MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities

. 2020 Jul 09 ; 48 (12) : 6775-6787.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32453417

Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.

Zobrazit více v PubMed

Felsani A., Mileo A.M., Paggi M.G.. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene. 2006; 25:5277–5285. PubMed

Mui U.N., Haley C.T., Tyring S.K.. Viral oncology: molecular biology and pathogenesis. J Clin Med. 2017; 6:E111. PubMed PMC

Frappier L. Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses. 2012; 4:1537–1547. PubMed PMC

Yin Y., Manoury B., Fåhraeus R.. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science. 2003; 301:1371–1374. PubMed

Apcher S., Komarova A., Daskalogianni C., Yin Y., Malbert-Colas L., Fåhraeus R.. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J. Virol. 2009; 83:1289–1298. PubMed PMC

Apcher S., Daskalogianni C., Manoury B., Fåhraeus R.. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 2010; 6:e1001151. PubMed PMC

Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC

Gnanasundram S.V., Pyndiah S., Daskalogianni C., Armfield K., Nylander K., Wilson J.B., Fåhraeus R.. PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat. Commun. 2017; 8:2103. PubMed PMC

Vadivel Gnanasundram S., Fåhraeus R.. Translation Stress Regulates Ribosome Synthesis and Cell Proliferation. Int. J. Mol. Sci. 2018; 19:E3757. PubMed PMC

Kang M.-S., Lu H., Yasui T., Sharpe A., Warren H., Cahir-McFarland E., Bronson R., Hung S.C., Kieff E.. Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:820–825. PubMed PMC

Wilson J.B., Bell J.L., Levine A.J.. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996; 15:3117–3126. PubMed PMC

Lucas C.L., Chandra A., Nejentsev S., Condliffe A.M., Okkenhaug K.. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol. 2016; 16:702–714. PubMed PMC

Oliner J.D., Kinzler K.W., Meltzer P.S., George D.L., Vogelstein B.. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992; 358:80–83. PubMed

Watanabe T., Ichikawa A., Saito H., Hotta T.. Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk. Lymphoma. 1996; 21:391–397. PubMed

Momand J., Jung D., Wilczynski S., Niland J.. The MDM2 gene amplification database. Nucleic Acids Res. 1998; 26:3453–3459. PubMed PMC

Patterson H., Barnes D., Gill S., Spicer J., Fisher C., Thomas M., Grimer R., Fletcher C., Gusterson B., Cooper C.. Amplification and Over-Expression of the MDM2 gene in human soft tissue tumours. Sarcoma. 1997; 1:17–22. PubMed PMC

Oliner J.D., Saiki A.Y., Caenepeel S.. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb. Perspect. Med. 2016; 6:a026336. PubMed PMC

Pant V., Xiong S., Iwakuma T., Quintás-Cardama A., Lozano G.. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:11995–12000. PubMed PMC

Haupt Y., Maya R., Kazaz A., Oren M.. Mdm2 promotes the rapid degradation of p53. Nature. 1997; 387:296–299. PubMed

Honda R., Tanaka H., Yasuda H.. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997; 420:25–27. PubMed

Kubbutat M.H., Jones S.N., Vousden K.H.. Regulation of p53 stability by Mdm2. Nature. 1997; 387:299–303. PubMed

Roth J., Dobbelstein M., Freedman D.A., Shenk T., Levine A.J.. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998; 17:554–564. PubMed PMC

Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J.. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992; 69:1237–1245. PubMed

Kamijo T., Weber J.D., Zambetti G., Zindy F., Roussel M.F., Sherr C.J.. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA. 1998; 95:8292–8297. PubMed PMC

Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S., Palmero I., Ryan K., Hara E., Vousden K.H. et al. .. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998; 17:5001–5014. PubMed PMC

Pomerantz J., Schreiber-Agus N., Liégeois N.J., Silverman A., Alland L., Chin L., Potes J., Chen K., Orlow I., Lee H.W. et al. .. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998; 92:713–723. PubMed

Zhang Y., Xiong Y., Yarbrough W.G.. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998; 92:725–734. PubMed

Bates S., Phillips A.C., Clark P.A., Stott F., Peters G., Ludwig R.L., Vousden K.H.. p14ARF links the tumour suppressors RB and p53. Nature. 1998; 395:124–125. PubMed

Gil J., Peters G.. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 2006; 7:667–677. PubMed

Prives C. Signaling to p53: breaking the MDM2-p53 circuit. Cell. 1998; 95:5–8. PubMed

Maya R., Balass M., Kim S.T., Shkedy D., Leal J.F., Shifman O., Moas M., Buschmann T., Ronai Z., Shiloh Y. et al. .. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001; 15:1067–1077. PubMed PMC

Candeias M.M., Malbert-Colas L., Powell D.J., Daskalogianni C., Maslon M.M., Naski N., Bourougaa K., Calvo F., Fåhraeus R.. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 2008; 10:1098–1105. PubMed

Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fåhraeus R.. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012; 21:25–35. PubMed

Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.-S., Naski N., Fåhraeus R.. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014; 54:500–511. PubMed

Fåhraeus R., Olivares-Illana V.. MDM2’s social network. Oncogene. 2014; 33:4365–4376. PubMed

Bohlman S., Manfredi J.J.. p53-independent effects of Mdm2. Subcell. Biochem. 2014; 85:235–246. PubMed PMC

Martin K., Trouche D., Hagemeier C., Sørensen T.S., La Thangue N.B., Kouzarides T.. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature. 1995; 375:691–694. PubMed

Wunderlich M., Berberich S.J.. Mdm2 inhibition of p53 induces E2F1 transactivation via p21. Oncogene. 2002; 21:4414–4421. PubMed

Zhang Z., Wang H., Li M., Rayburn E.R., Agrawal S., Zhang R.. Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene. 2005; 24:7238–7247. PubMed

Kowalik T.F., DeGregori J., Leone G., Jakoi L., Nevins J.R.. E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ. 1998; 9:113–118. PubMed

Blattner C., Sparks A., Lane D.. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 1999; 19:3704–3713. PubMed PMC

Loughran O., La Thangue N.B.. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol. 2000; 20:2186–2197. PubMed PMC

Stevens C., Pettersson S., Wawrzynow B., Wallace M., Ball K., Zylicz A., Hupp T.R.. ATP stimulates MDM2-mediated inhibition of the DNA-binding function of E2F1. FEBS J. 2008; 275:4875–4886. PubMed

Medina-Medina I., Martínez-Sánchez M., Hernández-Monge J., Fahraeus R., Muller P., Olivares-Illana V.. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci. 2018; 27:976–986. PubMed PMC

Karakostis K., Vadivel Gnanasundram S., López I., Thermou A., Wang L., Nylander K., Olivares-Illana V., Fåhraeus R.. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J. Mol. Cell Biol. 2019; 11:187–199. PubMed PMC

Martins R.P., Malbert-Colas L., Lista M.J., Daskalogianni C., Apcher S., Pla M., Findakly S., Blondel M., Fåhraeus R.. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res. 2019; 47:3086–3100. PubMed PMC

Ashcroft M., Ludwig R.L., Woods D.B., Copeland T.D., Weber H.O., MacRae E.J., Vousden K.H.. Phosphorylation of HDM2 by Akt. Oncogene. 2002; 21:1955–1962. PubMed

Gottlieb T.M., Leal J.F.M., Seger R., Taya Y., Oren M.. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002; 21:1299–1303. PubMed

DeGregori J., Kowalik T., Nevins J.R.. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 1995; 15:4215–4224. PubMed PMC

van Riggelen J., Yetil A., Felsher D.W.. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer. 2010; 10:301–309. PubMed

Furman R.R., Sharman J.P., Coutre S.E., Cheson B.D., Pagel J.M., Hillmen P., Barrientos J.C., Zelenetz A.D., Kipps T.J., Flinn I. et al. .. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2014; 370:997–1007. PubMed PMC

Wang S., Zhao Y., Aguilar A., Bernard D., Yang C.-Y.. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med. 2017; 7:a026245. PubMed PMC

Burgess A., Chia K.M., Haupt S., Thomas D., Haupt Y., Lim E.. Clinical overview of MDM2/X-Targeted therapies. Front. Oncol. 2016; 6:7. PubMed PMC

Gu L., Zhu N., Zhang H., Durden D.L., Feng Y., Zhou M.. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell. 2009; 15:363–375. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...