Factors Influencing the Production of Extracellular Polysaccharides by the Green Algae Dictyosphaerium chlorelloides and Their Isolation, Purification, and Composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910300
Ministry of Agriculture
PubMed
35889192
PubMed Central
PMC9316870
DOI
10.3390/microorganisms10071473
PII: microorganisms10071473
Knihovny.cz E-zdroje
- Klíčová slova
- Dictyosphaerium chlorelloides, extracellular polysaccharides, photobioreactor,
- Publikační typ
- časopisecké články MeSH
The freshwater green microalgae, Dictyosphaerium chlorelloides (CCALA 330), has the ability to produce extracellular polysaccharides (EPS). Conditions for optimum growth and EPS overproduction were determined in laboratory-scale tubular photobioreactors (PBR) with a working volume of 300 mL. Multiple limitations in nutrient supply were proven to be an effective method for EPS overproduction. Salinity stress was also applied to the culture, but no significant increase in EPS production was observed. The effects of different nitrogen sources were examined and the microalgae exhibited the fastest growth and EPS production in medium containing ammonium nitrate. Under determined optimal conditions, EPS concentration reached 10 g/L (71% of the total biomass) and a total biomass of 14 g/L at the end of 17 days cultivation. Pilot-scale cultivation was also carried out in a column type airlift photobioreactor (PBR) with a working volume of 60 L. A new and efficient methodology was developed for separating cells from the EPS-containing culture broth. Due to the strong attachment between cells and EPS, high-pressure homogenization was carried out before a centrifugation process. The EPS in the supernatant was subsequently purified using ultrafiltration. The green microalgae Dictyosphaerium chlorelloides may therefore be appropriate for the commercial production of EPS.
EcoFuel Laboratories s r o Ocelářská 9 190 00 Prague Czech Republic
Institute of Chemical Process Fundamentals of the CAS Rozvojova 2 135 165 02 Prague Czech Republic
Zobrazit více v PubMed
Ginzberg A., Cohen M., Sod-Moriah A., Shany S., Rosenshtrauch A., Arad M. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol levels and modified fatty acids composition in egg yolk. J. Appl. Phycol. 2000;12:325–330. doi: 10.1023/A:1008102622276. DOI
Guzman S., Gato A., Lamela M., Freire-Garabal M., Calleja M. Anti-Inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2003;17:665–670. doi: 10.1002/ptr.1227. PubMed DOI
Hayashi K., Hayashi T., Kojima I. A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus. AIDS Res. Hum. Retrovir. 1996;12:1463–1471. doi: 10.1089/aid.1996.12.1463. PubMed DOI
Majee S.B., Avlani D., Biswas G.R. Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulphated polysaccharides from marine algae and bacteria. Afr. J. Pharm. Pharmacol. 2017;11:68–77.
Pejin B., Tešanović K., Jakovljević D., Kaišarević S., Šibul F., Rašeta M., Karaman M. The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Nat. Prod. Res. 2019;33:750–754. doi: 10.1080/14786419.2017.1405417. PubMed DOI
Huang J., Liu L., Yu Y., Lin W., Chen B., Li M. Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in alloxan-induced diabetic mice. J. Fujian Norm. Univ. 2006;22:77–80.
Kanekiyo K., Lee B., Hayashi K., Takenaka H., Hayakawa Y., Endo S., Hayashi T. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 2005;68:1037–1041. doi: 10.1021/np050056c. PubMed DOI
Karaman M., Janjušević L., Jakovljević D., Šibul F., Boris Pejin B. Anti-hydroxyl radical activity, redox potential and anti-AChE activity of Amanita strobiliformis polysaccharide extract. Nat. Prod. Res. 2019;33:1522–1526. doi: 10.1080/14786419.2017.1422183. PubMed DOI
Kim M., Yim J., Kim S., Kim H., Lee W., Kim S., Kang P., Lee C. In vitro inhibition of influenza A virus infection by marine microalga-derived sulphated polysaccharide p-KG03. Antivir. Res. 2012;93:253–259. doi: 10.1016/j.antiviral.2011.12.006. PubMed DOI
Angelis S., Novak A., Sydney E., Soccol V., Carvalho J., Pandey A., Noseda M., Tholozan J., Lorquin J., Soccol C. Co-Culture of Microalgae, Cyanobacteria, and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization. Appl. Biochem. Biotechnol. 2012;167:1092–1106. doi: 10.1007/s12010-012-9642-7. PubMed DOI
Arad M., Friedman O., Rotem A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl. Environ. Microbiol. 1988;54:2411–2414. doi: 10.1128/aem.54.10.2411-2414.1988. PubMed DOI PMC
Arad M., Lerental Y., Dubinsky O. Effect of nitrate and sulphate starvation on polysaccharide formation Rhodella reticulata. Bioresour. Technol. 1992;42:141–148. doi: 10.1016/0960-8524(92)90073-7. DOI
Bafana A. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr. Polym. 2013;95:746–752. doi: 10.1016/j.carbpol.2013.02.016. PubMed DOI
Goldman J.C., Mann R. Physiological Aspects in Algal Mass Cultures. In: Shelef G., Soeder C.J., editors. Algal Biomass. Elsevier/North-Holland Biomedical Press; Amsterdam, The Netherlands: 1989. pp. 343–353.
Penna A., Berluti S., Penna N., Magnani M. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea. J. Plankton Res. 1999;21:1681–1690. doi: 10.1093/plankt/21.9.1681. DOI
Buetow D.E. Growth, survival and biochemical alteration of Euglena gracilis in medium limited in sulfur. J. Cell Comp. Physiol. 1965;66:235–242. doi: 10.1002/jcp.1030660210. PubMed DOI
De Philippis R., Sili C., Tassinato G., Vincenzini M., Materassi R. Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour. Technol. 1991;38:101–104. doi: 10.1016/0960-8524(91)90138-A. DOI
Richmond A. Environmental Stress Physiology. In: Richmond A., editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Company; Hoboken, NJ, USA: 2004. pp. 57–82.
Singh A., Nigam P.S., Murphy J.D. Mechanism and challenges in the commercialization of algal biofuels. Bioresour. Technol. 2011;102:26–34. doi: 10.1016/j.biortech.2010.06.057. PubMed DOI
Giroldo D., Vieira H. An extracellular sulphated fucfucose-richlysaccharides produced by a tropical strain of C. obovata (Cryptophyceae) J. Appl. Phycol. 2002;14:185–191. doi: 10.1023/A:1019972109619. DOI
Dubinsky O., Barak Z., Geresh S., Arad M. Composition of the cell-wall polysaccharide of the unicellular red alga Rhodella reticulata at two phases of growth. Recent Adv. Algal Biotechnol. 1990;5:17.
Garozzo D., Impallomeni G., Spina E., Sturiale L. The structure of the exocellular polysaccharide from the cyanobacterium Cyanospira capsulata. Carbohydr. Res. 1998;307:113–124. doi: 10.1016/S0008-6215(98)00036-6. PubMed DOI
Geresh S., Lupescu N., Arad M. Fractionation and partial characterization of the sulphated polysaccharide of Porphyridium. Phytochemistry. 1992;31:4181–4186. doi: 10.1016/0031-9422(92)80439-L. DOI
Heaney J., Chapman J. Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum. Carbohydr. Res. 1976;52:169–177. doi: 10.1016/S0008-6215(00)85957-1. PubMed DOI
Arad M., Levy O. Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr. Opin. Biotechnol. 2010;21:358–364. doi: 10.1016/j.copbio.2010.02.008. PubMed DOI
Guerrero J., Valdez M., Garcia S., Vazquez S. Effect of climatic variation on the relative abundance of red alga Gelidium robustus in Baja California Sur, Mexico. J. Appl. Phycol. 2000;177:177–188. doi: 10.1023/A:1008103120247. DOI
Tsarenko P.M., Wasser S.P. Trebouxiophyceae. In: Tsarenko P.M., Wasser S.P., Nevo E., editors. Algae of Ukraine: Diversity, Nomenclature, Taxonomy, Ecology and Geography. A.R. Gantner Verlag KG; Ruggell, Liechtenstein: 2011. pp. 61–108.
Rios S.D., Torres C.M., Torras C., Salvado J., Mateo-Sanz J.M., Jimenez L. Microalgae-based biodiesel: Economic analysis of downstream process realistic scenarios. Bioresour. Technol. 2013;136:617–625. doi: 10.1016/j.biortech.2013.03.046. PubMed DOI
Stack K., Lee R., Richardson D., Lewis T., Garnier G. Complex formation and stability of colloidal wood resin pitch suspensions with hemicellulose polymers. Colloids Surf. A. 2014;441:101–108. doi: 10.1016/j.colsurfa.2013.08.057. DOI
Liu J., Tao Y., Wua J., Zhu Y., Gao B., Tang Y., Li A., Zhang C., Zhang Y. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour. Technol. 2014;167:367–375. doi: 10.1016/j.biortech.2014.06.036. PubMed DOI
Zhang Z., Wang F., Wang X., Liu X., Hou Y., Zhang Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010;82:118–121. doi: 10.1016/j.carbpol.2010.04.031. DOI
Chakraborty M., Miao C., McDonald A., Chen S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel. 2011;95:63–70. doi: 10.1016/j.fuel.2011.10.055. DOI
Mishra A., Jha B. Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress. Bioresour. Technol. 2009;100:3382–3386. doi: 10.1016/j.biortech.2009.02.006. PubMed DOI
Ye H., Zhou C.H., Bian F. Study on degreasing of Sargassum sp. by super- critical carbon dioxide fluid. Sci. Technol. Food Ind. 2006;27:136–137.
Ye H., Wang K., Zhou C., Liu J., Zeng X. Purification, antitumor and anti-oxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 2008;111:428–432. doi: 10.1016/j.foodchem.2008.04.012. PubMed DOI
Heo S.J., Yoon W.J., Kim K.N., Ahn G.N., Kang S.M., Kang D.H., Affan A., Oh C., Jung W.K., Jeon Y.J. Evaluation of the anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010;48:2045–2051. doi: 10.1016/j.fct.2010.05.003. PubMed DOI
Gloaugen V., Ruiz G., Morvan H., Mouradi-Givernaud A., Maes E., Krausz P., Strecker G. The extracellular polysaccharide of Porphyridium sp.: An NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr. Res. 2004;339:97–103. doi: 10.1016/j.carres.2003.09.020. PubMed DOI
Wang S.C., Bligh S.W., Shi S.S., Wang Z.T., Hu Z.B., Crowder J., Branford-White C., Vella C. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int. J. Biol. Macromol. 2007;41:369–375. doi: 10.1016/j.ijbiomac.2007.05.008. PubMed DOI
Patel A.K., Laroche C., Marcati A., Ursu A.V., Jubeau S., Marchal L., Petit E., Djelveh G., Michaud P. Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour. Technol. 2013;145:345–350. doi: 10.1016/j.biortech.2012.12.038. PubMed DOI
Elain A., Nkounkou C., Le Fellic M., Donnart K. Green extraction of polysaccharides from Arthrospira platensis using high pressure homogenization. J. Appl. Phycol. 2020;32:1719–1727. doi: 10.1007/s10811-020-02127-y. DOI
Zhang R., Grimi N., Marchal L., Lebovka N., Vorobiev E. Effect of ultrasonication, high pressure homogenization and their combination on the efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res. 2019;40:101524. doi: 10.1016/j.algal.2019.101524. DOI
Pugh N., Ross S.A., El Sohly H.N., El Sohly M.A., Pasco D.S. Isolation of Three High Molecular Weight Polysaccharide Preparations with Potent Immunostimulatory Activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med. 2001;67:737–742. doi: 10.1055/s-2001-18358. PubMed DOI
Li X., Bišová K., Kawano S., Cepák V., Zachleder V., Čížková M., Brányiková I., Vítová M. The microalga Parachlorella kessleri–A novel highly efficient lipid producer. Biotechnol. Bioeng. 2012;110:97–107. doi: 10.1002/bit.24595. PubMed DOI
Moheimani N.R., Borowitzka M.A., Isdepsky A., Sing S.F. Standard Methods for Measuring Growth of Algae and Their Composition. Algae Biofuels Energy. 2013;5:265–284.
Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14:421–426. doi: 10.1016/0167-7799(96)10060-3. DOI
Lívanský K., Doucha J. Production of high-density Chlorella culture grown in fermenters. J. Appl. Phycol. 2011;24:35–43.
Branyikova I., Bisova K., Branyik T., Doucha J., Marsalkova B., Vitova M., Zachleder V. Microalgae—Novel Highly Efficient Starch Producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
IHC World Alcian Blue Protocol for Staining. 2013. [(accessed on 1 July 2022)]. Available online: http://www.ihcworld.com/_protocols/special_stains/alcian_blue_ellis.htm.
Baeva E., Bleha R., Lavrova E., Sushytskyi L., Čopíková J., Jablonsky I., Klouček P., Synytsya A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization. Molecules. 2019;24:2740. doi: 10.3390/molecules24152740. PubMed DOI PMC
Kraan S. Algal Polysaccharides, Novel Applications, and Outlook. In: Chang C.-F., editor. Carbohydrates Comprehensive Studies on Glycobiology and Glycotechnology. Intech; London, UK: 2012. pp. 505–515.
Soanen N., Da Silva E., Gardarin C., Michaud P., Laroche C. Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour. Technol. 2016;213:231–238. doi: 10.1016/j.biortech.2016.02.075. PubMed DOI
Yang Z., Ma Y., Zheng J., Yang W., Liu J., Li H. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Appl. Phycol. 2014;26:73–82. doi: 10.1007/s10811-013-0050-3. PubMed DOI PMC
Gilmour D., Hipkins M., Boney A. The effect of osmotic and ionic stress on the primary processes of photosynthesis in Dunaliella tertiolecta. Planta. 1984;163:250–256. doi: 10.1007/BF00393515. PubMed DOI
Gonzalez A., Tabemero A., Sanchez J.M., Martin del Valle E.M., Galan M.A. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundance and Chlorella ellipsoidea. Bioresour. Technol. 2014;173:334–341. doi: 10.1016/j.biortech.2014.09.038. PubMed DOI
Lupi F.M., Fernandes H.M.L., Tomé M.M., Sá-Correia I., Novais J.M. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzyme Microb. Technol. 1994;16:546–550. doi: 10.1016/0141-0229(94)90116-3. DOI
Rajasri Y., Ramgopal Rao S., Rao C.S. Lipid accumulation studies in Chlorella pyrenoidosa using customized photobioreactor-effect of nitrogen source, light intensity and mode of operation. Int. J. Eng. Res. Appl. 2012;2:2446–2453.
Singh S., Arad S., Richmond A. Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J. Appl. Phycol. 2000;12:269–275. doi: 10.1023/A:1008177002226. DOI
Contipro Inc. (Czech Republic) Official Website as of 8 May 2022. [(accessed on 1 July 2022)]. Available online: https://www.contipro.com/portfolio/manufacturer-of-pharmaceutical-sodium-hyaluronate.
Lubrizol Corporation Inc. (USA) Official Website as of 8 May 2022. [(accessed on 1 July 2022)]. Available online: https://www.lubrizol.com/Personal-Care/Products/Product-Finder/Products-Data/Kelco-Care-diutan-gum.
Dhamodharan P., Ponnusamy N., Odumpatta R., Lulu S., Arumugam M. Computational investigation of marine bioactive compounds against E6 oncoprotein of Human Papilloma Virus-HPV16. J. Appl. Pharm. Sci. 2018;8:23–32.
Bhatt A., Arora P., Prajapati S.K. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front. Microbiol. 2020;11:596374. doi: 10.3389/fmicb.2020.596374. PubMed DOI PMC
Hans N., Malik A., Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep. 2021;13:100623. doi: 10.1016/j.biteb.2020.100623. PubMed DOI PMC