Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
MMCI, 00209805
MH CZ DRO - International
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund - Project ENOCH - International
PubMed
33396576
PubMed Central
PMC7824699
DOI
10.3390/biom11010036
PII: biom11010036
Knihovny.cz E-zdroje
- Klíčová slova
- ATM *, DNA damage response *, MDM2 *, MDMX *, p53 *, p53 mRNA *, post-translational modification *, protein-RNA interactions *, protein-protein interactions *,
- MeSH
- fosforylace genetika MeSH
- jaderné proteiny MeSH
- lidé MeSH
- myši MeSH
- nádorový supresorový protein p53 genetika MeSH
- poškození DNA genetika MeSH
- posttranslační úpravy proteinů genetika MeSH
- proteiny buněčného cyklu genetika MeSH
- protoonkogenní proteiny c-mdm2 genetika MeSH
- vazba proteinů genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- jaderné proteiny MeSH
- MDM2 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny c-mdm2 MeSH
The p53 and Mouse double minute 2 (MDM2) proteins are hubs in extensive networks of interactions with multiple partners and functions. Intrinsically disordered regions help to adopt function-specific structural conformations in response to ligand binding and post-translational modifications. Different techniques have been used to dissect interactions of the p53-MDM2 pathway, in vitro, in vivo, and in situ each having its own advantages and disadvantages. This review uses the p53-MDM2 to show how different techniques can be employed, illustrating how a combination of in vitro and in vivo techniques is highly recommended to study the spatio-temporal location and dynamics of interactions, and to address their regulation mechanisms and functions. By using well-established techniques in combination with more recent advances, it is possible to rapidly decipher complex mechanisms, such as the p53 regulatory pathway, and to demonstrate how protein and nucleotide ligands in combination with post-translational modifications, result in inter-allosteric and intra-allosteric interactions that govern the activity of the protein complexes and their specific roles in oncogenesis. This promotes elegant therapeutic strategies that exploit protein dynamics to target specific interactions.
Zobrazit více v PubMed
De Las Rivas J., Fontanillo C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 2010;6:e1000807. doi: 10.1371/journal.pcbi.1000807. PubMed DOI PMC
Luker K.E., Piwnica-Worms D. Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol. 2004;385:349–360. doi: 10.1016/S0076-6879(04)85019-5. PubMed DOI
Favre B., Begre N., Bouameur J.E., Borradori L. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol. 2016;569:117–137. doi: 10.1016/bs.mie.2015.06.017. PubMed DOI
Phizicky E.M., Fields S. Protein-protein interactions: Methods for detection and analysis. Microbiol. Rev. 1995;59:94–123. doi: 10.1128/MR.59.1.94-123.1995. PubMed DOI PMC
Vallabhajosyula R.R., Chakravarti D., Lutfeali S., Ray A., Raval A. Identifying hubs in protein interaction networks. PLoS ONE. 2009;4:e5344. doi: 10.1371/journal.pone.0005344. PubMed DOI PMC
Wuchty S., Almaas E. Peeling the yeast protein network. Proteomics. 2005;5:444–449. doi: 10.1002/pmic.200400962. PubMed DOI
Sluchanko N.N., Bustos D.M. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci. 2019;166:19–61. doi: 10.1016/bs.pmbts.2019.03.007. PubMed DOI
Uversky V.N. Analyzing IDPs in Interactomes. Methods Mol. Biol. 2020;2141:895–945. doi: 10.1007/978-1-0716-0524-0_46. PubMed DOI
Wang J., Jain A., McDonald L.R., Gambogi C., Lee A.L., Dokholyan N.V. Mapping allosteric communications within individual proteins. Nat. Commun. 2020;11:3862. doi: 10.1038/s41467-020-17618-2. PubMed DOI PMC
Fahraeus R., Olivares-Illana V. MDM2′s social network. Oncogene. 2014;33:4365–4376. doi: 10.1038/onc.2013.410. PubMed DOI
Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer. 2020;20:471–480. doi: 10.1038/s41568-020-0262-1. PubMed DOI
Levine A.J. P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future. Int. J. Mol. Sci. 2020;21:541. doi: 10.3390/ijms21020541. PubMed DOI PMC
Karni-Schmidt O., Lokshin M., Prives C. The Roles of MDM2 and MDMX in Cancer. Annu. Rev. Pathol. 2016;11:617–644. doi: 10.1146/annurev-pathol-012414-040349. PubMed DOI PMC
Medina-Medina I., Garcia-Beltran P., de la Mora-de la Mora I., Oria-Hernandez J., Millot G., Fahraeus R., Reyes-Vivas H., Sampedro J.G., Olivares-Illana V. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Mol. Cell Biol. 2016;36:2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC
Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fahraeus R. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21:25–35. doi: 10.1016/j.ccr.2011.11.016. PubMed DOI
Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.S., Naski N., Fahraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014;54:500–511. doi: 10.1016/j.molcel.2014.02.035. PubMed DOI
Hupp T.R., Hayward R.L., Vojtesek B. Strategies for p53 reactivation in human sarcoma. Cancer Cell. 2012;22:283–285. doi: 10.1016/j.ccr.2012.08.020. PubMed DOI
Cao Z., Xue J., Cheng Y., Wang J., Liu Y., Li H., Jiang W., Li G., Gui Y., Zhang X. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene. 2019;38:4835–4855. doi: 10.1038/s41388-019-0761-2. PubMed DOI PMC
Dickinson E.R., Jurneczko E., Nicholson J., Hupp T.R., Zawacka-Pankau J., Selivanova G., Barran P.E. The use of ion mobility mass spectrometry to probe modulation of the structure of p53 and of MDM2 by small molecule inhibitors. Front. Mol. Biosci. 2015;2:39. doi: 10.3389/fmolb.2015.00039. PubMed DOI PMC
Zhang W., Zhong T., Chen Y. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. J. Proteom. 2017;152:172–180. doi: 10.1016/j.jprot.2016.11.002. PubMed DOI
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI
Xing S., Wallmeroth N., Berendzen K.W., Grefen C. Techniques for the Analysis of Protein-Protein Interactions in Vivo. Plant. Physiol. 2016;171:727–758. doi: 10.1104/pp.16.00470. PubMed DOI PMC
Bellucci A., Fiorentini C., Zaltieri M., Missale C., Spano P. The “in situ” proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol. Biol. 2014;1174:397–405. doi: 10.1007/978-1-4939-0944-5_27. PubMed DOI
Lane D.P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–263. doi: 10.1038/278261a0. PubMed DOI
Linzer D.I., Levine A.J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52. doi: 10.1016/0092-8674(79)90293-9. PubMed DOI
Hinds P.W., Finlay C.A., Quartin R.S., Baker S.J., Fearon E.R., Vogelstein B., Levine A.J. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: A comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1990;1:571–580. PubMed
Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–1245. doi: 10.1016/0092-8674(92)90644-R. PubMed DOI
Shvarts A., Steegenga W.T., Riteco N., van Laar T., Dekker P., Bazuine M., van Ham R.C., van der Houven van Oordt W., Hateboer G., van der Eb A.J., et al. MDMX: A novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996;15:5349–5357. doi: 10.1002/j.1460-2075.1996.tb00919.x. PubMed DOI PMC
Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334. doi: 10.1016/S0092-8674(00)80416-X. PubMed DOI
Bottger A., Bottger V., Garcia-Echeverria C., Chene P., Hochkeppel H.K., Sampson W., Ang K., Howard S.F., Picksley S.M., Lane D.P. Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 1997;269:744–756. doi: 10.1006/jmbi.1997.1078. PubMed DOI
Schonhoff C.M., Daou M.C., Jones S.N., Schiffer C.A., Ross A.H. Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry. 2002;41:13570–13574. doi: 10.1021/bi026262q. PubMed DOI
Xirodimas D.P., Stephen C.W., Lane D.P. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp. Cell Res. 2001;270:66–77. doi: 10.1006/excr.2001.5314. PubMed DOI
Yu Z.K., Geyer R.K., Maki C.G. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene. 2000;19:5892–5897. doi: 10.1038/sj.onc.1203980. PubMed DOI
Tao W., Levine A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA. 1999;96:6937–6941. doi: 10.1073/pnas.96.12.6937. PubMed DOI PMC
Zhang Y., Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell. 1999;3:579–591. doi: 10.1016/S1097-2765(00)80351-2. PubMed DOI
Sharp D.A., Kratowicz S.A., Sank M.J., George D.L. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 1999;274:38189–38196. doi: 10.1074/jbc.274.53.38189. PubMed DOI
Chen D., Zhang Z., Li M., Wang W., Li Y., Rayburn E.R., Hill D.L., Wang H., Zhang R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: Binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene. 2007;26:5029–5037. doi: 10.1038/sj.onc.1210327. PubMed DOI
Liu T., Zhang H., Xiong J., Yi S., Gu L., Zhou M. Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol. Cancer. 2015;14:65. doi: 10.1186/s12943-015-0334-0. PubMed DOI PMC
Yadavilli S., Mayo L.D., Higgins M., Lain S., Hegde V., Deutsch W.A. Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair. 2009;8:1215–1224. doi: 10.1016/j.dnarep.2009.07.003. PubMed DOI PMC
Wong J.H., Alfatah M., Sin M.F., Sim H.M., Verma C.S., Lane D.P., Arumugam P. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. BMC Biol. 2017;15:108. doi: 10.1186/s12915-017-0446-7. PubMed DOI PMC
Li J., Zhang S., Gao L., Chen Y., Xie X. A cell-based high-throughput assay for the screening of small-molecule inhibitors of p53-MDM2 interaction. J. Biomol. Screen. 2011;16:450–456. doi: 10.1177/1087057111399191. PubMed DOI
Fekry B., Jeffries K.A., Esmaeilniakooshkghazi A., Szulc Z.M., Knagge K.J., Kirchner D.R., Horita D.A., Krupenko S.A., Krupenko N.I. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat. Commun. 2018;9:4149. doi: 10.1038/s41467-018-06650-y. PubMed DOI PMC
Wu W., Xu C., Ling X., Fan C., Buckley B.P., Chernov M.V., Ellis L., Li F., Munoz I.G., Wang X. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Cell Death Dis. 2015;6:e2035. doi: 10.1038/cddis.2015.358. PubMed DOI PMC
Graves B., Thompson T., Xia M., Janson C., Lukacs C., Deo D., Di Lello P., Fry D., Garvie C., Huang K.S., et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. USA. 2012;109:11788–11793. doi: 10.1073/pnas.1203789109. PubMed DOI PMC
Mazars A., Fahraeus R. Using BRET to study chemical compound-induced disruptions of the p53-HDM2 interactions in live cells. Biotechnol. J. 2010;5:377–384. doi: 10.1002/biot.200900272. PubMed DOI
Dunn K.W., Kamocka M.M., McDonald J.H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011;300:C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Moser B., Hochreiter B., Herbst R., Schmid J.A. Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation. Biotechnol. J. 2017;12 doi: 10.1002/biot.201600332. PubMed DOI PMC
Liang S.H., Hong D., Clarke M.F. Cooperation of a single lysine mutation and a C-terminal domain in the cytoplasmic sequestration of the p53 protein. J. Biol. Chem. 1998;273:19817–19821. doi: 10.1074/jbc.273.31.19817. PubMed DOI
Shaulsky G., Goldfinger N., Ben-Ze’ev A., Rotter V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell Biol. 1990;10:6565–6577. doi: 10.1128/MCB.10.12.6565. PubMed DOI PMC
Johnsson N., Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA. 1994;91:10340–10344. doi: 10.1073/pnas.91.22.10340. PubMed DOI PMC
Ozawa T., Kaihara A., Sato M., Tachihara K., Umezawa Y. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal. Chem. 2001;73:2516–2521. doi: 10.1021/ac0013296. PubMed DOI
Ghosh I., Hamilton A.D., Regan L. Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein. J. Am. Chem. Soc. 2000;122:5658–5659. doi: 10.1021/ja994421w. DOI
Amaral J.D., Herrera F., Rodrigues P.M., Dionisio P.A., Outeiro T.F., Rodrigues C.M. Live-cell imaging of p53 interactions using a novel Venus-based bimolecular fluorescence complementation system. Biochem. Pharmacol. 2013;85:745–752. doi: 10.1016/j.bcp.2012.12.009. PubMed DOI
Wu P., Brand L. Resonance energy transfer: Methods and applications. Anal. Biochem. 1994;218:1–13. doi: 10.1006/abio.1994.1134. PubMed DOI
Boute N., Jockers R., Issad T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 2002;23:351–354. doi: 10.1016/S0165-6147(02)02062-X. PubMed DOI
Xu Y., Piston D.W., Johnson C.H. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA. 1999;96:151–156. doi: 10.1073/pnas.96.1.151. PubMed DOI PMC
Bourougaa K., Naski N., Boularan C., Mlynarczyk C., Candeias M.M., Marullo S., Fahraeus R. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol. Cell. 2010;38:78–88. doi: 10.1016/j.molcel.2010.01.041. PubMed DOI
Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340:245–246. doi: 10.1038/340245a0. PubMed DOI
Iwabuchi K., Li B., Bartel P., Fields S. Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene. 1993;8:1693–1696. PubMed
Zolghadr K., Mortusewicz O., Rothbauer U., Kleinhans R., Goehler H., Wanker E.E., Cardoso M.C., Leonhardt H. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol. Cell Proteom. 2008;7:2279–2287. doi: 10.1074/mcp.M700548-MCP200. PubMed DOI
Zolghadr K., Rothbauer U., Leonhardt H. The fluorescent two-hybrid (F2H) assay for direct analysis of protein-protein interactions in living cells. Methods Mol. Biol. 2012;812:275–282. doi: 10.1007/978-1-61779-455-1_16. PubMed DOI
Yurlova L., Derks M., Buchfellner A., Hickson I., Janssen M., Morrison D., Stansfield I., Brown C.J., Ghadessy F.J., Lane D.P., et al. The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: Targeting the interaction of p53 with Mdm2 and Mdm4. J. Biomol. Screen. 2014;19:516–525. doi: 10.1177/1087057113518067. PubMed DOI
Brown C.J., Cheok C.F., Verma C.S., Lane D.P. Reactivation of p53: From peptides to small molecules. Trends Pharmacol. Sci. 2011;32:53–62. doi: 10.1016/j.tips.2010.11.004. PubMed DOI
Joseph T.L., Madhumalar A., Brown C.J., Lane D.P., Verma C.S. Differential binding of p53 and nutlin to MDM2 and MDMX: Computational studies. Cell Cycle. 2010;9:1167–1181. doi: 10.4161/cc.9.6.11067. PubMed DOI
Pazgier M., Liu M., Zou G., Yuan W., Li C., Li C., Li J., Monbo J., Zella D., Tarasov S.G., et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci. USA. 2009;106:4665–4670. doi: 10.1073/pnas.0900947106. PubMed DOI PMC
Bacia K., Haustein E., Schwille P. Fluorescence correlation spectroscopy: Principles and applications. Cold Spring Harb. Protoc. 2014;2014:709–725. doi: 10.1101/pdb.top081802. PubMed DOI
Bacia K., Kim S.A., Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods. 2006;3:83–89. doi: 10.1038/nmeth822. PubMed DOI
Du Z., Yu J., Li F., Deng L., Wu F., Huang X., Bergstrand J., Widengren J., Dong C., Ren J. In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Anal. Chem. 2018;90:6144–6151. doi: 10.1021/acs.analchem.8b00473. PubMed DOI
Yu S., Li F., Huang X., Dong C., Ren J. In Situ Study of Interactions between Endogenous c-myc mRNA with CRDBP in a Single Living Cell by Combining Fluorescence Cross-Correlation Spectroscopy with Molecular Beacons. Anal. Chem. 2020;92:2988–2996. doi: 10.1021/acs.analchem.9b03934. PubMed DOI
Medina-Medina I., Martinez-Sanchez M., Hernandez-Monge J., Fahraeus R., Muller P., Olivares-Illana V. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci. 2018;27:976–986. doi: 10.1002/pro.3405. PubMed DOI PMC
Gullberg M., Gustafsdottir S.M., Schallmeiner E., Jarvius J., Bjarnegard M., Betsholtz C., Landegren U., Fredriksson S. Cytokine detection by antibody-based proximity ligation. Proc. Natl. Acad. Sci. USA. 2004;101:8420–8424. doi: 10.1073/pnas.0400552101. PubMed DOI PMC
Soderberg O., Gullberg M., Jarvius M., Ridderstrale K., Leuchowius K.J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G., et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006;3:995–1000. doi: 10.1038/nmeth947. PubMed DOI
Klaesson A., Grannas K., Ebai T., Heldin J., Koos B., Leino M., Raykova D., Oelrich J., Arngarden L., Soderberg O., et al. Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes. Sci. Rep. 2018;8:5400. doi: 10.1038/s41598-018-23582-1. PubMed DOI PMC
Bagchi S.F.R., Wallén-Mackenzie Å. In Situ Proximity Ligation Assay (PLA) Methods Mol. Biol. 2015;1318:10. PubMed
Cane G., Leuchowius K.-J., Söderberg O., Kamali-Moghaddam M., Jarvius M., Helbing I., Pardali K., Koos B., Ebai T., Landegren U. Molecular Diagnostics. 3rd ed. Oxford University Press; Oxford, UK: 2017. Chapter 12—Protein Diagnostics by Proximity Ligation: Combining Multiple Recognition and DNA Amplification for Improved Protein Analyses; p. 219.
Bradbury A., Pluckthun A. Reproducibility: Standardize antibodies used in research. Nature. 2015;518:27–29. doi: 10.1038/518027a. PubMed DOI
Jalili R., Horecka J., Swartz J.R., Davis R.W., Persson H.H.J. Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc. Natl. Acad. Sci. USA. 2018;115:E925–E933. doi: 10.1073/pnas.1718283115. PubMed DOI PMC
Karakostis K., Vadivel Gnanasundram S., Lopez I., Thermou A., Wang L., Nylander K., Olivares-Illana V., Fahraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J. Mol. Cell Biol. 2019;11:187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC
Karakostis K., Fahraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: The co-evolution of genetic signatures. BMC Cancer. 2019;19:915. doi: 10.1186/s12885-019-6118-y. PubMed DOI PMC
Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fahraeus R. The p53 mRNA: An integral part of the cellular stress response. Nucleic Acids Res. 2019;47:3257–3271. doi: 10.1093/nar/gkz124. PubMed DOI PMC
Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–27. doi: 10.1016/S0014-5793(97)01480-4. PubMed DOI
Gannon H.S., Woda B.A., Jones S.N. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21:668–679. doi: 10.1016/j.ccr.2012.04.011. PubMed DOI PMC
Candeias M.M., Malbert-Colas L., Powell D.J., Daskalogianni C., Maslon M.M., Naski N., Bourougaa K., Calvo F., Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 2008;10:1098–1105. doi: 10.1038/ncb1770. PubMed DOI
Darmanis S., Nong R.Y., Hammond M., Gu J., Alderborn A., Vanelid J., Siegbahn A., Gustafsdottir S., Ericsson O., Landegren U., et al. Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol. Cell Proteom. 2010;9:327–335. doi: 10.1074/mcp.M900248-MCP200. PubMed DOI PMC
Tong Q.H., Tao T., Xie L.Q., Lu H.J. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens. Bioelectron. 2016;80:385–391. doi: 10.1016/j.bios.2016.02.006. PubMed DOI
Fredriksson S., Baner J., Dahl F., Chu A., Ji H., Welch K., Davis R.W. Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector. Nucleic Acids Res. 2007;35:e47. doi: 10.1093/nar/gkm078. PubMed DOI PMC
Fredriksson S., Dixon W., Ji H., Koong A.C., Mindrinos M., Davis R.W. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods. 2007;4:327–329. doi: 10.1038/nmeth1020. PubMed DOI