Adhesion and Growth of Vascular Smooth Muscle Cells on Nanostructured and Biofunctionalized Polyethylene

. 2013 Apr 29 ; 6 (5) : 1632-1655. [epub] 20130429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28809234

Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar⁺ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50-300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium.

Zobrazit více v PubMed

Zhang W.J., Liu W., Cui L., Cao Y. Tissue engineering of blood vessel. J. Cell. Mol. Med. 2007;11:945–957. doi: 10.1111/j.1582-4934.2007.00099.x. PubMed DOI PMC

Yu H., Wagner E. Bioresponsive polymers for nonviral gene delivery. Curr. Opin. Mol. Ther. 2009;2:165–178. PubMed

Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:S35–S45. PubMed

Bacakova L., Svorcik V. Cell colonization control by physical and chemical modification of materials. In: Kimura D., editor. Cell Growth Processes: New Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2008. pp. 5–56.

Bozukova D., Pagnoulle C., de Pauw-Gillet M.C., Desbief S., Lazzaroni R., Ruth N., Jerome R., Jerome C. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules. 2007;8:2379–2387. doi: 10.1021/bm0701649. PubMed DOI

Poulsson A.H., Mitchell S.A., Davidson M.R., Johnstone A.J., Emmison N., Bradley R.H. Attachment of human primary osteoblast cells to modified polyethylene surfaces. Langmuir. 2009;25:3718–3727. doi: 10.1021/la801820s. PubMed DOI

Granke K., Ochsner J.L., McClugage S.G., Zdrahal P. Analysis of graft healing in a new elastomer-coated vascular prosthesis. Cardiovasc. Surg. 1993;1:254–261. PubMed

Bacakova L., Filova E., Kubies D., Machova L., Proks V., Malinova V., Lisa V., Rypacek F. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J. Mater. Sci. Mater. Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Heitz J., Svorcik V., Bacakova L., Rockova K., Ratajova E., Gumpenberger T., Bäuerle1 D., Dvorankova B., Kahr H., Graz I., et al. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. J. Biomed. Mater. Res. 2003;67:130–137. doi: 10.1002/jbm.a.10043. PubMed DOI

Svorcik V., Rybka V., Hnatowicz V., Smetana K., Jr. Structure and biocompatibility of ion beam modified polyethylene. J. Mater. Sci. Mater. Med. 1997;8:435–440. doi: 10.1023/A:1018509722748. PubMed DOI

Bacakova L., Mares V., Lisa V., Svorcik V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21:1173–1179. doi: 10.1016/S0142-9612(00)00009-0. PubMed DOI

Walachova K., Svorcik V., Bacakova L., Hnatowicz V. Colonization of ion-modified polyethylene with vascular smooth muscle cells in vitro. Biomaterials. 2002;23:2989–2996. doi: 10.1016/S0142-9612(02)00029-7. PubMed DOI

Wang Y., Lu L., Zheng Y., Chen X. Improvement in hydrophilicity of PHBV films by plasma treatment. J. Biomed. Mater. Res. A. 2006;76:589–595. doi: 10.1002/jbm.a.30575. PubMed DOI

Tajima S., Chu J.S., Li S., Komvopoulos K. Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low-density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment. J. Biomed. Mater. Res. A. 2008;84:828–836. doi: 10.1002/jbm.a.31539. PubMed DOI

Pareta R.A., Reising A.B., Miller T., Storey D., Webster T.J. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications. Biotechnol. Bioeng. 2009;103:459–471. doi: 10.1002/bit.22276. PubMed DOI

Zhang Y., Tanner K.E., Gurav N., di Silvio L. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. J. Biomed. Mater. Res. A. 2007;81:409–417. doi: 10.1002/jbm.a.31078. PubMed DOI

Homaeigohar S.S., Shokrgozar M.A., Javadpour J., Khavandi A., Sadi A.Y. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: A novel orthopedic composite. J. Biomed. Mater. Res. A. 2006;78:129–138. doi: 10.1002/jbm.a.30691. PubMed DOI

Fouad H., Elleithy R. High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization. J. Mech. Behav. Biomed. Mater. 2011;4:1376–1383. doi: 10.1016/j.jmbbm.2011.05.008. PubMed DOI

Oldinski R.A., Ruckh T.T., Staiger M.P., Popat K.C., James S.P. Dynamic mechanical analysis and biomineralization of hyaluronan-polyethylene copolymers for potential use in osteochondral defect repair. Acta Biomater. 2011;7:1184–1191. doi: 10.1016/j.actbio.2010.11.019. PubMed DOI

Mokal N.J., Desai M.F. Calvarial reconstruction using high-density porous polyethylene cranial hemispheres. Indian J. Plast. Surg. 2011;44:422–431. PubMed PMC

Caldwell R.A., Woodell J.E., Ho S.P., Shalaby S.W., Boland T., Langan E.M., LaBerge M. In vitro evaluation of phosphonylated low-density polyethylene for vascular applications. J. Biomed. Mater. Res. 2002;62:514–524. doi: 10.1002/jbm.10249. PubMed DOI

Svorcik V., Kolarova K., Slepicka P., Mackova A., Novotna M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stabil. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI

Svorcik V., Kasalkova N., Slepicka P., Zaruba K., Kral V., Bacakova L. Cytocompatibility of Ar + plasma treated and Au nanoparticle-grafted PE. Nucl. Instrum. Meth. B. 2009;267:1904–1910. doi: 10.1016/j.nimb.2009.03.099. DOI

Parizek M., Kasalkova N., Bacakova L., Slepicka P., Lisa V., Blazkova M., Svorcik V. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles. Int. J. Mol. Sci. 2009:4352–4374. doi: 10.3390/ijms10104352. PubMed DOI PMC

Parizek M., Kasalkova N.S., Bacakova L., Lisa V., Svindrych Z., Slepicka P., Svorcik V. Adhesion, growth and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substance. J. Biomed. Biotechnol. 2013 in press. PubMed PMC

Kella N.K., Kang Y.J., Kinsella J.E. Effect of oxidative sulfitolysis of disulfide bonds of bovine serum albumin on its structural properties: A physiochemical study. J. Protein Chem. 1988;7:535–548. doi: 10.1007/BF01024872. PubMed DOI

Pankov R., Yamada K.M. Fibronectin at a glance. J. Cell Sci. 2002;15:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI

Xiao Y., Isaacs S.N. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods. 2012;384:148–151. doi: 10.1016/j.jim.2012.06.009. PubMed DOI PMC

Bacakova L., Lisa V., Kubinova L., Wilhelm J., Novotna J., Eckhart A., Herget J. UV light—Irradiated collagen III modulates expression of cytoskeletal and surface adhesion molecules in rat aortic smooth muscle cells in vitro. Virchows Arch. 2002;440:50–62. doi: 10.1007/s004280100463. PubMed DOI

Kim K.S., Ryu C.M., Park C.S., Sur G.S., Park C.E. Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer. 2003;44:6287–6295. doi: 10.1016/S0032-3861(03)00674-8. DOI

Kowalczynska H.M., Nowak-Wyrzykowska M., Szczepankiewicz A.A., Dobkowski J., Dyda M., Kaminski J., Kołos R. Albumin adsorption on unmodified and sulfonated polystyrene surfaces, in relation to cell-substratum adhesion. Colloids Surf. B Biointerfaces. 2011;84:536–544. doi: 10.1016/j.colsurfb.2011.02.013. PubMed DOI

Brynda E., Houska M., Jirouskova M., Dyr J.E. Albumin and heparin multilayer coatings for blood-contacting medical devices. J. Biomed. Mater. Res. 2000;51:249–257. doi: 10.1002/(SICI)1097-4636(200008)51:2<249::AID-JBM14>3.0.CO;2-X. PubMed DOI

Yamazoe H., Tanabe T. Drug-carrying albumin film for blood-contacting biomaterials. J. Biomater. Sci. Polym. Ed. 2010;21:647–657. doi: 10.1163/156856209X434665. PubMed DOI

Glukhova M.A., Koteliansky V.E. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta. In: Schwartz S.M., Mecham R.P., editors. The Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix. Academic Press Inc.; Waltham, MA, USA: 1995. pp. 37–79.

Shipley G.D., Ham R.G. Multiplication of Swiss 3T3 cells in a serum-free medium. Exp. Cell Res. 1983;146:249–260. doi: 10.1016/0014-4827(83)90127-1. PubMed DOI

Maroudas N.G. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions. J. Cell. Physiol. 1976;90:511–520. doi: 10.1002/jcp.1040900314. PubMed DOI

Curtis A.S.G., Forrester J.V., McInnes C., Lawrie F. Adhesion of cells to polystyrene surfaces. J. Cell. Biol. 1983;97:1500–1506. doi: 10.1083/jcb.97.5.1500. PubMed DOI PMC

Burmeister J.S., Vrany J.D., Reichert W.M., Truskey G.A. Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J. Biomed. Mater. Res. 1996;30:13–22. doi: 10.1002/(SICI)1097-4636(199601)30:1<13::AID-JBM3>3.0.CO;2-U. PubMed DOI

Bacakova L., Mares V., Lisa V., Bottone M.G., Pellicciari C., Kocourek F. Sex-related differences in the migration and proliferation of rat aortic smooth muscle cells in short and long term culture. In Vitro Cell. Develop. Biol. Anim. 1997;33:410–413. doi: 10.1007/s11626-997-0055-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...