Adhesion and Growth of Vascular Smooth Muscle Cells on Nanostructured and Biofunctionalized Polyethylene
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28809234
PubMed Central
PMC5452510
DOI
10.3390/ma6051632
PII: ma6051632
Knihovny.cz E-zdroje
- Klíčová slova
- albumin, bioactivity, biocompatibility, cell spreading area, fibronectin, nanoscale surface roughness, plasma treatment, tissue engineering, wettability,
- Publikační typ
- časopisecké články MeSH
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar⁺ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50-300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium.
Zobrazit více v PubMed
Zhang W.J., Liu W., Cui L., Cao Y. Tissue engineering of blood vessel. J. Cell. Mol. Med. 2007;11:945–957. doi: 10.1111/j.1582-4934.2007.00099.x. PubMed DOI PMC
Yu H., Wagner E. Bioresponsive polymers for nonviral gene delivery. Curr. Opin. Mol. Ther. 2009;2:165–178. PubMed
Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:S35–S45. PubMed
Bacakova L., Svorcik V. Cell colonization control by physical and chemical modification of materials. In: Kimura D., editor. Cell Growth Processes: New Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2008. pp. 5–56.
Bozukova D., Pagnoulle C., de Pauw-Gillet M.C., Desbief S., Lazzaroni R., Ruth N., Jerome R., Jerome C. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules. 2007;8:2379–2387. doi: 10.1021/bm0701649. PubMed DOI
Poulsson A.H., Mitchell S.A., Davidson M.R., Johnstone A.J., Emmison N., Bradley R.H. Attachment of human primary osteoblast cells to modified polyethylene surfaces. Langmuir. 2009;25:3718–3727. doi: 10.1021/la801820s. PubMed DOI
Granke K., Ochsner J.L., McClugage S.G., Zdrahal P. Analysis of graft healing in a new elastomer-coated vascular prosthesis. Cardiovasc. Surg. 1993;1:254–261. PubMed
Bacakova L., Filova E., Kubies D., Machova L., Proks V., Malinova V., Lisa V., Rypacek F. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J. Mater. Sci. Mater. Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Heitz J., Svorcik V., Bacakova L., Rockova K., Ratajova E., Gumpenberger T., Bäuerle1 D., Dvorankova B., Kahr H., Graz I., et al. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. J. Biomed. Mater. Res. 2003;67:130–137. doi: 10.1002/jbm.a.10043. PubMed DOI
Svorcik V., Rybka V., Hnatowicz V., Smetana K., Jr. Structure and biocompatibility of ion beam modified polyethylene. J. Mater. Sci. Mater. Med. 1997;8:435–440. doi: 10.1023/A:1018509722748. PubMed DOI
Bacakova L., Mares V., Lisa V., Svorcik V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21:1173–1179. doi: 10.1016/S0142-9612(00)00009-0. PubMed DOI
Walachova K., Svorcik V., Bacakova L., Hnatowicz V. Colonization of ion-modified polyethylene with vascular smooth muscle cells in vitro. Biomaterials. 2002;23:2989–2996. doi: 10.1016/S0142-9612(02)00029-7. PubMed DOI
Wang Y., Lu L., Zheng Y., Chen X. Improvement in hydrophilicity of PHBV films by plasma treatment. J. Biomed. Mater. Res. A. 2006;76:589–595. doi: 10.1002/jbm.a.30575. PubMed DOI
Tajima S., Chu J.S., Li S., Komvopoulos K. Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low-density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment. J. Biomed. Mater. Res. A. 2008;84:828–836. doi: 10.1002/jbm.a.31539. PubMed DOI
Pareta R.A., Reising A.B., Miller T., Storey D., Webster T.J. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications. Biotechnol. Bioeng. 2009;103:459–471. doi: 10.1002/bit.22276. PubMed DOI
Zhang Y., Tanner K.E., Gurav N., di Silvio L. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. J. Biomed. Mater. Res. A. 2007;81:409–417. doi: 10.1002/jbm.a.31078. PubMed DOI
Homaeigohar S.S., Shokrgozar M.A., Javadpour J., Khavandi A., Sadi A.Y. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: A novel orthopedic composite. J. Biomed. Mater. Res. A. 2006;78:129–138. doi: 10.1002/jbm.a.30691. PubMed DOI
Fouad H., Elleithy R. High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization. J. Mech. Behav. Biomed. Mater. 2011;4:1376–1383. doi: 10.1016/j.jmbbm.2011.05.008. PubMed DOI
Oldinski R.A., Ruckh T.T., Staiger M.P., Popat K.C., James S.P. Dynamic mechanical analysis and biomineralization of hyaluronan-polyethylene copolymers for potential use in osteochondral defect repair. Acta Biomater. 2011;7:1184–1191. doi: 10.1016/j.actbio.2010.11.019. PubMed DOI
Mokal N.J., Desai M.F. Calvarial reconstruction using high-density porous polyethylene cranial hemispheres. Indian J. Plast. Surg. 2011;44:422–431. PubMed PMC
Caldwell R.A., Woodell J.E., Ho S.P., Shalaby S.W., Boland T., Langan E.M., LaBerge M. In vitro evaluation of phosphonylated low-density polyethylene for vascular applications. J. Biomed. Mater. Res. 2002;62:514–524. doi: 10.1002/jbm.10249. PubMed DOI
Svorcik V., Kolarova K., Slepicka P., Mackova A., Novotna M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stabil. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI
Svorcik V., Kasalkova N., Slepicka P., Zaruba K., Kral V., Bacakova L. Cytocompatibility of Ar + plasma treated and Au nanoparticle-grafted PE. Nucl. Instrum. Meth. B. 2009;267:1904–1910. doi: 10.1016/j.nimb.2009.03.099. DOI
Parizek M., Kasalkova N., Bacakova L., Slepicka P., Lisa V., Blazkova M., Svorcik V. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles. Int. J. Mol. Sci. 2009:4352–4374. doi: 10.3390/ijms10104352. PubMed DOI PMC
Parizek M., Kasalkova N.S., Bacakova L., Lisa V., Svindrych Z., Slepicka P., Svorcik V. Adhesion, growth and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substance. J. Biomed. Biotechnol. 2013 in press. PubMed PMC
Kella N.K., Kang Y.J., Kinsella J.E. Effect of oxidative sulfitolysis of disulfide bonds of bovine serum albumin on its structural properties: A physiochemical study. J. Protein Chem. 1988;7:535–548. doi: 10.1007/BF01024872. PubMed DOI
Pankov R., Yamada K.M. Fibronectin at a glance. J. Cell Sci. 2002;15:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI
Xiao Y., Isaacs S.N. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods. 2012;384:148–151. doi: 10.1016/j.jim.2012.06.009. PubMed DOI PMC
Bacakova L., Lisa V., Kubinova L., Wilhelm J., Novotna J., Eckhart A., Herget J. UV light—Irradiated collagen III modulates expression of cytoskeletal and surface adhesion molecules in rat aortic smooth muscle cells in vitro. Virchows Arch. 2002;440:50–62. doi: 10.1007/s004280100463. PubMed DOI
Kim K.S., Ryu C.M., Park C.S., Sur G.S., Park C.E. Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer. 2003;44:6287–6295. doi: 10.1016/S0032-3861(03)00674-8. DOI
Kowalczynska H.M., Nowak-Wyrzykowska M., Szczepankiewicz A.A., Dobkowski J., Dyda M., Kaminski J., Kołos R. Albumin adsorption on unmodified and sulfonated polystyrene surfaces, in relation to cell-substratum adhesion. Colloids Surf. B Biointerfaces. 2011;84:536–544. doi: 10.1016/j.colsurfb.2011.02.013. PubMed DOI
Brynda E., Houska M., Jirouskova M., Dyr J.E. Albumin and heparin multilayer coatings for blood-contacting medical devices. J. Biomed. Mater. Res. 2000;51:249–257. doi: 10.1002/(SICI)1097-4636(200008)51:2<249::AID-JBM14>3.0.CO;2-X. PubMed DOI
Yamazoe H., Tanabe T. Drug-carrying albumin film for blood-contacting biomaterials. J. Biomater. Sci. Polym. Ed. 2010;21:647–657. doi: 10.1163/156856209X434665. PubMed DOI
Glukhova M.A., Koteliansky V.E. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta. In: Schwartz S.M., Mecham R.P., editors. The Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix. Academic Press Inc.; Waltham, MA, USA: 1995. pp. 37–79.
Shipley G.D., Ham R.G. Multiplication of Swiss 3T3 cells in a serum-free medium. Exp. Cell Res. 1983;146:249–260. doi: 10.1016/0014-4827(83)90127-1. PubMed DOI
Maroudas N.G. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions. J. Cell. Physiol. 1976;90:511–520. doi: 10.1002/jcp.1040900314. PubMed DOI
Curtis A.S.G., Forrester J.V., McInnes C., Lawrie F. Adhesion of cells to polystyrene surfaces. J. Cell. Biol. 1983;97:1500–1506. doi: 10.1083/jcb.97.5.1500. PubMed DOI PMC
Burmeister J.S., Vrany J.D., Reichert W.M., Truskey G.A. Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J. Biomed. Mater. Res. 1996;30:13–22. doi: 10.1002/(SICI)1097-4636(199601)30:1<13::AID-JBM3>3.0.CO;2-U. PubMed DOI
Bacakova L., Mares V., Lisa V., Bottone M.G., Pellicciari C., Kocourek F. Sex-related differences in the migration and proliferation of rat aortic smooth muscle cells in short and long term culture. In Vitro Cell. Develop. Biol. Anim. 1997;33:410–413. doi: 10.1007/s11626-997-0055-9. PubMed DOI