Structural Features and Immunomodulatory Effects of Water-Extractable Polysaccharides from Macrolepiota procera (Scop.) Singer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
National Research Programme "Young Scientists and Postdoctoral Students", approved by DCM #577/17.08.2018
Ministry of Education and Science
Research equipment of Distributed Research Infrastructure INFRAMAT
Ministry of Education and Science
Bilateral grant agreement between the BULGARIAN ACADEMY OF SCIENCES and CZECH ACADEMY OF SCIENCES (2020-2022).
BULGARIAN ACADEMY OF SCIENCES and CZECH ACADEMY OF SCIENCES
PubMed
36012836
PubMed Central
PMC9410249
DOI
10.3390/jof8080848
PII: jof8080848
Knihovny.cz E-resources
- Keywords
- Clostridium beijerinckii, Escherichia coli, Macrolepiota procera, NMR, biofilm, immunomodulatory activity, inflammation, polysaccharides, prebiotic activity, probiotic bacteria,
- Publication type
- Journal Article MeSH
Macrolepiota procera (MP) is an edible mushroom used in the treatment of diabetes, hypertension and inflammation. However, the structure and biological effects of its polysaccharides (PSs) are unclear. This study investigates the structural features of a PS complex from MP (MP-PSC), its immunomodulatory activities and effects on probiotic and pathogenic bacteria. MP-PSC was obtained by boiling water, and PSs were characterized by 2D NMR spectroscopy. The immunomodulatory effects on blood and derived neutrophils, other leukocytes, and murine macrophages were studied by flow cytometry, chemiluminescence, spectrophotometry, and ELISA. The total carbohydrate content of MP-PSC was 74.2%, with glycogen occupying 36.7%, followed by β-D-glucan, α-L-fuco-2-(1,6)-D-galactan, and β-D-glucomannan. MP-PSC (200 μg/mL) increased the number of CD14+ monocyte cells in the blood, after ex vivo incubation for 24 h. It dose-dependently (50-200 μg/mL) activated the spontaneous oxidative burst of whole blood phagocytes, NO, and interleukin 6 productions in RAW264.7 cells. MP-PSC exhibited a low antioxidant activity and failed to suppress the oxidative burst and NO generation, induced by inflammatory agents. It (2.0%, w/v) stimulated probiotic co-cultures and hindered the growth and biofilm development of Escherichia coli, Streptococcus mutans and Salmonella enterica. MP PSs can be included in synbiotics to test their immunostimulating effects on compromised immune systems and gut health.
Department of Biotechnology University of Food Technologies 26 Maritza Blvd 4002 Plovdiv Bulgaria
Department of Pharmacy University of Oslo P O Box 1068 Blindern 0316 Oslo Norway
See more in PubMed
Kim H., Song M.-J. Analysis of traditional knowledge for wild edible mushrooms consumed by residents living in Jirisan National Park (Korea) J. Ethnopharmacol. 2014;153:90–97. doi: 10.1016/j.jep.2013.12.041. PubMed DOI
Vitalini S., Puricelli C., Mikerezi I., Iriti M. Plants, people and traditions: Ethnobotanical survey in the Lombard Stelvio National Park and neighbouring areas (Central Alps, Italy) J. Ethnopharmacol. 2015;173:435–458. doi: 10.1016/j.jep.2015.05.036. PubMed DOI
Živković J., Ivanov M., Stojković D., Glamočlija J. Ethnomycological investigation in Serbia: Astonishing realm of mycomedicines and mycofood. J. Fungi. 2021;7:349. doi: 10.3390/jof7050349. PubMed DOI PMC
Kolundžić M., Radović J., Tačić A., Nikolić V., Kundaković T. Elemental composition and nutritional value of three edible mushrooms from Serbia. Zašt. Mater. 2018;59:45–50. doi: 10.5937/ZasMat1801045K. DOI
Vishwakarma P., Singh P., Tripathi N.N. Nutritional and antioxidant properties of wild edible macrofungi from North-Eastern Uttar Pradesh, India. Indian, J. Tradit. Knowl. 2016;15:143–148.
Fernandes A., Barreira J.C.M., Antonio A.L., Oliveira M.B.P.P., Martins A., Ferreira I.C.F.R. Effects of gamma irradiation on chemical composition and antioxidant potential of processed samples of the wild mushroom Macrolepiota procera. Food Chem. 2014;149:91–98. doi: 10.1016/j.foodchem.2013.10.050. PubMed DOI
Muszynska B., Sułkowska-Ziaja K., Wojcik A. Levels of physiologically active indole derivatives in the fruiting bodies of some edible mushrooms (Basidiomycota) before and after thermal processing. Mycoscience. 2013;54:321–326. doi: 10.1016/j.myc.2012.11.002. DOI
Ozen T., Darcan C., Aktop O., Turkekul I. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the Black sea region of Turkey. Comb. Chem. High. Throughput Screen. 2011;14:72–84. doi: 10.2174/138620711794474079. PubMed DOI
Fernandes A., Barros L., Antonio A.L., Barreira J.C.M., Oliveira M.B.P.P., Martins A., Ferreira I.C.F.R. Using gamma irradiation to attenuate the effects caused by drying or freezing in Macrolepiota procera organic acids and phenolic compounds. Food Bioproc. Technol. 2014;7:3012–3021. doi: 10.1007/s11947-013-1248-8. DOI
Erbiai E.H., da Silva L.P., Saidi R., Lamrani Z., da Silva J.C.G.E., Maouni A. Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal) Biomolecules. 2021;11:575. doi: 10.3390/biom11040575. PubMed DOI PMC
Mešić A., Šamec D., Jadan M., Bahun V., Tkalčec Z. Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. Food Biosci. 2020;37:100720. doi: 10.1016/j.fbio.2020.100720. DOI
Aydin E., Gurbuz I.B., Karahan H., Basdar C. Effect of different processing technologies on chemical properties of wild-grown edible mushroom Macrolepiota procera var. procera (Scop.) J. Food Process. Preserv. 2017;41:e12802. doi: 10.1111/jfpp.12802. DOI
Barea-Sepúlveda M., Espada-Bellido E., Ferreiro-González M., Bouziane H., López-Castillo J.G., Palma M., Barbero G.F. Toxic elements and trace elements in Macrolepiota procera mushrooms from Southern Spain and Northern Morocco. J. Food Compos. Anal. 2022;108:104419. doi: 10.1016/j.jfca.2022.104419. PubMed DOI
Kosanić M., Ranković B., Rančić A., Stanojković T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J. Food Drug Anal. 2016;24:477–484. doi: 10.1016/j.jfda.2016.01.008. PubMed DOI PMC
Mleczek M., Siwulski M., Budka A., Mleczek P., Budzyńska S., Szostek M., Kuczyńska-Kippen N., Kalač P., Niedzielski P., Gąsecka M., et al. Toxicological risks and nutritional value of wild edible mushroom species—A half-century monitoring study. Chemosphere. 2021;263:128095. doi: 10.1016/j.chemosphere.2020.128095. PubMed DOI
Sung C.K., Kimura T., But P.P.H., Guo J.-X. Plant. In: Sung C.K., editor. International Collation of Traditional and Folk Medicine Northeast Asia. World Scientific Publishing Co. Pte. Ltd.; Singapore: 1998. p. 6. DOI
Deveci E., Çayan F., Tel-Çayan G., Duru M.E. Inhibitory activities of medicinal mushrooms on α-amylase and α-glucosidase-enzymes related to type 2 diabetes. S. Afr. J. Bot. 2021;137:19–23. doi: 10.1016/j.sajb.2020.09.039. DOI
Akata I., Zengin G., Picot C.M.N., Mahomoodally M.F. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. S. Afr. J. Bot. 2018;120:95–99. doi: 10.1016/j.sajb.2018.01.008. DOI
Seçme M., Kaygusuz O., Eroglu C., Dodurga Y., Colak O.F., Atmaca P. Potential anticancer activity of the parasol mushroom, Macrolepiota procera (Agaricomycetes), against the A549 human lung cancer cell line. Int. J. Med. Mushrooms. 2018;20:1075–1086. doi: 10.1615/IntJMedMushrooms.2018028589. PubMed DOI
Chen H.-P., Zhao Z.-Z., Li Z.-H., Huang Y., Zhang S.-B., Tang Y., Yao J.-N., Chen L., Isaka M., Feng T., et al. Anti-proliferative and anti-inflammatory lanostane triterpenoids from the Polish edible mushroom Macrolepiota procera. J. Agric. Food Chem. 2018;66:3146–3154. doi: 10.1021/acs.jafc.8b00287. PubMed DOI
Amoros M., Boustie J., Py M.-L., Hervé V., Robin V. Antiviral activity of Homobasidiomycetes: Evaluation of 121 Basidiomycetes extracts on four viruses. Int. J. Pharmacogn. 1997;35:255–260. doi: 10.1076/phbi.35.4.255.13308. DOI
Pinto A., Cirino G., Meli R., Senatore F., Capasso F. Inhibitory effects of fungi on aggregation of rabbit platelets and rat polymorphonuclear leucocytes in vitro. J. Ethnopharmacol. 1988;22:91–99. doi: 10.1016/0378-8741(88)90234-6. PubMed DOI
Taofiq O., Calhelha R.C., Heleno S., Barros L., Martins A., Santos-Buelga C., Queiroz M.J.R.P., Ferreira I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int. 2015;76:821–827. doi: 10.1016/j.foodres.2015.07.044. PubMed DOI
Zara R., Rasul A., Sultana T., Jabeen F., Selamoglu Z. Identification of Macrolepiota procera extract as a novel G6PD inhibitor for the treatment of lung cancer. Saudi, J. Biol. Sci. 2022;29:3372–3379. doi: 10.1016/j.sjbs.2022.02.018. PubMed DOI PMC
Özgür A., Kaplan Ö., Tosun N.G., Türkekul İ., Gökçe İ. Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells. Part. Sci. Technol. 2022;40:1–11. doi: 10.1080/02726351.2022.2089303. DOI
Sterniša M., Sabotič J., Klančnik A. A novel approach using growth curve analysis to distinguish between antimicrobial and anti-biofilm activities against Salmonella. Int. J. Food Microbiol. 2022;364:109520. doi: 10.1016/j.ijfoodmicro.2021.109520. PubMed DOI
Doh-Hee K., Kyung-Hoon H., Kwan-Yong S., Kye-Heui L., Sun-Young J., Seog-Won L., Taek-Joon Y. Activation of innate immunity by Lepiota procera enhances antitumor activity. Korean J. Pharmacogn. 2010;41:115–121.
Žurga S., Pohleven J., Renko M., Bleuler-Martinez S., Sosnowski P., Turk D., Künzler M., Kos J., Sabotič J. A novel β-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. FEBS J. 2014;281:3489–3506. doi: 10.1111/febs.12875. PubMed DOI
Šmid I., Gruden K., Gašparič M.B., Koruza K., Petek M., Pohleven J., Brzin J., Kos J., Žel J., Sabotič J. Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. J. Agric. Food Chem. 2013;61:12499–12509. doi: 10.1021/jf403615f. PubMed DOI
Landi N., Grundner M., Ragucci S., Pavšič M., Mravinec M., Pedone P.V., Sepčić K., Di Maro A. Characterization and cytotoxic activity of ribotoxin-like proteins from the edible mushroom Pleurotus eryngii. Food Chem. 2022;396:133655. doi: 10.1016/j.foodchem.2022.133655. PubMed DOI
Ragucci S., Landi N., Russo R., Valletta M., Pedone P.V., Chambery A., Di Maro A. Ageritin from pioppino mushroom: The prototype of ribotoxin-like proteins, a novel family of specific ribonucleases in edible mushrooms. Toxins. 2021;13:263. doi: 10.3390/toxins13040263. PubMed DOI PMC
Landi N., Clemente A., Pedone P.V., Ragucci S., Di Maro A. An updated review of bioactive peptides from mushrooms in a well-defined molecular weight range. Toxins. 2022;14:84. doi: 10.3390/toxins14020084. PubMed DOI PMC
Kim B.-K., Shim M.-J., Kim O.-N., Kim H.-W., Choi E.-C. Antitumor components of the cultured mycelia of Lepiota procera. Korean J. Food Hyg. 1989;4:109–118.
Ooi V.E.C., Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000;7:715–729. doi: 10.2174/0929867003374705. PubMed DOI
Wang W., Li X., Zhang Y., Zhang J., Jia L. Mycelium polysaccharides of Macrolepiota procera alleviate reproductive impairments induced by nonylphenol. Food Funct. 2022;13:5794–5806. doi: 10.1039/D2FO00680D. PubMed DOI
Xu L., Wang Q., Wang G., Wu J.-Y. Contents and antioxidant activities of polysaccharides in 14 wild mushroom species from the forest of Northeastern China. Int. J. Med. Mushrooms. 2015;17:1161–1170. doi: 10.1615/IntJMedMushrooms.v17.i12.60. PubMed DOI
Nowak R., Nowacka-Jechalke N., Juda M., Malm A. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: The stimulation effect on Lactobacillus strains growth. Eur. J. Nutr. 2018;57:1511–1521. doi: 10.1007/s00394-017-1436-9. PubMed DOI PMC
Adamska I., Tokarczyk G. Possibilities of using Macrolepiota procera in the production of prohealth food and in medicine. Int. J. Food Sci. 2022;1:5773275. doi: 10.1155/2022/5773275. PubMed DOI PMC
Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–489. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI
DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI
Hall M.B. Determination of starch, including maltooligosaccharides, in animal feeds: Comparison of methods and a method recommended for AOAC collaborative study. J. AOAC Int. 2009;92:42–49. doi: 10.1093/jaoac/92.1.42. PubMed DOI
Anthon G.E., Barrett D.M. Combined enzymatic and colorimetric method for determining the uronic acid and methyl ester content of pectin: Application to tomato products. Food Chem. 2008;110:239–247. doi: 10.1016/j.foodchem.2008.01.042. PubMed DOI
McComb E.A., McCready R.M. Determination of acetyl in pectin and in acetylated carbohydrate polymers (hydroxamic acid reaction) Anal. Chem. 1957;29:819–821. doi: 10.1021/ac60125a025. DOI
Bradstreet R.B. The Kjeldahl Method for Organic Nitrogen. Academic Press Inc.; New York, NY, USA: 1965. pp. 9–145. DOI
Determination of Protein in Foods. National Food Safety Standard (NFSS) of the People’s Republic of China. China National Center for Food Safety Risk Assessment; Beijing, China: 2016.
Sosulski F.W., Imafidon G.I. Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J. Agric. Food. Chem. 1990;38:1351–1356. doi: 10.1021/jf00096a011. DOI
Bradford M.M. A rapid and sensitive method for the quantification of micro-gram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.
Chambers R.E., Clamp J.R. An assessment of methanolysis and other factors used in the analysis of carbohydrate containing materials. Biochem. J. 1971;125:1009–1018. doi: 10.1042/bj1251009. PubMed DOI PMC
Nyman A.A.T., Aachmann F.L., Rise F., Ballance S., Samuelsen A.B.C. Structural characterization of a branched (1→6)-α-mannan and β-glucans isolated from the fruiting bodies of Cantharellus cibarius. Carbohydr. Polym. 2016;146:197–207. doi: 10.1016/j.carbpol.2016.03.052. PubMed DOI
Wold C.W., Kjeldsen C., Corthay A., Rise F., Christensen B.E., Duus J.Ø., Inngjerdingen K.T. Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga) Carbohydr. Polym. 2018;185:27–40. doi: 10.1016/j.carbpol.2017.12.041. PubMed DOI
Karkhanis Y.D., Zeltner J.Y., Jackson J.J., Carlo D.J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gramnegative bacteria. Anal. Biochem. 1978;85:595–601. doi: 10.1016/0003-2697(78)90260-9. PubMed DOI
Ognyanov M., Remoroza C., Schols H.A., Georgiev Y.N., Petkova N.T., Krystyjan M. Structural, rheological and functional properties of galactose-rich pectic polysaccharide fraction from leek. Carbohydr. Polym. 2020;229:115549. doi: 10.1016/j.carbpol.2019.115549. PubMed DOI
Georgiev Y.N., Paulsen B.S., Kiyohara H., Ciz M., Ognyanov M.H., Vasicek O., Rise F., Yamada H., Denev P.N., Lojek A., et al. The common lavender (Lavandula angustifolia Mill.) pectic polysaccharides modulate phagocytic leukocytes and intestinal Peyer’s patch cells. Carbohydr. Polym. 2017;174:948–959. doi: 10.1016/j.carbpol.2017.07.011. PubMed DOI
de Santana-Filho A.P., Noleto G.R., Gorin P.A.J., de Souza L.M., Iacomini M., Sassaki G.L. GC–MS detection and quantification of lipopolysaccharides in polysaccharides through 3-O-acetyl fatty acid methyl esters. Carbohydr. Polym. 2012;87:2730–2734. doi: 10.1016/j.carbpol.2011.11.073. DOI
Vasicek O., Lojek A., Jancinova V., Nosal R., Ciz M. Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes. Life Sci. 2014;100:67–72. doi: 10.1016/j.lfs.2014.01.082. PubMed DOI
Vašíček O., Lojek A., Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J. Physiol. Biochem. 2020;76:49–60. doi: 10.1007/s13105-019-00714-3. PubMed DOI
Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI
Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescence probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI
Denev P., Ciz M., Ambrozova G., Lojek A., Yanakieva I., Kratchanova M. Solid phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010;123:1055–1061. doi: 10.1016/j.foodchem.2010.05.061. DOI
Ou B., Hampsch-Woodill M., Flanagan J., Deemer E.K., Prior R.L., Huang D. Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J. Agric. Food Chem. 2002;50:2772–2777. doi: 10.1021/jf011480w. PubMed DOI
Antonova-Nikolova S., Vassileva R., Yocheva L. Dynamics of the development of chick-peas fermentation microflora. C. R. Acad. Bulg. Sci. 2002;55:79–82.
Vacheva A., Georgieva R., Danova S., Mihova R., Marhova M., Kostadinova S., Vasileva K., Bivolarska M., Stoitsova S.R. Modulation of Escherichia coli biofilm growth by cell-free spent cultures from lactobacilli. Centr. Eur. J. Biol. 2012;7:219–229. doi: 10.2478/s11535-012-0004-9. DOI
Synytsya A., Čopíková J., Matĕjka P., Machovič V. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003;54:97–106. doi: 10.1016/S0144-8617(03)00158-9. DOI
Bartošová A., Blinová L., Gerulová K. Characterisation of polysaccharides and lipids from selected green algae species by FTIR-ATR spectroscopy. Res. Pap. Fac. Mater. Sci. Technol. Trnava Slovak Univ. Technol. Bratisl. 2015;23:97–102. doi: 10.1515/rput-2015-0011. DOI
Singh B.R., DeOliveira D.B., Fu F.-N., Fuller M.P. Fourier transform infrared analysis of amide III bands of proteins for the secondary structure estimation; Proceedings of the SPIE, Biomolecular Spectroscopy III; Los Angeles, CA, USA. 1 May 1993; pp. 47–55. DOI
Kačuráková M., Capek P., Sasinková V., Wellner N., Ebringerová A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000;43:195–203. doi: 10.1016/S0144-8617(00)00151-X. DOI
Synytsya A., Novak M. Structural analysis of glucans. Ann. Transl. Med. 2014;2:17. doi: 10.3978/j.issn.2305-5839.2014.02.07. PubMed DOI PMC
Ma Y., He H., Wu J., Wang C., Chao K., Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Sci. Rep. 2018;8:10. doi: 10.1038/s41598-017-18422-7. PubMed DOI PMC
Zhang A., Deng J., Yu S., Zhang F., Linhardt R.J., Sun P. Purification and structural elucidation of a water-soluble polysaccharide from the fruiting bodies of the Grifola frondosa. Int. J. Biol. Macromol. 2018;115:221–226. doi: 10.1016/j.ijbiomac.2018.04.061. PubMed DOI
Makarova E.N., Shakhmatov E.G. Covalently linked pectin-arabinoglucuronoxylan complex from Siberian fir Abies sibirica Ledeb. Carbohydr. Polym. 2022;277:118832. doi: 10.1016/j.carbpol.2021.118832. PubMed DOI
Beigi M., Jahanbin K. A water-soluble polysaccharide from the roots of Eremurus spectabilis M. B. subsp. spectabilis: Extraction, purification and structural features. Int. J. Biol. Macromol. 2019;128:648–654. doi: 10.1016/j.ijbiomac.2019.01.178. PubMed DOI
Makarova E.N., Shakhmatov E.G., Belyy V.A. Structural studies of water-extractable pectic polysaccharides and arabinogalactan proteins from Picea abies greenery. Carbohydr. Polym. 2018;195:207–217. doi: 10.1016/j.carbpol.2018.04.074. PubMed DOI
Komura D.L., Carbonero E.R., Gracher A.H.P., Baggio C.H., Freitas C.S., Marcon R., Santos A.R.S., Gorin P.A.J., Iacomini M. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour. Technol. 2010;101:6192–6199. doi: 10.1016/j.biortech.2010.01.142. PubMed DOI
Zhou S., Liu Y., Yang Y., Jia W., Tang Q., Tang C., Feng N., Zhang J. Separation and structural elucidation of a polysaccharide CC30w-1 from the fruiting body of Coprinus comatus. Bioact. Carbohydr. Diet. Fibre. 2013;1:99–104. doi: 10.1016/j.bcdf.2013.03.003. DOI
Cao R.-A., Ma N., Subramanian P., Talapphet N., Zhang J.M., Wang C.Y., You S.G. Structural elucidation and immunostimulatory activities of quinoa non-starch polysaccharide before and after deproteinization. J. Polym. Environ. 2022;30:2291–2303. doi: 10.1007/s10924-021-02335-8. PubMed DOI PMC
Xaus J., Comalada M., Valledor A.F., Lloberas J., López-Soriano F., Argilés J.M., Bogdan C., Celada A. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood. 2000;95:3823–3831. doi: 10.1182/blood.V95.12.3823. PubMed DOI
Samanta S., Nandi A.K., Sen I.K., Maji P.K., Devi K.S.P., Maiti T.K., Islam S.S. Structural characterization of an immunoenhancing glucan isolated from a mushroom Macrolepiota Dolichaula. Int. J. Biol. Macromol. 2013;61:89–96. doi: 10.1016/j.ijbiomac.2013.06.010. PubMed DOI
Samanta S., Nandi A.K., Sen I.K., Maity P., Pattanayak M., Devi K.S.P., Khatua S., Maiti T.K., Acharya K., Islam S.S. Studies on antioxidative and immunostimulating fucogalactan of the edible mushroom. Macrolepiota Dolichaula. Carbohydr. Res. 2015;413:22–29. doi: 10.1016/j.carres.2015.05.006. PubMed DOI
Fernandes Â., Barreira J.C.M., Antonio A.L., Morales P., Férnandez-Ruiz V., Martins A., Oliveira M.B.P.P., Ferreira I.C.F.R. Exquisite wild mushrooms as a source of dietary fiber: Analysis in electron-beam irradiated samples. LWT Food Sci. Technol. 2015;60:855–859. doi: 10.1016/j.lwt.2014.10.050. DOI
Kremmyda A., MacNaughtan W., Arapoglou D., Eliopoulos C., Metafa M., Harding S.E., Israilides C. The detection, purity and structural properties of partially soluble mushroom and cereal β-D-glucans: A solid-state NMR study. Carbohydr. Polym. 2021;266:118103. doi: 10.1016/j.carbpol.2021.118103. PubMed DOI
Wang Y.-X., Xin Y., Yin J.-Y., Huang X.-J., Wang J.-Q., Hu J.-L., Geng F., Nie S.-P. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem. 2022;368:130772. doi: 10.1016/j.foodchem.2021.130772. PubMed DOI
Oliveira G.K.F., da Silva E.V., Ruthes A.C., Lião L.M., Iacomini M., Carbonero E.R. Chemical structure of a partially 3-O-methylated mannofucogalactan from edible mushroom Grifola Frondosa. Carbohydr. Polym. 2018;187:110–117. doi: 10.1016/j.carbpol.2018.01.080. PubMed DOI
Zhang Y., Liu X., Zhao J., Wang J., Song Q., Zhao C. The phagocytic receptors of β-glucan. Int. J. Biol. Macromol. 2022;205:430–441. doi: 10.1016/j.ijbiomac.2022.02.111. PubMed DOI
Li Y., Nishiura H., Tokita K., Kouike Y., Taniguchi C., Iwahara M., Nishino N., Hama Y., Asakawa M., Yamamoto T. Elastin peptide receptor-directed monocyte chemotactic polysaccharides derived from seaweed sporophyll and from infectious fungus. Microb. Pathog. 2008;45:423–434. doi: 10.1016/j.micpath.2008.09.005. PubMed DOI
Zhong R.-F., Yang J.-J., Geng J.-H., Chen J. Structural characteristics, anti-proliferative and immunomodulatory activities of a purified polysaccharide from Lactarius volemus Fr. Int. J. Biol. Macromol. 2021;192:967–977. doi: 10.1016/j.ijbiomac.2021.10.049. PubMed DOI
Mizuno M., Minato K., Ito H., Kawade M., Terai H., Tsuchida H. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei Mill. Biochem. Mol. Biol. Int. 1999;47:707–714. doi: 10.1080/15216549900201773. PubMed DOI
Qinghong L., Jing W., Peng W., Yuxiao L., Xinhe B. Neutral polysaccharides from Hohenbuehelia serotina with hypoglycemic effects in a type 2 diabetic mouse model. Front. Pharmacol. 2022;13:883653. doi: 10.3389/fphar.2022.883653. PubMed DOI PMC
Hristoskova S.P., Yocheva L.D., Yankov D.S., Danova S.T. Newly characterized butyrate producing Clostridium sp. strain 4A1, isolated from chickpea beans (Cicer arietinum L.) Bulg. Chem. Commun. 2018;50:459–466.
Zhu L.-B., Zhang Y.-C., Huang H.-H., Lin J. Prospects for clinical applications of butyrate-producing bacteria. World, J. Clin. Pediatr. 2021;10:84–92. doi: 10.5409/wjcp.v10.i5.84. PubMed DOI PMC
Ruthes A.C., Cantu-Jungles T.M., Cordeiro L.M.C., Iacomini M. Prebiotic potential of mushroom d-glucans: Implications of physicochemical properties and structural features. Carbohydr. Polym. 2021;262:117940. doi: 10.1016/j.carbpol.2021.117940. PubMed DOI
Strapać I., Bedlovičová Z., Čuvalová A., Handrová L., Kmeť V. Antioxidant and anti-quorum sensing properties of edible mushrooms. J. Food Nutr. Res. 2019;58:146–152.
Kumar A., Alrefai W.A., Borthakur A., Dudeja P.K. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;309:G602–G607. doi: 10.1152/ajpgi.00186.2015. PubMed DOI PMC
Novaković A., Šojić B., Peulić T., Ikonić P., Radusin T., Tomšik A. Wild growing mushroom Macrolepiota procera (Scop.) Singer: Study on chemical composition, biological activities and influence on microbial stability of cooked sausage; Proceedings of the IV International Congress “Food Technology, Quality and Safety” and 18th International Symposium Feed Technology—FoodTech 2018, Institute of Food Technology; Novi Sad, Serbia. 23–25 October 2018; p. 63.
Kothari D., Patel S., Kim S.-K. Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed. Pharmacother. 2018;105:377–394. doi: 10.1016/j.biopha.2018.05.138. PubMed DOI