• This record comes from PubMed

p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction

. 2018 May ; 27 (5) : 976-986. [epub] 20180325

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

HDM2 and HDMX are two homologs essential for controlling p53 tumor suppressor activity under normal conditions. Both proteins bind different sites on the p53 N-terminus, and while HDM2 has E3 ubiquitin ligase activity towards p53, HDMX does not. Nevertheless, HDMX is required for p53 polyubiquitination and degradation, but the underlying molecular mechanism remains unclear. Alone, HDMX and HDM2 interact via their respective C-terminal RING domains but here we show that the presence of p53 induces an N-terminal interface under normal cellular conditions. This results in an increase in HDM2-mediated p53 polyubiquitination and degradation. The HDM2 inhibitor Nutlin-3 binds the N-terminal p53 binding pocket and is sufficient to induce the HDM2-HDMX interaction, suggesting that the mechanism depends on allosteric changes that control the multiprotein complex formation. These results demonstrate an allosteric interchange between three different proteins (HDMX-HDM2-p53) and help to explain the molecular mechanisms of HDM2-inhibitory drugs.

See more in PubMed

Olivares‐Illana V, Fåhraeus R (2010) p53 isoforms gain functions. Oncogene 29:5113–5119. PubMed

Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310. PubMed

Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758. PubMed PMC

Parant J, Chavez‐Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G (2001) Rescue of embryonic lethality in Mdm4‐null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95. PubMed

Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2‐deficient mice by deletion of p53. Nature 378:203–206. PubMed

Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG, Parant J, Lozano G, Yuan Z‐M (2002) Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 277:19251–19254. PubMed

Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL (2008) Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15:841–848. PubMed

Wade M, Wahl GM (2009) Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res 7:1–11. PubMed PMC

Pant V, Xiong S, Iwakuma T, Quintas‐Cardama A, Lozano G (2011) Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci U S A 108:11995–12000. PubMed PMC

Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RCA, van der Houven van Oordt W, Hateboer G, van der Eb AJ, Jochemsen AG (1996) MDMX: a novel p53‐binding protein with some functional properties of MDM2. EMBO J 15:5349–5357. PubMed PMC

Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2–fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529. PubMed

Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953. PubMed

Popowicz GM, Czarna A, Holak TA (2008) Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441–2443. PubMed

Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL (2006) Dual‐site regulation of MDM2 E3‐ubiquitin ligase activity. Mol Cell 23:251–263. PubMed

Shimizu H, Burch LR, Smith AJ, Dornan D, Wallace M, Ball KL, Hupp TR (2002) The conformationally flexible S9‐S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem 277:28446–28458. PubMed

Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez‐Fernandez MR, Fersht AR (2006) The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci U S A 103:1227–1232. PubMed PMC

Kawai H, Wiederschain D, Yuan ZM (2003) Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23:4939–4947. PubMed PMC

Wei X, Wu S, Song T, Chen L, Gao M, Borcherds W, Daughdrill GW, Chen J (2016) Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proc Natl Acad Sci U S A 113:E2558–E2563. PubMed PMC

Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M (1999) MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9. PubMed

Leslie PL, Ke H, Zhang Y (2015) The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2‐MDMX protein heterodimerization. J Biol Chem 290:12941–12950. PubMed PMC

Medina‐Medina I, García‐Beltrán P, de la Mora‐de la Mora I, Oria‐Hernández J, Millot G, Fahraeus R, Reyes‐Vivas H, Sampedro JG, Olivares‐Illana V (2016) Allosteric interactions by p53 mRNA governs HDM2 E3 ubiquitin ligase specificity under different conditions. Mol Cell Biol 36:2195–2205. PubMed PMC

Malbert‐Colas L, Ponnuswamy A, Olivares‐Illana V, Tournillon A‐S, Naski N, Fåhraeus R (2014) HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 54:500–511. PubMed

Badciong JC, Haas AL (2002) MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 277:49668–49675. PubMed

Wang X, Wang J, Jiang X (2011) MdmX protein is essential for Mdm2 protein‐mediated p53 polyubiquitination. J Biol Chem 286:23725–23734. PubMed PMC

Weibrecht I, Leuchowius K‐J, Clausson C‐M, Conze T, Jarvius M, Howell WM, Kamali‐Moghaddam M, Söderberg O (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 7:401–409. PubMed

Tournillon A‐S, López I, Malbert‐Colas L, Naski N, Olivares‐Illana V, Fåhraeus R (2015) The alternative translated MDMX(p60) isoform regulates MDM2 activity. Cell Cycle 14:449–458. PubMed PMC

Worrall EG, Wawrzynow B, Worrall L, Walkinshaw M, Ball KL, Hupp TR (2009) Regulation of the E3 ubiquitin ligase activity of MDM2 by an N‐terminal pseudo‐substrate motif. J Chem Biol 2:113–129. PubMed PMC

Hernychova L, Man P, Verma C, Nicholson J, Sharma CA, Ruckova E, Teo JY, Ball K, Vojtesek B, Hupp TR (2013) Identification of a second Nutlin‐3 responsive interaction site in the N‐terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Proteomics 13:2512–2525. PubMed

Waning DL, Lehman JA, Batuello CN, Mayo LD (2011) c‐Abl phosphorylation of Mdm2 facilitates Mdm2‐Mdmx complex formation. J Biol Chem 286:216–222. PubMed PMC

Wang X (2011) p53 regulation: teamwork between RING domains of Mdm2 and MdmX. Cell Cycle 10:4225–4229. PubMed

Kostic M, Matt T, Martinez‐Yamout MA, Dyson HJ, Wright PE (2006) Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 363:433–450. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...