The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy, práce podpořená grantem
Grantová podpora
project no. 23-06884S
Czech Science Foundation
MH CZ - DRO (MMCI, 00209805)
Grantová Agentura České Republiky
PubMed
38263180
PubMed Central
PMC10804554
DOI
10.1186/s12943-024-01933-z
PII: 10.1186/s12943-024-01933-z
Knihovny.cz E-zdroje
- Klíčová slova
- DNA Damage Sensing, Genotoxic stress, MDM2, MRN complex, Precision medicine, RNA secondary structure, Synonymous mutations,
- MeSH
- ATM protein MeSH
- lidé MeSH
- nádorový supresorový protein p53 MeSH
- oprava DNA MeSH
- polynukleotid-5'-hydroxylkinasa * MeSH
- poškození DNA MeSH
- protoonkogenní proteiny c-mdm2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein, human MeSH Prohlížeč
- ATM protein MeSH
- nádorový supresorový protein p53 MeSH
- polynukleotid-5'-hydroxylkinasa * MeSH
- protoonkogenní proteiny c-mdm2 * MeSH
BACKGROUND: The ATM kinase constitutes a master regulatory hub of DNA damage and activates the p53 response pathway by phosphorylating the MDM2 protein, which develops an affinity for the p53 mRNA secondary structure. Disruption of this interaction prevents the activation of the nascent p53. The link of the MDM2 protein-p53 mRNA interaction with the upstream DNA damage sensor ATM kinase and the role of the p53 mRNA in the DNA damage sensing mechanism, are still highly anticipated. METHODS: The proximity ligation assay (PLA) has been extensively used to reveal the sub-cellular localisation of the protein-mRNA and protein-protein interactions. ELISA and co-immunoprecipitation confirmed the interactions in vitro and in cells. RESULTS: This study provides a novel mechanism whereby the p53 mRNA interacts with the ATM kinase enzyme and shows that the L22L synonymous mutant, known to alter the secondary structure of the p53 mRNA, prevents the interaction. The relevant mechanistic roles in the DNA Damage Sensing pathway, which is linked to downstream DNA damage response, are explored. Following DNA damage (double-stranded DNA breaks activating ATM), activated MDMX protein competes the ATM-p53 mRNA interaction and prevents the association of the p53 mRNA with NBS1 (MRN complex). These data also reveal the binding domains and the phosphorylation events on ATM that regulate the interaction and the trafficking of the complex to the cytoplasm. CONCLUSION: The presented model shows a novel interaction of ATM with the p53 mRNA and describes the link between DNA Damage Sensing with the downstream p53 activation pathways; supporting the rising functional implications of synonymous mutations altering secondary mRNA structures.
Department of Medical Biosciences Umeå University Umeå 90185 Sweden
Institut de Biotecnologia 1 de Biomedicina Universitat Autònoma de Barcelona Bellaterra Spain
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18:169. doi: 10.1186/s12943-019-1100-5. PubMed DOI PMC
Stracker TH, Roig I, Knobel PA, Marjanovic M. The ATM signaling network in development and disease. Front Genet. 2013;4:37. doi: 10.3389/fgene.2013.00037. PubMed DOI PMC
Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 2010;9:472–478. doi: 10.4161/cc.9.3.10556. PubMed DOI PMC
Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2010;2:a000893. doi: 10.1101/cshperspect.a000893. PubMed DOI PMC
MacLaine NJ, Hupp TR. How phosphorylation controls p53. Cell Cycle. 2011;10:916–921. doi: 10.4161/cc.10.6.15076. PubMed DOI
Karakostis K, Vadivel Gnanasundram S, Lopez I, Thermou A, Wang L, Nylander K, Olivares-Illana V, Fahraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J Mol Cell Biol. 2019;11:187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC
Karakostis K, Ponnuswamy A, Fusee LT, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fahraeus R. p53 mRNA and p53 protein structures have evolved independently to interact with MDM2. Mol Biol Evol. 2016;33:1280–1292. doi: 10.1093/molbev/msw012. PubMed DOI
Karakostis K, Fahraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer. 2019;19:915. doi: 10.1186/s12885-019-6118-y. PubMed DOI PMC
Zheng S, Kim H, Verhaak RGW. Silent mutations make some noise. Cell. 2014;156:1129–1131. doi: 10.1016/j.cell.2014.02.037. PubMed DOI
Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M, Gross M, Backofen R, Diederichs S. A pan-cancer analysis of synonymous mutations. Nat Commun. 2019;10:2569. doi: 10.1038/s41467-019-10489-2. PubMed DOI PMC
Teng H, Wei W, Li Q, Xue M, Shi X, Li X, Mao F, Sun Z. Prevalence and architecture of posttranscriptionally impaired synonymous mutations in 8,320 genomes across 22 cancer types. Nucleic Acids Res. 2020;48:1192–1205. doi: 10.1093/nar/gkaa019. PubMed DOI PMC
Kobayashi Y, Chhoeu C, Li J, Price KS, Kiedrowski LA, Hutchins JL, Hardin AI, Wei Z, Hong F, Bahcall M, et al. Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers. Nature. 2022;603:335–342. doi: 10.1038/s41586-022-04451-4. PubMed DOI
Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156:1324–1335. doi: 10.1016/j.cell.2014.01.051. PubMed DOI
Gnanasundram SV, Malbert-Colas L, Chen S, Fusee L, Daskalogianni C, Muller P, Salomao N, Fahraeus R. MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities. Nucleic Acids Res. 2020;48:6775–6787. doi: 10.1093/nar/gkaa431. PubMed DOI PMC
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–1166. doi: 10.1126/science.1140321. PubMed DOI
Warren C, Pavletich NP. Structure of the human ATM kinase and mechanism of Nbs1 binding. Elife. 2022;11:e74218. doi: 10.7554/eLife.74218. PubMed DOI PMC
Poon GYP, Watson CJ, Fisher DS, Blundell JR. Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat Genet. 2021;53:1597–1605. doi: 10.1038/s41588-021-00957-1. PubMed DOI
Padariya M, Jooste ML, Hupp T, Fahraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The elephant evolved p53 Isoforms that escape MDM2-mediated repression and cancer. Mol Biol Evol. 2022;39:msac149. doi: 10.1093/molbev/msac149. PubMed DOI PMC
Baretic D, Pollard HK, Fisher DI, Johnson CM, Santhanam B, Truman CM, Kouba T, Fersht AR, Phillips C, Williams RL. Structures of closed and open conformations of dimeric human ATM. Sci Adv. 2017;3:e1700933. doi: 10.1126/sciadv.1700933. PubMed DOI PMC
Alexander A, Walker CL. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle. 2010;9:3685–3686. doi: 10.4161/cc.9.18.13253. PubMed DOI PMC
Li J, Han YR, Plummer MR, Herrup K. Cytoplasmic ATM in neurons modulates synaptic function. Curr Biol. 2009;19:2091–2096. doi: 10.1016/j.cub.2009.10.039. PubMed DOI PMC
Shah P, McGuigan CW, Cheng S, Vanpouille-Box C, Demaria S, Weiss RS, Lammerding J. ATM modulates nuclear mechanics by regulating lamin A levels. Front Cell Dev Biol. 2022;10:875132. doi: 10.3389/fcell.2022.875132. PubMed DOI PMC