M., Tholozan J., Lorquin J., Soccol C. Co-Culture of Microalgae, Cyanobacteria, and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization. Appl. Biochem. Biotechnol. 2012;167:1092–1106. doi: 10.1007/s12010-012-9642-7. PubMed DOI

Arad M., Friedman O., Rotem A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl. Environ. Microbiol. 1988;54:2411–2414. doi: 10.1128/aem.54.10.2411-2414.1988. PubMed DOI PMC

Arad M., Lerental Y., Dubinsky O. Effect of nitrate and sulphate starvation on polysaccharide formation Rhodella reticulata. Bioresour. Technol. 1992;42:141–148. doi: 10.1016/0960-8524(92)90073-7. DOI

Bafana A. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr. Polym. 2013;95:746–752. doi: 10.1016/j.carbpol.2013.02.016. PubMed DOI

Goldman J.C., Mann R. Physiological Aspects in Algal Mass Cultures. In: Shelef G., Soeder C.J., editors. Algal Biomass. Elsevier/North-Holland Biomedical Press; Amsterdam, The Netherlands: 1989. pp. 343–353.

Penna A., Berluti S., Penna N., Magnani M. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea. J. Plankton Res. 1999;21:1681–1690. doi: 10.1093/plankt/21.9.1681. DOI

Buetow D.E. Growth, survival and biochemical alteration of Euglena gracilis in medium limited in sulfur. J. Cell Comp. Physiol. 1965;66:235–242. doi: 10.1002/jcp.1030660210. PubMed DOI

De Philippis R., Sili C., Tassinato G., Vincenzini M., Materassi R. Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour. Technol. 1991;38:101–104. doi: 10.1016/0960-8524(91)90138-A. DOI

Richmond A. Environmental Stress Physiology. In: Richmond A., editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Company; Hoboken, NJ, USA: 2004. pp. 57–82.

Singh A., Nigam P.S., Murphy J.D. Mechanism and challenges in the commercialization of algal biofuels. Bioresour. Technol. 2011;102:26–34. doi: 10.1016/j.biortech.2010.06.057. PubMed DOI

Giroldo D., Vieira H. An extracellular sulphated fucfucose-richlysaccharides produced by a tropical strain of C. obovata (Cryptophyceae) J. Appl. Phycol. 2002;14:185–191. doi: 10.1023/A:1019972109619. DOI

Dubinsky O., Barak Z., Geresh S., Arad M. Composition of the cell-wall polysaccharide of the unicellular red alga Rhodella reticulata at two phases of growth. Recent Adv. Algal Biotechnol. 1990;5:17.

Garozzo D., Impallomeni G., Spina E., Sturiale L. The structure of the exocellular polysaccharide from the cyanobacterium Cyanospira capsulata. Carbohydr. Res. 1998;307:113–124. doi: 10.1016/S0008-6215(98)00036-6. PubMed DOI

Geresh S., Lupescu N., Arad M. Fractionation and partial characterization of the sulphated polysaccharide of Porphyridium. Phytochemistry. 1992;31:4181–4186. doi: 10.1016/0031-9422(92)80439-L. DOI

Heaney J., Chapman J. Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum. Carbohydr. Res. 1976;52:169–177. doi: 10.1016/S0008-6215(00)85957-1. PubMed DOI

Arad M., Levy O. Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr. Opin. Biotechnol. 2010;21:358–364. doi: 10.1016/j.copbio.2010.02.008. PubMed DOI

Guerrero J., Valdez M., Garcia S., Vazquez S. Effect of climatic variation on the relative abundance of red alga Gelidium robustus in Baja California Sur, Mexico. J. Appl. Phycol. 2000;177:177–188. doi: 10.1023/A:1008103120247. DOI

Tsarenko P.M., Wasser S.P. Trebouxiophyceae. In: Tsarenko P.M., Wasser S.P., Nevo E., editors. Algae of Ukraine: Diversity, Nomenclature, Taxonomy, Ecology and Geography. A.R. Gantner Verlag KG; Ruggell, Liechtenstein: 2011. pp. 61–108.

Rios S.D., Torres C.M., Torras C., Salvado J., Mateo-Sanz J.M., Jimenez L. Microalgae-based biodiesel: Economic analysis of downstream process realistic scenarios. Bioresour. Technol. 2013;136:617–625. doi: 10.1016/j.biortech.2013.03.046. PubMed DOI

Stack K., Lee R., Richardson D., Lewis T., Garnier G. Complex formation and stability of colloidal wood resin pitch suspensions with hemicellulose polymers. Colloids Surf. A. 2014;441:101–108. doi: 10.1016/j.colsurfa.2013.08.057. DOI

Liu J., Tao Y., Wua J., Zhu Y., Gao B., Tang Y., Li A., Zhang C., Zhang Y. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour. Technol. 2014;167:367–375. doi: 10.1016/j.biortech.2014.06.036. PubMed DOI

Zhang Z., Wang F., Wang X., Liu X., Hou Y., Zhang Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010;82:118–121. doi: 10.1016/j.carbpol.2010.04.031. DOI

Chakraborty M., Miao C., McDonald A., Chen S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel. 2011;95:63–70. doi: 10.1016/j.fuel.2011.10.055. DOI

Mishra A., Jha B. Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress. Bioresour. Technol. 2009;100:3382–3386. doi: 10.1016/j.biortech.2009.02.006. PubMed DOI

Ye H., Zhou C.H., Bian F. Study on degreasing of Sargassum sp. by super- critical carbon dioxide fluid. Sci. Technol. Food Ind. 2006;27:136–137.

Ye H., Wang K., Zhou C., Liu J., Zeng X. Purification, antitumor and anti-oxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 2008;111:428–432. doi: 10.1016/j.foodchem.2008.04.012. PubMed DOI

Heo S.J., Yoon W.J., Kim K.N., Ahn G.N., Kang S.M., Kang D.H., Affan A., Oh C., Jung W.K., Jeon Y.J. Evaluation of the anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010;48:2045–2051. doi: 10.1016/j.fct.2010.05.003. PubMed DOI

Gloaugen V., Ruiz G., Morvan H., Mouradi-Givernaud A., Maes E., Krausz P., Strecker G. The extracellular polysaccharide of Porphyridium sp.: An NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr. Res. 2004;339:97–103. doi: 10.1016/j.carres.2003.09.020. PubMed DOI

Wang S.C., Bligh S.W., Shi S.S., Wang Z.T., Hu Z.B., Crowder J., Branford-White C., Vella C. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int. J. Biol. Macromol. 2007;41:369–375. doi: 10.1016/j.ijbiomac.2007.05.008. PubMed DOI

Patel A.K., Laroche C., Marcati A., Ursu A.V., Jubeau S., Marchal L., Petit E., Djelveh G., Michaud P. Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour. Technol. 2013;145:345–350. doi: 10.1016/j.biortech.2012.12.038. PubMed DOI

Elain A., Nkounkou C., Le Fellic M., Donnart K. Green extraction of polysaccharides from Arthrospira platensis using high pressure homogenization. J. Appl. Phycol. 2020;32:1719–1727. doi: 10.1007/s10811-020-02127-y. DOI

Zhang R., Grimi N., Marchal L., Lebovka N., Vorobiev E. Effect of ultrasonication, high pressure homogenization and their combination on the efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res. 2019;40:101524. doi: 10.1016/j.algal.2019.101524. DOI

Pugh N., Ross S.A., El Sohly H.N., El Sohly M.A., Pasco D.S. Isolation of Three High Molecular Weight Polysaccharide Preparations with Potent Immunostimulatory Activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med. 2001;67:737–742. doi: 10.1055/s-2001-18358. PubMed DOI

Li X., Bišová K., Kawano S., Cepák V., Zachleder V., Čížková M., Brányiková I., Vítová M. The microalga Parachlorella kessleri–A novel highly efficient lipid producer. Biotechnol. Bioeng. 2012;110:97–107. doi: 10.1002/bit.24595. PubMed DOI

Moheimani N.R., Borowitzka M.A., Isdepsky A., Sing S.F. Standard Methods for Measuring Growth of Algae and Their Composition. Algae Biofuels Energy. 2013;5:265–284.

Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14:421–426. doi: 10.1016/0167-7799(96)10060-3. DOI

Lívanský K., Doucha J. Production of high-density Chlorella culture grown in fermenters. J. Appl. Phycol. 2011;24:35–43.

Branyikova I., Bisova K., Branyik T., Doucha J., Marsalkova B., Vitova M., Zachleder V. Microalgae—Novel Highly Efficient Starch Producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI

IHC World Alcian Blue Protocol for Staining. 2013. [(accessed on 1 July 2022)]. Available online: http://www.ihcworld.com/_protocols/special_stains/alcian_blue_ellis.htm.

Baeva E., Bleha R., Lavrova E., Sushytskyi L., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization. Molecules. 2019;24:2740. doi: 10.3390/molecules24152740. PubMed DOI PMC

Kraan S. Algal Polysaccharides, Novel Applications, and Outlook. In: Chang C.-F., editor. Carbohydrates Comprehensive Studies on Glycobiology and Glycotechnology. Intech; London, UK: 2012. pp. 505–515.

Soanen N., Da Silva E., Gardarin C., Michaud P., Laroche C. Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour. Technol. 2016;213:231–238. doi: 10.1016/j.biortech.2016.02.075. PubMed DOI

Yang Z., Ma Y., Zheng J., Yang W., Liu J., Li H. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Appl. Phycol. 2014;26:73–82. doi: 10.1007/s10811-013-0050-3. PubMed DOI PMC

Gilmour D., Hipkins M., Boney A. The effect of osmotic and ionic stress on the primary processes of photosynthesis in Dunaliella tertiolecta. Planta. 1984;163:250–256. doi: 10.1007/BF00393515. PubMed DOI

Gonzalez A., Tabemero A., Sanchez J.M., Martin del Valle E.M., Galan M.A. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundance and Chlorella ellipsoidea. Bioresour. Technol. 2014;173:334–341. doi: 10.1016/j.biortech.2014.09.038. PubMed DOI

Lupi F.M., Fernandes H.M.L., Tomé M.M., Sá-Correia I., Novais J.M. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzyme Microb. Technol. 1994;16:546–550. doi: 10.1016/0141-0229(94)90116-3. DOI

Rajasri Y., Ramgopal Rao S., Rao C.S. Lipid accumulation studies in Chlorella pyrenoidosa using customized photobioreactor-effect of nitrogen source, light intensity and mode of operation. Int. J. Eng. Res. Appl. 2012;2:2446–2453.

Singh S., Arad S., Richmond A. Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J. Appl. Phycol. 2000;12:269–275. doi: 10.1023/A:1008177002226. DOI

Contipro Inc. (Czech Republic) Official Website as of 8 May 2022. [(accessed on 1 July 2022)]. Available online: https://www.contipro.com/portfolio/manufacturer-of-pharmaceutical-sodium-hyaluronate.

Lubrizol Corporation Inc. (USA) Official Website as of 8 May 2022. [(accessed on 1 July 2022)]. Available online: https://www.lubrizol.com/Personal-Care/Products/Product-Finder/Products-Data/Kelco-Care-diutan-gum.

Dhamodharan P., Ponnusamy N., Odumpatta R., Lulu S., Arumugam M. Computational investigation of marine bioactive compounds against E6 oncoprotein of Human Papilloma Virus-HPV16. J. Appl. Pharm. Sci. 2018;8:23–32.

Bhatt A., Arora P., Prajapati S.K. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front. Microbiol. 2020;11:596374. doi: 10.3389/fmicb.2020.596374. PubMed DOI PMC

Hans N., Malik A., Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep. 2021;13:100623. doi: 10.1016/j.biteb.2020.100623. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...