Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms

. 2020 Dec 30 ; 11 (1) : . [epub] 20201230

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396576

Grantová podpora
MMCI, 00209805 MH CZ DRO - International
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund - Project ENOCH - International

The p53 and Mouse double minute 2 (MDM2) proteins are hubs in extensive networks of interactions with multiple partners and functions. Intrinsically disordered regions help to adopt function-specific structural conformations in response to ligand binding and post-translational modifications. Different techniques have been used to dissect interactions of the p53-MDM2 pathway, in vitro, in vivo, and in situ each having its own advantages and disadvantages. This review uses the p53-MDM2 to show how different techniques can be employed, illustrating how a combination of in vitro and in vivo techniques is highly recommended to study the spatio-temporal location and dynamics of interactions, and to address their regulation mechanisms and functions. By using well-established techniques in combination with more recent advances, it is possible to rapidly decipher complex mechanisms, such as the p53 regulatory pathway, and to demonstrate how protein and nucleotide ligands in combination with post-translational modifications, result in inter-allosteric and intra-allosteric interactions that govern the activity of the protein complexes and their specific roles in oncogenesis. This promotes elegant therapeutic strategies that exploit protein dynamics to target specific interactions.

Zobrazit více v PubMed

De Las Rivas J., Fontanillo C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 2010;6:e1000807. doi: 10.1371/journal.pcbi.1000807. PubMed DOI PMC

Luker K.E., Piwnica-Worms D. Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol. 2004;385:349–360. doi: 10.1016/S0076-6879(04)85019-5. PubMed DOI

Favre B., Begre N., Bouameur J.E., Borradori L. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol. 2016;569:117–137. doi: 10.1016/bs.mie.2015.06.017. PubMed DOI

Phizicky E.M., Fields S. Protein-protein interactions: Methods for detection and analysis. Microbiol. Rev. 1995;59:94–123. doi: 10.1128/MR.59.1.94-123.1995. PubMed DOI PMC

Vallabhajosyula R.R., Chakravarti D., Lutfeali S., Ray A., Raval A. Identifying hubs in protein interaction networks. PLoS ONE. 2009;4:e5344. doi: 10.1371/journal.pone.0005344. PubMed DOI PMC

Wuchty S., Almaas E. Peeling the yeast protein network. Proteomics. 2005;5:444–449. doi: 10.1002/pmic.200400962. PubMed DOI

Sluchanko N.N., Bustos D.M. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci. 2019;166:19–61. doi: 10.1016/bs.pmbts.2019.03.007. PubMed DOI

Uversky V.N. Analyzing IDPs in Interactomes. Methods Mol. Biol. 2020;2141:895–945. doi: 10.1007/978-1-0716-0524-0_46. PubMed DOI

Wang J., Jain A., McDonald L.R., Gambogi C., Lee A.L., Dokholyan N.V. Mapping allosteric communications within individual proteins. Nat. Commun. 2020;11:3862. doi: 10.1038/s41467-020-17618-2. PubMed DOI PMC

Fahraeus R., Olivares-Illana V. MDM2′s social network. Oncogene. 2014;33:4365–4376. doi: 10.1038/onc.2013.410. PubMed DOI

Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer. 2020;20:471–480. doi: 10.1038/s41568-020-0262-1. PubMed DOI

Levine A.J. P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future. Int. J. Mol. Sci. 2020;21:541. doi: 10.3390/ijms21020541. PubMed DOI PMC

Karni-Schmidt O., Lokshin M., Prives C. The Roles of MDM2 and MDMX in Cancer. Annu. Rev. Pathol. 2016;11:617–644. doi: 10.1146/annurev-pathol-012414-040349. PubMed DOI PMC

Medina-Medina I., Garcia-Beltran P., de la Mora-de la Mora I., Oria-Hernandez J., Millot G., Fahraeus R., Reyes-Vivas H., Sampedro J.G., Olivares-Illana V. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Mol. Cell Biol. 2016;36:2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC

Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fahraeus R. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21:25–35. doi: 10.1016/j.ccr.2011.11.016. PubMed DOI

Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.S., Naski N., Fahraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014;54:500–511. doi: 10.1016/j.molcel.2014.02.035. PubMed DOI

Hupp T.R., Hayward R.L., Vojtesek B. Strategies for p53 reactivation in human sarcoma. Cancer Cell. 2012;22:283–285. doi: 10.1016/j.ccr.2012.08.020. PubMed DOI

Cao Z., Xue J., Cheng Y., Wang J., Liu Y., Li H., Jiang W., Li G., Gui Y., Zhang X. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene. 2019;38:4835–4855. doi: 10.1038/s41388-019-0761-2. PubMed DOI PMC

Dickinson E.R., Jurneczko E., Nicholson J., Hupp T.R., Zawacka-Pankau J., Selivanova G., Barran P.E. The use of ion mobility mass spectrometry to probe modulation of the structure of p53 and of MDM2 by small molecule inhibitors. Front. Mol. Biosci. 2015;2:39. doi: 10.3389/fmolb.2015.00039. PubMed DOI PMC

Zhang W., Zhong T., Chen Y. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. J. Proteom. 2017;152:172–180. doi: 10.1016/j.jprot.2016.11.002. PubMed DOI

Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI

Xing S., Wallmeroth N., Berendzen K.W., Grefen C. Techniques for the Analysis of Protein-Protein Interactions in Vivo. Plant. Physiol. 2016;171:727–758. doi: 10.1104/pp.16.00470. PubMed DOI PMC

Bellucci A., Fiorentini C., Zaltieri M., Missale C., Spano P. The “in situ” proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol. Biol. 2014;1174:397–405. doi: 10.1007/978-1-4939-0944-5_27. PubMed DOI

Lane D.P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–263. doi: 10.1038/278261a0. PubMed DOI

Linzer D.I., Levine A.J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52. doi: 10.1016/0092-8674(79)90293-9. PubMed DOI

Hinds P.W., Finlay C.A., Quartin R.S., Baker S.J., Fearon E.R., Vogelstein B., Levine A.J. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: A comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1990;1:571–580. PubMed

Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–1245. doi: 10.1016/0092-8674(92)90644-R. PubMed DOI

Shvarts A., Steegenga W.T., Riteco N., van Laar T., Dekker P., Bazuine M., van Ham R.C., van der Houven van Oordt W., Hateboer G., van der Eb A.J., et al. MDMX: A novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996;15:5349–5357. doi: 10.1002/j.1460-2075.1996.tb00919.x. PubMed DOI PMC

Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334. doi: 10.1016/S0092-8674(00)80416-X. PubMed DOI

Bottger A., Bottger V., Garcia-Echeverria C., Chene P., Hochkeppel H.K., Sampson W., Ang K., Howard S.F., Picksley S.M., Lane D.P. Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 1997;269:744–756. doi: 10.1006/jmbi.1997.1078. PubMed DOI

Schonhoff C.M., Daou M.C., Jones S.N., Schiffer C.A., Ross A.H. Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry. 2002;41:13570–13574. doi: 10.1021/bi026262q. PubMed DOI

Xirodimas D.P., Stephen C.W., Lane D.P. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Exp. Cell Res. 2001;270:66–77. doi: 10.1006/excr.2001.5314. PubMed DOI

Yu Z.K., Geyer R.K., Maki C.G. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene. 2000;19:5892–5897. doi: 10.1038/sj.onc.1203980. PubMed DOI

Tao W., Levine A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA. 1999;96:6937–6941. doi: 10.1073/pnas.96.12.6937. PubMed DOI PMC

Zhang Y., Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell. 1999;3:579–591. doi: 10.1016/S1097-2765(00)80351-2. PubMed DOI

Sharp D.A., Kratowicz S.A., Sank M.J., George D.L. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 1999;274:38189–38196. doi: 10.1074/jbc.274.53.38189. PubMed DOI

Chen D., Zhang Z., Li M., Wang W., Li Y., Rayburn E.R., Hill D.L., Wang H., Zhang R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: Binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene. 2007;26:5029–5037. doi: 10.1038/sj.onc.1210327. PubMed DOI

Liu T., Zhang H., Xiong J., Yi S., Gu L., Zhou M. Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol. Cancer. 2015;14:65. doi: 10.1186/s12943-015-0334-0. PubMed DOI PMC

Yadavilli S., Mayo L.D., Higgins M., Lain S., Hegde V., Deutsch W.A. Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair. 2009;8:1215–1224. doi: 10.1016/j.dnarep.2009.07.003. PubMed DOI PMC

Wong J.H., Alfatah M., Sin M.F., Sim H.M., Verma C.S., Lane D.P., Arumugam P. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. BMC Biol. 2017;15:108. doi: 10.1186/s12915-017-0446-7. PubMed DOI PMC

Li J., Zhang S., Gao L., Chen Y., Xie X. A cell-based high-throughput assay for the screening of small-molecule inhibitors of p53-MDM2 interaction. J. Biomol. Screen. 2011;16:450–456. doi: 10.1177/1087057111399191. PubMed DOI

Fekry B., Jeffries K.A., Esmaeilniakooshkghazi A., Szulc Z.M., Knagge K.J., Kirchner D.R., Horita D.A., Krupenko S.A., Krupenko N.I. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat. Commun. 2018;9:4149. doi: 10.1038/s41467-018-06650-y. PubMed DOI PMC

Wu W., Xu C., Ling X., Fan C., Buckley B.P., Chernov M.V., Ellis L., Li F., Munoz I.G., Wang X. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Cell Death Dis. 2015;6:e2035. doi: 10.1038/cddis.2015.358. PubMed DOI PMC

Graves B., Thompson T., Xia M., Janson C., Lukacs C., Deo D., Di Lello P., Fry D., Garvie C., Huang K.S., et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. USA. 2012;109:11788–11793. doi: 10.1073/pnas.1203789109. PubMed DOI PMC

Mazars A., Fahraeus R. Using BRET to study chemical compound-induced disruptions of the p53-HDM2 interactions in live cells. Biotechnol. J. 2010;5:377–384. doi: 10.1002/biot.200900272. PubMed DOI

Dunn K.W., Kamocka M.M., McDonald J.H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011;300:C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC

Moser B., Hochreiter B., Herbst R., Schmid J.A. Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation. Biotechnol. J. 2017;12 doi: 10.1002/biot.201600332. PubMed DOI PMC

Liang S.H., Hong D., Clarke M.F. Cooperation of a single lysine mutation and a C-terminal domain in the cytoplasmic sequestration of the p53 protein. J. Biol. Chem. 1998;273:19817–19821. doi: 10.1074/jbc.273.31.19817. PubMed DOI

Shaulsky G., Goldfinger N., Ben-Ze’ev A., Rotter V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell Biol. 1990;10:6565–6577. doi: 10.1128/MCB.10.12.6565. PubMed DOI PMC

Johnsson N., Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA. 1994;91:10340–10344. doi: 10.1073/pnas.91.22.10340. PubMed DOI PMC

Ozawa T., Kaihara A., Sato M., Tachihara K., Umezawa Y. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal. Chem. 2001;73:2516–2521. doi: 10.1021/ac0013296. PubMed DOI

Ghosh I., Hamilton A.D., Regan L. Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein. J. Am. Chem. Soc. 2000;122:5658–5659. doi: 10.1021/ja994421w. DOI

Amaral J.D., Herrera F., Rodrigues P.M., Dionisio P.A., Outeiro T.F., Rodrigues C.M. Live-cell imaging of p53 interactions using a novel Venus-based bimolecular fluorescence complementation system. Biochem. Pharmacol. 2013;85:745–752. doi: 10.1016/j.bcp.2012.12.009. PubMed DOI

Wu P., Brand L. Resonance energy transfer: Methods and applications. Anal. Biochem. 1994;218:1–13. doi: 10.1006/abio.1994.1134. PubMed DOI

Boute N., Jockers R., Issad T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 2002;23:351–354. doi: 10.1016/S0165-6147(02)02062-X. PubMed DOI

Xu Y., Piston D.W., Johnson C.H. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA. 1999;96:151–156. doi: 10.1073/pnas.96.1.151. PubMed DOI PMC

Bourougaa K., Naski N., Boularan C., Mlynarczyk C., Candeias M.M., Marullo S., Fahraeus R. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol. Cell. 2010;38:78–88. doi: 10.1016/j.molcel.2010.01.041. PubMed DOI

Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340:245–246. doi: 10.1038/340245a0. PubMed DOI

Iwabuchi K., Li B., Bartel P., Fields S. Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene. 1993;8:1693–1696. PubMed

Zolghadr K., Mortusewicz O., Rothbauer U., Kleinhans R., Goehler H., Wanker E.E., Cardoso M.C., Leonhardt H. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol. Cell Proteom. 2008;7:2279–2287. doi: 10.1074/mcp.M700548-MCP200. PubMed DOI

Zolghadr K., Rothbauer U., Leonhardt H. The fluorescent two-hybrid (F2H) assay for direct analysis of protein-protein interactions in living cells. Methods Mol. Biol. 2012;812:275–282. doi: 10.1007/978-1-61779-455-1_16. PubMed DOI

Yurlova L., Derks M., Buchfellner A., Hickson I., Janssen M., Morrison D., Stansfield I., Brown C.J., Ghadessy F.J., Lane D.P., et al. The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: Targeting the interaction of p53 with Mdm2 and Mdm4. J. Biomol. Screen. 2014;19:516–525. doi: 10.1177/1087057113518067. PubMed DOI

Brown C.J., Cheok C.F., Verma C.S., Lane D.P. Reactivation of p53: From peptides to small molecules. Trends Pharmacol. Sci. 2011;32:53–62. doi: 10.1016/j.tips.2010.11.004. PubMed DOI

Joseph T.L., Madhumalar A., Brown C.J., Lane D.P., Verma C.S. Differential binding of p53 and nutlin to MDM2 and MDMX: Computational studies. Cell Cycle. 2010;9:1167–1181. doi: 10.4161/cc.9.6.11067. PubMed DOI

Pazgier M., Liu M., Zou G., Yuan W., Li C., Li C., Li J., Monbo J., Zella D., Tarasov S.G., et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci. USA. 2009;106:4665–4670. doi: 10.1073/pnas.0900947106. PubMed DOI PMC

Bacia K., Haustein E., Schwille P. Fluorescence correlation spectroscopy: Principles and applications. Cold Spring Harb. Protoc. 2014;2014:709–725. doi: 10.1101/pdb.top081802. PubMed DOI

Bacia K., Kim S.A., Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods. 2006;3:83–89. doi: 10.1038/nmeth822. PubMed DOI

Du Z., Yu J., Li F., Deng L., Wu F., Huang X., Bergstrand J., Widengren J., Dong C., Ren J. In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Anal. Chem. 2018;90:6144–6151. doi: 10.1021/acs.analchem.8b00473. PubMed DOI

Yu S., Li F., Huang X., Dong C., Ren J. In Situ Study of Interactions between Endogenous c-myc mRNA with CRDBP in a Single Living Cell by Combining Fluorescence Cross-Correlation Spectroscopy with Molecular Beacons. Anal. Chem. 2020;92:2988–2996. doi: 10.1021/acs.analchem.9b03934. PubMed DOI

Medina-Medina I., Martinez-Sanchez M., Hernandez-Monge J., Fahraeus R., Muller P., Olivares-Illana V. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci. 2018;27:976–986. doi: 10.1002/pro.3405. PubMed DOI PMC

Gullberg M., Gustafsdottir S.M., Schallmeiner E., Jarvius J., Bjarnegard M., Betsholtz C., Landegren U., Fredriksson S. Cytokine detection by antibody-based proximity ligation. Proc. Natl. Acad. Sci. USA. 2004;101:8420–8424. doi: 10.1073/pnas.0400552101. PubMed DOI PMC

Soderberg O., Gullberg M., Jarvius M., Ridderstrale K., Leuchowius K.J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G., et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006;3:995–1000. doi: 10.1038/nmeth947. PubMed DOI

Klaesson A., Grannas K., Ebai T., Heldin J., Koos B., Leino M., Raykova D., Oelrich J., Arngarden L., Soderberg O., et al. Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes. Sci. Rep. 2018;8:5400. doi: 10.1038/s41598-018-23582-1. PubMed DOI PMC

Bagchi S.F.R., Wallén-Mackenzie Å. In Situ Proximity Ligation Assay (PLA) Methods Mol. Biol. 2015;1318:10. PubMed

Cane G., Leuchowius K.-J., Söderberg O., Kamali-Moghaddam M., Jarvius M., Helbing I., Pardali K., Koos B., Ebai T., Landegren U. Molecular Diagnostics. 3rd ed. Oxford University Press; Oxford, UK: 2017. Chapter 12—Protein Diagnostics by Proximity Ligation: Combining Multiple Recognition and DNA Amplification for Improved Protein Analyses; p. 219.

Bradbury A., Pluckthun A. Reproducibility: Standardize antibodies used in research. Nature. 2015;518:27–29. doi: 10.1038/518027a. PubMed DOI

Jalili R., Horecka J., Swartz J.R., Davis R.W., Persson H.H.J. Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc. Natl. Acad. Sci. USA. 2018;115:E925–E933. doi: 10.1073/pnas.1718283115. PubMed DOI PMC

Karakostis K., Vadivel Gnanasundram S., Lopez I., Thermou A., Wang L., Nylander K., Olivares-Illana V., Fahraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J. Mol. Cell Biol. 2019;11:187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC

Karakostis K., Fahraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: The co-evolution of genetic signatures. BMC Cancer. 2019;19:915. doi: 10.1186/s12885-019-6118-y. PubMed DOI PMC

Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fahraeus R. The p53 mRNA: An integral part of the cellular stress response. Nucleic Acids Res. 2019;47:3257–3271. doi: 10.1093/nar/gkz124. PubMed DOI PMC

Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–27. doi: 10.1016/S0014-5793(97)01480-4. PubMed DOI

Gannon H.S., Woda B.A., Jones S.N. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21:668–679. doi: 10.1016/j.ccr.2012.04.011. PubMed DOI PMC

Candeias M.M., Malbert-Colas L., Powell D.J., Daskalogianni C., Maslon M.M., Naski N., Bourougaa K., Calvo F., Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 2008;10:1098–1105. doi: 10.1038/ncb1770. PubMed DOI

Darmanis S., Nong R.Y., Hammond M., Gu J., Alderborn A., Vanelid J., Siegbahn A., Gustafsdottir S., Ericsson O., Landegren U., et al. Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol. Cell Proteom. 2010;9:327–335. doi: 10.1074/mcp.M900248-MCP200. PubMed DOI PMC

Tong Q.H., Tao T., Xie L.Q., Lu H.J. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens. Bioelectron. 2016;80:385–391. doi: 10.1016/j.bios.2016.02.006. PubMed DOI

Fredriksson S., Baner J., Dahl F., Chu A., Ji H., Welch K., Davis R.W. Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector. Nucleic Acids Res. 2007;35:e47. doi: 10.1093/nar/gkm078. PubMed DOI PMC

Fredriksson S., Dixon W., Ji H., Koong A.C., Mindrinos M., Davis R.W. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods. 2007;4:327–329. doi: 10.1038/nmeth1020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...