Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31519161
PubMed Central
PMC6743176
DOI
10.1186/s12885-019-6118-y
PII: 10.1186/s12885-019-6118-y
Knihovny.cz E-zdroje
- Klíčová slova
- Ciona intestinalis, Intrinsically disordered proteins, Molecular basis of disease, Protein-RNA interactions, RNA world, Transcription factor, mRNA translation,
- MeSH
- genetická predispozice k nemoci MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory genetika metabolismus patologie MeSH
- proteiny vázající RNA metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- nádorové supresorové proteiny MeSH
- nádorový supresorový protein p53 MeSH
- proteiny vázající RNA MeSH
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Department of Medical Biosciences Umea University SE 90185 Umea Sweden
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 656 53 Brno Czech Republic
Université Paris 7 INSERM UMR 1131 27 Rue Juliette Dodu 75010 Paris France
Zobrazit více v PubMed
Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C. Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle. 2010;9(3):540–547. doi: 10.4161/cc.9.3.10516. PubMed DOI
Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL, Waddell PJ, Bhaskara S, et al. Potential mechanisms for Cancer resistance in elephants and comparative cellular response to DNA damage in humans. Jama. 2015;314(17):1850–1860. doi: 10.1001/jama.2015.13134. PubMed DOI PMC
Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay BH, Brenner S, Verma CS, et al. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev. 2016;30(3):281–292. doi: 10.1101/gad.274118.115. PubMed DOI PMC
Karakostis K, Ponnuswamy A, Fusee LT, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fahraeus R. p53 mRNA and p53 protein structures have evolved independently to interact with MDM2. Mol Biol Evol. 2016;33(5):1280–1292. doi: 10.1093/molbev/msw012. PubMed DOI
Aberg E, Saccoccia F, Grabherr M, Ore WYJ, Jemth P, Hultqvist G. Evolution of the p53-MDM2 pathway. BMC Evol Biol. 2017;17(1):177. doi: 10.1186/s12862-017-1023-y. PubMed DOI PMC
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. PubMed DOI
Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell. 2006;23(2):251–263. doi: 10.1016/j.molcel.2006.05.029. PubMed DOI
Maclaine NJ, Hupp TR. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging. 2009;1(5):490–502. doi: 10.18632/aging.100047. PubMed DOI PMC
MacLaine NJ, Hupp TR. How phosphorylation controls p53. Cell Cycle. 2011;10(6):916–921. doi: 10.4161/cc.10.6.15076. PubMed DOI
Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fahraeus R. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21(1):25–35. doi: 10.1016/j.ccr.2011.11.016. PubMed DOI
Ponnuswamy A, Hupp T, Fahraeus R. Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer. 2012;3(3–4):291–297. doi: 10.1177/1947601912454140. PubMed DOI PMC
Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell. 2014;54(3):500–511. doi: 10.1016/j.molcel.2014.02.035. PubMed DOI
Aymard F, Legube G. A TAD closer to ATM. Mol Cell Oncol. 2016;3(3):e1134411. doi: 10.1080/23723556.2015.1134411. PubMed DOI PMC
Karakostis Konstantinos, Vadivel Gnanasundram Sivakumar, López Ignacio, Thermou Aikaterini, Wang Lixiao, Nylander Karin, Olivares-Illana Vanesa, Fåhraeus Robin. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. Journal of Molecular Cell Biology. 2018;11(3):187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC
Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10(9):1098–1105. doi: 10.1038/ncb1770. PubMed DOI
Medina-Medina Ixaura, García-Beltrán Paola, de la Mora-de la Mora Ignacio, Oria-Hernández Jesús, Millot Guy, Fahraeus Robin, Reyes-Vivas Horacio, Sampedro José G., Olivares-Illana Vanesa. Allosteric Interactions byp53mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Molecular and Cellular Biology. 2016;36(16):2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC
Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010;2(9):a004887. doi: 10.1101/cshperspect.a004887. PubMed DOI PMC
Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8(1):25–37. doi: 10.1038/nrclinonc.2010.174. PubMed DOI
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 2014;588(16):2571–2579. doi: 10.1016/j.febslet.2014.04.014. PubMed DOI
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16(7):393–405. doi: 10.1038/nrm4007. PubMed DOI
Pressman A, Blanco C, Chen IA. The RNA world as a model system to study the origin of life. Curr Biol. 2015;25(19):R953–R963. doi: 10.1016/j.cub.2015.06.016. PubMed DOI
Muchowska KB, Varma SJ, Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569(7754):104–107. doi: 10.1038/s41586-019-1151-1. PubMed DOI PMC
Gilbert W. Origin of life: the RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/SQB.1966.031.01.093. PubMed DOI
Crick FH. The origin of the genetic code. J Mol Biol. 1968;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. PubMed DOI
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459(7244):239–242. doi: 10.1038/nature08013. PubMed DOI
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem. 2015;7(4):301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC
Blanco C, Bayas M, Yan F, Chen IA. Analysis of evolutionarily independent protein-RNA complexes yields a criterion to evaluate the relevance of prebiotic scenarios. Curr Biol. 2018;28(4):526–537. doi: 10.1016/j.cub.2018.01.014. PubMed DOI
Wiegand TW, Janssen RC, Eaton BE. Selection of RNA amide synthases. Chem Biol. 1997;4(9):675–683. doi: 10.1016/S1074-5521(97)90223-4. PubMed DOI
Zhang B, Cech TR. Peptide bond formation by in vitro selected ribozymes. Nature. 1997;390(6655):96–100. doi: 10.1038/36375. PubMed DOI
Tamura K. Origin of amino acid homochirality: relationship with the RNA world and origin of tRNA aminoacylation. Bio Systems. 2008;92(1):91–98. doi: 10.1016/j.biosystems.2007.12.005. PubMed DOI
Penny D. Evolutionary biology: relativity for molecular clocks. Nature. 2005;436(7048):183–184. doi: 10.1038/436183a. PubMed DOI
Szathmary E, Smith JM. The major evolutionary transitions. Nature. 1995;374(6519):227–232. doi: 10.1038/374227a0. PubMed DOI
Butterfield GL, Lajoie MJ, Gustafson HH, Sellers DL, Nattermann U, Ellis D, Bale JB, Ke S, Lenz GH, Yehdego A, et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature. 2017;552(7685):415–420. doi: 10.1038/nature25157. PubMed DOI PMC
Saito H, Yamada A, Ohmori R, Kato Y, Yamanaka T, Yoshikawa K, Inoue T. 2007 International Symposium on Micro-NanoMechatronics and Human Science: 11–14 Nov. 2007. Towards constructing synthetic cells: RNA/RNP evolution and cell-free translational systems in giant liposomes; pp. 286–291.
Yarus M, Caporaso JG, Knight R. Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem. 2005;74:179–198. doi: 10.1146/annurev.biochem.74.082803.133119. PubMed DOI
Cojocaru R, Unrau PJ. Transitioning to DNA genomes in an RNA world. eLife. 2017;6:e32330. PubMed PMC
Cech TR. The RNA worlds in context. Cold Spring Harb Perspect Biol. 2012;4(7):a006742. doi: 10.1101/cshperspect.a006742. PubMed DOI PMC
Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5(1):237–247. doi: 10.1016/j.celrep.2013.08.049. PubMed DOI PMC
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus evolution. 2015;1(1):vev003. PubMed PMC
Wang Y, Zirbel CL, Leontis NB, Ding B. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog. 2018;14(2):e1006801. doi: 10.1371/journal.ppat.1006801. PubMed DOI PMC
van der Gulik PT, Speijer D. How amino acids and peptides shaped the RNA world. Life. 2015;5(1):230–246. doi: 10.3390/life5010230. PubMed DOI PMC
Kruger DM, Neubacher S, Grossmann TN. Protein-RNA interactions: structural characteristics and hotspot amino acids. Rna. 2018;24(11):1457–1465. doi: 10.1261/rna.066464.118. PubMed DOI PMC
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol Cell. 2018;70(5):854–867. doi: 10.1016/j.molcel.2018.05.001. PubMed DOI PMC
Hu W, Qin L, Li M, Pu X, Guo Y. A structural dissection of protein–RNA interactions based on different RNA base areas of interfaces. RSC Adv. 2018;8(19):10582–10592. doi: 10.1039/C8RA00598B. PubMed DOI PMC
Gu W, Li M, Xu Y, Wang T, Ko JH, Zhou T. The impact of RNA structure on coding sequence evolution in both bacteria and eukaryotes. BMC Evol Biol. 2014;14:87. doi: 10.1186/1471-2148-14-87. PubMed DOI PMC
Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M, Gross M, Backofen R, Diederichs S. A pan-cancer analysis of synonymous mutations. Nat Commun. 2019;10(1):2569. doi: 10.1038/s41467-019-10489-2. PubMed DOI PMC
Sanjuan R, Borderia AV. Interplay between RNA structure and protein evolution in HIV-1. Mol Biol Evol. 2011;28(4):1333–1338. doi: 10.1093/molbev/msq329. PubMed DOI
Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324(5924):255–258. doi: 10.1126/science.1170160. PubMed DOI PMC
Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol. 2005;15(3):342–348. doi: 10.1016/j.sbi.2005.05.003. PubMed DOI
Kaempfer R. RNA sensors: novel regulators of gene expression. EMBO Rep. 2003;4(11):1043–1047. doi: 10.1038/sj.embor.7400005. PubMed DOI PMC
Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Jr, Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–716. doi: 10.1038/nature08237. PubMed DOI PMC
Berkhout B. HIV-1 as RNA evolution machine. RNA Biol. 2011;8(2):225–229. doi: 10.4161/rna.8.2.14801. PubMed DOI
Nagata S, Imai J, Makino G, Tomita M, Kanai A. Evolutionary analysis of HIV-1 pol proteins reveals representative residues for viral subtype differentiation. Front Microbiol. 2017;8:2151. doi: 10.3389/fmicb.2017.02151. PubMed DOI PMC
Munk C, Jensen BE, Zielonka J, Haussinger D, Kamp C. Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses. 2012;4(11):3132–3161. doi: 10.3390/v4113132. PubMed DOI PMC
Jankowsky E, Harris ME. Specificity and nonspecificity in RNA-protein interactions. Nat Rev Mol Cell Biol. 2015;16(9):533–544. doi: 10.1038/nrm4032. PubMed DOI PMC
Yang S, Wang J, Ng RT. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution. BMC bioinformatics. 2018;19(1):96. doi: 10.1186/s12859-018-2091-8. PubMed DOI PMC
Lamech LT, Mallam AL, Lambowitz AM. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. PLoS Biol. 2014;12(12):e1002028. doi: 10.1371/journal.pbio.1002028. PubMed DOI PMC
Hall KB. RNA-protein interactions. Curr Opin Struct Biol. 2002;12(3):283–288. doi: 10.1016/S0959-440X(02)00323-8. PubMed DOI
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–845. doi: 10.1038/nrg3813. PubMed DOI PMC
Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–341. doi: 10.1038/nrm.2017.130. PubMed DOI
Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun. 2015;6:10127. doi: 10.1038/ncomms10127. PubMed DOI PMC
Coppin L, Leclerc J, Vincent A, Porchet N, Pigny P. Messenger RNA Life-Cycle in Cancer Cells: Emerging Role of Conventional and Non-Conventional RNA-Binding Proteins? Int J Mol Sci. 2018;19(3):650. PubMed PMC
Lucchesi C, Zhang J, Chen X. Modulation of the p53 family network by RNA-binding proteins. Transl Cancer Res. 2016;5(6):676–684. doi: 10.21037/tcr.2016.08.30. PubMed DOI PMC
Uversky Vladimir. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure–Function Continuum Concept. International Journal of Molecular Sciences. 2016;17(11):1874. doi: 10.3390/ijms17111874. PubMed DOI PMC
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fahraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res. 2019;47(7):3257–3271. doi: 10.1093/nar/gkz124. PubMed DOI PMC
Zhou Q, Kunder N, De la Paz JA, Lasley AE, Bhat VD, Morcos F, Campbell ZT. Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun. 2018;9(1):2511. doi: 10.1038/s41467-018-04729-0. PubMed DOI PMC
Zanzoni A, Spinelli L, Ribeiro DM, Tartaglia GG, Brun C. Post-transcriptional regulatory patterns revealed by protein-RNA interactions. Sci Rep. 2019;9(1):4302. doi: 10.1038/s41598-019-40939-2. PubMed DOI PMC
Geller R, Pechmann S, Acevedo A, Andino R, Frydman J. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun. 2018;9(1):1781. doi: 10.1038/s41467-018-04203-x. PubMed DOI PMC
Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998;396(6709):336–342. doi: 10.1038/24550. PubMed DOI
Lovci MT, Bengtson MH, Massirer KB. Post-translational modifications and RNA-binding proteins. Adv Exp Med Biol. 2016;907:297–317. doi: 10.1007/978-3-319-29073-7_12. PubMed DOI
Wallingford JB, Seufert DW, Virta VC, Vize PD. p53 activity is essential for normal development in Xenopus. Curr Biol. 1997;7(10):747–757. doi: 10.1016/S0960-9822(06)00333-2. PubMed DOI
Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–1670. PubMed
Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1(14):1001–1008. PubMed
Lopez I, Tournillon AS, Prado Martins R, Karakostis K, Malbert-Colas L, Nylander K, Fahraeus R. p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ. 2017;24(10):1717–1729. doi: 10.1038/cdd.2017.96. PubMed DOI PMC
Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol. 2010;10:8. doi: 10.1186/1471-2148-10-8. PubMed DOI PMC
Harms KL, Chen X. The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ. 2006;13(6):890–897. doi: 10.1038/sj.cdd.4401904. PubMed DOI
Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol. 2010;2(7):a001131. doi: 10.1101/cshperspect.a001131. PubMed DOI PMC
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2010;2(6):a001198. doi: 10.1101/cshperspect.a001198. PubMed DOI PMC
Muttray AF, O'Toole TF, Morrill W, Van Beneden RJ, Baldwin SA. An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol B, Biochem Mol Biol. 2010;156(4):298–308. doi: 10.1016/j.cbpb.2010.04.008. PubMed DOI PMC
Dos Santos HG, Nunez-Castilla J, Siltberg-Liberles J. Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS One. 2016;11(3):e0151961. doi: 10.1371/journal.pone.0151961. PubMed DOI PMC
Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. Correction: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife. 2016;5:e24307. PubMed PMC
Schmitz JF, Zimmer F, Bornberg-Bauer E. Mechanisms of transcription factor evolution in Metazoa. Nucleic Acids Res. 2016;44(13):6287–6297. doi: 10.1093/nar/gkw492. PubMed DOI PMC
del Sol A, Carbonell P. The modular organization of domain structures: insights into protein-protein binding. PLoS Comput Biol. 2007;3(12):e239. doi: 10.1371/journal.pcbi.0030239. PubMed DOI PMC
Wu YC, Rasmussen MD, Kellis M. Evolution at the subgene level: domain rearrangements in the Drosophila phylogeny. Mol Biol Evol. 2012;29(2):689–705. doi: 10.1093/molbev/msr222. PubMed DOI PMC
Dohn M, Zhang S, Chen X. p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene. 2001;20(25):3193–3205. doi: 10.1038/sj.onc.1204427. PubMed DOI
Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer. 2002;2(8):605–615. doi: 10.1038/nrc861. PubMed DOI
Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274(5289):948–953. doi: 10.1126/science.274.5289.948. PubMed DOI
Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420(1):25–27. doi: 10.1016/S0014-5793(97)01480-4. PubMed DOI
Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145(4):571–583. doi: 10.1016/j.cell.2011.03.035. PubMed DOI PMC
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. doi: 10.1038/cdd.2017.174. PubMed DOI PMC
Raj Nitin, Attardi Laura D. The Transactivation Domains of the p53 Protein. Cold Spring Harbor Perspectives in Medicine. 2016;7(1):a026047. doi: 10.1101/cshperspect.a026047. PubMed DOI PMC
Medina-Medina I, Garcia-Beltran P, de la Mora-de la Mora I, Oria-Hernandez J, Millot G, Fahraeus R, Reyes-Vivas H, Sampedro JG, Olivares-Illana V. Allosteric interactions by p53 mRNA govern HDM2 E3 ubiquitin ligase specificity under different conditions. Mol Cell Biol. 2016;36(16):2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC
Hernandez-Monge J, Rousset-Roman AB, Medina-Medina I, Olivares-Illana V. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB. Genes & cancer. 2016;7(9–10):278–287. PubMed PMC
Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. PubMed DOI
Gannon HS, Woda BA, Jones SN. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21(5):668–679. doi: 10.1016/j.ccr.2012.04.011. PubMed DOI PMC
Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3(12):995–1000. doi: 10.1038/nmeth947. PubMed DOI
Gullberg Mats, Göransson Charlotta, Fredriksson Simon. Duolink-“In-cell Co-IP” for visualization of protein interactions in situ. Nature Methods. 2011;8(11):i–ii. doi: 10.1038/nmeth.f.351. DOI
Koos B, Andersson L, Clausson CM, Grannas K, Klaesson A, Cane G, Soderberg O. Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol. 2014;377:111–126. PubMed
Tournillon A-S, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, Fåhraeus R. p53 binds the mdmx mRNA and controls its translation. Oncogene. 2016;36(5):723–730. doi: 10.1038/onc.2016.236. PubMed DOI
Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, Corcoran MM, Chapman RM, Thomas PW, Copplestone JA, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100(4):1177–1184. PubMed
Weibrecht I, Lundin E, Kiflemariam S, Mignardi M, Grundberg I, Larsson C, Koos B, Nilsson M, Soderberg O. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat Protoc. 2013;8(2):355–372. doi: 10.1038/nprot.2013.006. PubMed DOI
Marz M, Vanzo N, Stadler PF. Temperature-dependent structural variability of RNAs: spliced leader RNAs and their evolutionary history. J Bioinforma Comput Biol. 2010;8(1):1–17. doi: 10.1142/S0219720010004525. PubMed DOI
Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449–470. doi: 10.1146/annurev.mi.48.100194.002313. PubMed DOI
Close A. Development by degrees. Nurs Stand. 1999;13(41):59. doi: 10.7748/ns.13.41.59.s55. PubMed DOI
Bellas J, Beiras R, Vazquez E. A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies. Water Res. 2003;37(19):4613–4622. doi: 10.1016/S0043-1354(03)00396-8. PubMed DOI
Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol. 2012;10(4):255–265. doi: 10.1038/nrmicro2730. PubMed DOI
Meyer M, Plass M, Perez-Valle J, Eyras E, Vilardell J. Deciphering 3'ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell. 2011;43(6):1033–1039. doi: 10.1016/j.molcel.2011.07.030. PubMed DOI
Meyer E, Aglyamova GV, Matz MV. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol. 2011;20(17):3599–3616. PubMed
Vandivier L, Li F, Zheng Q, Willmann M, Chen Y, Gregory B. Arabidopsis mRNA secondary structure correlates with protein function and domains. Plant Signal Behav. 2013;8(6):e24301. doi: 10.4161/psb.24301. PubMed DOI PMC
DeHart CJ, Chahal JS, Flint SJ, Perlman DH. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol Cell Proteomics. 2014;13(1):1–17. doi: 10.1074/mcp.M113.030254. PubMed DOI PMC
Fan QD, Wu G, Liu ZR. Dynamics of posttranslational modifications of p53. Comput Math Methods Med. 2014;2014:245610. PubMed PMC
Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154–160. doi: 10.1038/cdd.2017.180. PubMed DOI PMC
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–299. doi: 10.1038/387296a0. PubMed DOI
Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387(6630):299–303. doi: 10.1038/387299a0. PubMed DOI
Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15(9):1067–1077. doi: 10.1101/gad.886901. PubMed DOI PMC
Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fahraeus R, Candeias MM. The p53 mRNA-Mdm2 interaction. Cell Cycle. 2009;8(1):31–34. doi: 10.4161/cc.8.1.7326. PubMed DOI
Grover R, Sharathchandra A, Ponnuswamy A, Khan D, Das S. Effect of mutations on the p53 IRES RNA structure: implications for de-regulation of the synthesis of p53 isoforms. RNA Biol. 2011;8(1):132–142. doi: 10.4161/rna.8.1.14260. PubMed DOI
Swiatkowska A, Zydowicz P, Gorska A, Suchacka J, Dutkiewicz M, Ciesiolka J. The role of structural elements of the 5′-terminal region of p53 mRNA in translation under stress conditions assayed by the antisense oligonucleotide approach. PLoS One. 2015;10(10):e0141676. doi: 10.1371/journal.pone.0141676. PubMed DOI PMC
Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994;14(11):7414–7420. doi: 10.1128/MCB.14.11.7414. PubMed DOI PMC
Daftuar L, Zhu Y, Jacq X, Prives C. Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 2013;8(7):e68667. doi: 10.1371/journal.pone.0068667. PubMed DOI PMC
Tong QH, Tao T, Xie LQ, Lu HJ. ELISA-PLA: a novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens Bioelectron. 2016;80:385–391. doi: 10.1016/j.bios.2016.02.006. PubMed DOI
Marcel Virginie, Nguyen Van Long Flora, Diaz Jean-Jacques. 40 Years of Research Put p53 in Translation. Cancers. 2018;10(5):152. doi: 10.3390/cancers10050152. PubMed DOI PMC
Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010;330(6003):517–521. doi: 10.1126/science.1192912. PubMed DOI
Stavridi ES, Halazonetis TD. p53 and stress in the ER. Genes Dev. 2004;18(3):241–244. doi: 10.1101/gad.1181704. PubMed DOI
Fahraeus R, Marin M, Olivares-Illana V. Whisper mutations: cryptic messages within the genetic code. Oncogene. 2016;35(29):3753–3759. doi: 10.1038/onc.2015.454. PubMed DOI
Lane DP, Verma CS. p53: updates on mechanisms, biology and therapy (I) J Mol Cell Biol. 2019;11(3):185–186. doi: 10.1093/jmcb/mjz017. PubMed DOI PMC
Fares MA, Travers SA. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics. 2006;173(1):9–23. doi: 10.1534/genetics.105.053249. PubMed DOI PMC
Brandman R, Brandman Y, Pande VS. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. PLoS One. 2012;7(1):e30022. doi: 10.1371/journal.pone.0030022. PubMed DOI PMC
Jegga AG, Inga A, Menendez D, Aronow BJ, Resnick MA. Functional evolution of the p53 regulatory network through its target response elements. Proc Natl Acad Sci U S A. 2008;105(3):944–949. doi: 10.1073/pnas.0704694105. PubMed DOI PMC
Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3(6):577–587. doi: 10.1016/S1535-6108(03)00134-X. PubMed DOI
Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 2015;29(14):1524–1534. doi: 10.1101/gad.261792.115. PubMed DOI PMC
Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 pathway: linking ribosomal biogenesis and tumor surveillance. Trends in cancer. 2016;2(4):191–204. doi: 10.1016/j.trecan.2016.03.002. PubMed DOI PMC
Sagar V, Caldarola S, Aria V, Monteleone V, Fuoco C, Gargioli C, Cannata S, Loreni F. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget. 2016;7(17):23837–23849. doi: 10.18632/oncotarget.8070. PubMed DOI PMC
Lindstrom MS, Deisenroth C, Zhang Y. Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle. 2007;6(4):434–437. doi: 10.4161/cc.6.4.3861. PubMed DOI
Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol. 2007;27(3):1056–1068. doi: 10.1128/MCB.01307-06. PubMed DOI PMC
Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98. doi: 10.1016/j.celrep.2013.05.045. PubMed DOI PMC
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta. 2014;1842(6):817–830. doi: 10.1016/j.bbadis.2013.08.014. PubMed DOI
Bottery MJ, Wood AJ, Brockhurst MA. Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nature ecology & evolution. 2017;1(9):1364–1369. doi: 10.1038/s41559-017-0242-3. PubMed DOI PMC
Huang W, Traulsen A, Werner B, Hiltunen T, Becks L. Dynamical trade-offs arise from antagonistic coevolution and decrease intraspecific diversity. Nat Commun. 2017;8(1):2059. doi: 10.1038/s41467-017-01957-8. PubMed DOI PMC
Bottery Michael J., Wood A. Jamie, Brockhurst Michael A. Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. The ISME Journal. 2018;13(2):559–562. doi: 10.1038/s41396-018-0276-9. PubMed DOI PMC
Casas-Selves M, Degregori J. How cancer shapes evolution, and how evolution shapes cancer. Evolution. 2011;4(4):624–634. PubMed PMC
Kamps Rick, Brandão Rita, Bosch Bianca, Paulussen Aimee, Xanthoulea Sofia, Blok Marinus, Romano Andrea. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences. 2017;18(2):308. doi: 10.3390/ijms18020308. PubMed DOI PMC
Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8(5):8921–8946. doi: 10.18632/oncotarget.13475. PubMed DOI PMC
Franco M, Jeggari A, Peuget S, Bottger F, Selivanova G, Alexeyenko A. Prediction of response to anti-cancer drugs becomes robust via network integration of molecular data. Sci Rep. 2019;9(1):2379. doi: 10.1038/s41598-019-39019-2. PubMed DOI PMC
Re-appraising the evidence for the source, regulation and function of p53-family isoforms
The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer
p53 mRNA Metabolism Links with the DNA Damage Response
Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms
Alternative Mechanisms of p53 Action During the Unfolded Protein Response