Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature

. 2023 Jul 18 ; 14 (1) : 4288. [epub] 20230718

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37463905
Odkazy

PubMed 37463905
PubMed Central PMC10354028
DOI 10.1038/s41467-023-39564-5
PII: 10.1038/s41467-023-39564-5
Knihovny.cz E-zdroje

Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location. By integrating omics studies, we demonstrate that aspen genotypes utilize similar transcriptional cascades and metabolic cues to initiate senescence, but at different times during autumn. The timing of autumn senescence initiation appeared to be controlled by two consecutive "switches"; 1) first the environmental variation induced the rewiring of the transcriptional network, stress signalling pathways and metabolic perturbations and 2) the start of senescence process was defined by the ability of the genotype to activate and sustain stress tolerance mechanisms mediated by salicylic acid. We propose that salicylic acid represses the onset of leaf senescence in stressful natural conditions, rather than promoting it as often observed in annual plants.

Zobrazit více v PubMed

Gepstein S. Leaf senescence - not just a ‘wear and tear’ phenomenon. Genome Biol. 2004;5:212. doi: 10.1186/gb-2004-5-3-212. PubMed DOI PMC

Woo HR, Kim HJ, Nam HG, Lim PO. Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J. Cell Sci. 2013;126:4823–4833. PubMed

Woo HR, Kim HJ, Lim PO, Nam HG. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 2019;70:347–376. doi: 10.1146/annurev-arplant-050718-095859. PubMed DOI

Buchanan-Wollaston V, et al. The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnol. J. 2003;1:3–22. doi: 10.1046/j.1467-7652.2003.00004.x. PubMed DOI

Buchanan-Wollaston V, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005;42:567–585. doi: 10.1111/j.1365-313X.2005.02399.x. PubMed DOI

Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 2008;10:63–75. doi: 10.1111/j.1438-8677.2008.00088.x. PubMed DOI

Guo Y, Gan S-S. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ. 2012;35:644–655. doi: 10.1111/j.1365-3040.2011.02442.x. PubMed DOI

Watanabe M, et al. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 2013;162:1290–1310. doi: 10.1104/pp.113.217380. PubMed DOI PMC

Keskitalo J, Bergquist G, Gardeström P, Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005;139:1635–1648. doi: 10.1104/pp.105.066845. PubMed DOI PMC

Fracheboud Y, et al. The control of autumn senescence in European aspen. Plant Physiol. 2009;149:1982–1991. doi: 10.1104/pp.108.133249. PubMed DOI PMC

Michelson IH, et al. Autumn senescence in aspen is not triggered by day length. Physiol. Plant. 2018;162:123–134. doi: 10.1111/ppl.12593. PubMed DOI

Lihavainen J, et al. Stem girdling affects the onset of autumn senescence in aspen in interaction with metabolic signals. Physiol. Plant. 2021;172:201–217. doi: 10.1111/ppl.13319. PubMed DOI PMC

Fataftah N, et al. Nitrate fertilization may delay autumn leaf senescence, while amino acid treatments do not. Physiol. Plant. 2022;174:e13690. doi: 10.1111/ppl.13690. PubMed DOI PMC

Jansson S, Thomas H. Senescence: developmental program or timetable? N. Phytol. 2008;179:575–579. doi: 10.1111/j.1469-8137.2008.02471.x. PubMed DOI

Edlund E, Novak O, Karady M, Ljung K, Jansson S. Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant Cell Environ. 2017;40:622–634. doi: 10.1111/pce.12899. PubMed DOI

Morris K, et al. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 2000;23:677–685. doi: 10.1046/j.1365-313x.2000.00836.x. PubMed DOI

Vogelmann K, et al. Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. Plant Physiol. 2012;159:1477–1487. doi: 10.1104/pp.112.196220. PubMed DOI PMC

Guo P, et al. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell. 2017;29:2854–2870. doi: 10.1105/tpc.17.00438. PubMed DOI PMC

Wang C, et al. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. J. Integr. Plant Biol. 2021;63:828–833. doi: 10.1111/jipb.13075. PubMed DOI

Wang J, et al. A major locus controls local adaptation and adaptive life history variation in a perennial plant. Genome Biol. 2018;19:72. doi: 10.1186/s13059-018-1444-y. PubMed DOI PMC

Li Z, et al. LSD 3.0: a comprehensive resource for the leaf senescence research community. Nucleic Acids Res. 2020;48:D1069–D1075. doi: 10.1093/nar/gkz898. PubMed DOI PMC

Lu H, Gordon MI, Amarasinghe V, Strauss SH. Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1) Sci. Rep. 2020;10:6581. doi: 10.1038/s41598-020-63372-2. PubMed DOI PMC

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLOS Comput. Biol. 2011;7:e1001057. doi: 10.1371/journal.pcbi.1001057. PubMed DOI PMC

Chanda B, et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 2011;43:421–427. doi: 10.1038/ng.798. PubMed DOI

Shine MB, et al. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat. Commun. 2019;10:5303. doi: 10.1038/s41467-019-13318-8. PubMed DOI PMC

Fataftah N, et al. GIGANTEA influences leaf senescence in trees in two different ways. Plant Physiol. 2021;187:2435–2450. doi: 10.1093/plphys/kiab439. PubMed DOI PMC

Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. Front. Plant Sci. 2015;6:24. doi: 10.3389/fpls.2015.00024. PubMed DOI PMC

Yoshioka K, et al. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J. 2001;26:447–459. doi: 10.1046/j.1365-313X.2001.2641039.x. PubMed DOI

Huang X, Li Y, Zhang X, Zuo J, Yang S. The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. N. Phytol. 2010;187:301–312. doi: 10.1111/j.1469-8137.2010.03275.x. PubMed DOI

Chai T, Zhou J, Liu J, Xing D. LSD1 and HY5 antagonistically regulate red light induced-programmed cell death in Arabidopsis. Front. Plant Sci. 2015;6:292. doi: 10.3389/fpls.2015.00292. PubMed DOI PMC

Wang L, et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc. Natl Acad. Sci. USA. 2020;117:2201–2210. doi: 10.1073/pnas.1916548117. PubMed DOI PMC

Wen C-H, Lin S-S, Chu F-H. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of formosan gum. Plant Cell Physiol. 2015;56:163–174. doi: 10.1093/pcp/pcu160. PubMed DOI

Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 2012;35:1707–1728. doi: 10.1111/j.1365-3040.2012.02552.x. PubMed DOI

Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H. Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci. 2018;23:833–844. doi: 10.1016/j.tplants.2018.06.004. PubMed DOI

Chen J, et al. Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. J. Exp. Bot. 2020;71:5256–5268. doi: 10.1093/jxb/eraa072. PubMed DOI

Ay N, Janack B, Humbeck K. Epigenetic control of plant senescence and linked processes. J. Exp. Bot. 2014;65:3875–3887. doi: 10.1093/jxb/eru132. PubMed DOI

Zhang Y, Wang H-L, Li Z, Guo H. Genetic network between leaf senescence and plant immunity: crucial regulatory nodes and new insights. Plants. 2020;9:495. doi: 10.3390/plants9040495. PubMed DOI PMC

Breeze E, et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 2011;23:873–894. doi: 10.1105/tpc.111.083345. PubMed DOI PMC

Wang H-L, et al. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. Plant Cell. 2021;33:1594–1614. doi: 10.1093/plcell/koab046. PubMed DOI PMC

Thompson JE, Hopkins MT, Taylor C, Wang T-W. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 2004;9:174–179. doi: 10.1016/j.tplants.2004.02.008. PubMed DOI

Nooden, L. D. Senescence and Aging in Plants (Elsevier, 2012).

Woo HR, et al. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J. Exp. Bot. 2010;61:3947–3957. doi: 10.1093/jxb/erq206. PubMed DOI PMC

Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. RAV genes: regulation of floral induction and beyond. Ann. Bot. 2014;114:1459–1470. doi: 10.1093/aob/mcu069. PubMed DOI PMC

Zhang Y, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl Acad. Sci. USA. 2010;107:18220–18225. doi: 10.1073/pnas.1005225107. PubMed DOI PMC

Sun T, et al. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 2015;6:10159. doi: 10.1038/ncomms10159. PubMed DOI PMC

Radojičić A, Li X, Zhang Y. Salicylic acid: a double-edged sword for programed cell death in plants. Front. Plant Sci. 2018;9:1133. doi: 10.3389/fpls.2018.01133. PubMed DOI PMC

Schäfer P, Eichmann R. The endoplasmic reticulum in plant immunity and cell death. Front. Plant Sci. 2012;3:1133. PubMed PMC

Afrin T, Diwan D, Sahawneh K, Pajerowska-Mukhtar K. Multilevel regulation of endoplasmic reticulum stress responses in plants: where old roads and new paths meet. J. Exp. Bot. 2020;71:1659–1667. doi: 10.1093/jxb/erz487. PubMed DOI

Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 2015;6:171. doi: 10.3389/fpls.2015.00171. PubMed DOI PMC

Huang X, et al. Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids1. Plant Physiol. 2018;176:3103–3119. doi: 10.1104/pp.17.01530. PubMed DOI PMC

Lai Y-S, et al. Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc. Natl Acad. Sci. USA. 2018;115:E5203–E5212. doi: 10.1073/pnas.1802254115. PubMed DOI PMC

Lee S, et al. Glycosyltransferase-Like RSE1 negatively regulates leaf senescence through salicylic acid signaling in Arabidopsis. Front. Plant Sci. 2020;11:551. doi: 10.3389/fpls.2020.00551. PubMed DOI PMC

Carvalho HH, et al. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol. 2014;164:654–670. doi: 10.1104/pp.113.231928. PubMed DOI PMC

Nagashima Y, Iwata Y, Ashida M, Mishiba K, Koizumi N. Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis. Plant Cell Physiol. 2014;55:1772–1778. doi: 10.1093/pcp/pcu108. PubMed DOI

Poór P, Czékus Z, Tari I, Ördög A. The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. Int. J. Mol. Sci. 2019;20:5842. doi: 10.3390/ijms20235842. PubMed DOI PMC

Li J, Brader G, Palva ET. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense[W] Plant Cell. 2004;16:319–331. doi: 10.1105/tpc.016980. PubMed DOI PMC

Ülker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta. 2007;226:125–137. doi: 10.1007/s00425-006-0474-y. PubMed DOI

Rustérucci C, Aviv DH, Holt BF, III, Dangl JL, Parker JE. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell. 2001;13:2211–2224. doi: 10.1105/tpc.010085. PubMed DOI PMC

Pattison RJ, Amtmann A. N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci. 2009;14:92–99. doi: 10.1016/j.tplants.2008.11.008. PubMed DOI

Howell SH. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 2013;64:477–499. doi: 10.1146/annurev-arplant-050312-120053. PubMed DOI

Vitale A. Calreticulins are not all the same. Proc. Natl Acad. Sci. USA. 2009;106:13151–13152. doi: 10.1073/pnas.0907255106. PubMed DOI PMC

Sun T, Zhang Q, Gao M, Zhang Y. Regulation of SOBIR1 accumulation and activation of defense responses in bir1–1 by specific components of ER quality control. Plant J. 2014;77:748–756. doi: 10.1111/tpj.12425. PubMed DOI

Kukavica B, Jovanovic SV. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol. Plant. 2004;122:321–327. doi: 10.1111/j.1399-3054.2004.00410.x. DOI

Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 2018;69:825–844. doi: 10.1093/jxb/erx333. PubMed DOI

Luquez V, et al. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet. Genomes. 2008;4:279–292. doi: 10.1007/s11295-007-0108-y. DOI

Delhomme N, et al. Guidelines for RNA-Seq data analysis. Epigenesys Protoc. 2014;67:1–24.

Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Delhomme, N. Salicylic acid metabolism and signaling cDoordinate senescence initiation in aspen in nature. nicolasDelhomme/aspen-seasonal-senescence: v1.0.0. 10.5281/zenodo.5906743 (2022).

Smith AM, Zeeman SC. Quantification of starch in plant tissues. Nat. Protoc. 2006;1:1342–1345. doi: 10.1038/nprot.2006.232. PubMed DOI

Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007;2:875–877. doi: 10.1038/nprot.2007.102. PubMed DOI

Porter LJ, Hrstich LN, Chan BG. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry. 1985;25:223–230. doi: 10.1016/S0031-9422(00)94533-3. DOI

Salbitani G, Bottone C, Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio Protoc. 2017;7:e2372–e2372. PubMed PMC

Rivas F, Fornes F, Agustí M. Girdling induces oxidative damage and triggers enzymatic and non-enzymatic antioxidative defences in Citrus leaves. Environ. Exp. Bot. 2008;64:256–263. doi: 10.1016/j.envexpbot.2008.07.006. DOI

Li, Z.-G. Chapter 5 - Measurement of signaling molecules calcium ion, reactive sulfur species, reactive carbonyl species, reactive nitrogen species, and reactive oxygen species in plants. In Plant Signaling Molecules (eds. Khan, M. I. R., Reddy, P. S., Ferrante, A. & Khan, N. A.) 83–103 (Woodhead Publishing, 2019).

Aebi, H. [13] Catalase in vitro. In Methods in Enzymology, vol. 105. 121–126 (Academic Press, 1984). PubMed

Maehly AC, Chance B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1954;1:357–424. PubMed

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981;32:93–101. doi: 10.1093/jxb/32.1.93. DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988;37:837–841. doi: 10.1016/0006-2952(88)90169-4. PubMed DOI

Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987;165:215–219. doi: 10.1016/0003-2697(87)90222-3. PubMed DOI

Li X. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem. 2013;141:2083–2088. doi: 10.1016/j.foodchem.2013.05.084. PubMed DOI

Schurch NJ, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22:839–851. doi: 10.1261/rna.053959.115. PubMed DOI PMC

Sundell D, et al. The plant genome integrative explorer resource: PlantGenIE.org. N. Phytol. 2015;208:1149–1156. doi: 10.1111/nph.13557. PubMed DOI

Raudvere U, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC

Bindea G, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC

Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29:661–663. doi: 10.1093/bioinformatics/btt019. PubMed DOI PMC

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Pang Z, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...