Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures

. 2019 Sep 13 ; 19 (1) : 915. [epub] 20190913

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31519161
Odkazy

PubMed 31519161
PubMed Central PMC6743176
DOI 10.1186/s12885-019-6118-y
PII: 10.1186/s12885-019-6118-y
Knihovny.cz E-zdroje

Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.

Zobrazit více v PubMed

Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C. Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle. 2010;9(3):540–547. doi: 10.4161/cc.9.3.10516. PubMed DOI

Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL, Waddell PJ, Bhaskara S, et al. Potential mechanisms for Cancer resistance in elephants and comparative cellular response to DNA damage in humans. Jama. 2015;314(17):1850–1860. doi: 10.1001/jama.2015.13134. PubMed DOI PMC

Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay BH, Brenner S, Verma CS, et al. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev. 2016;30(3):281–292. doi: 10.1101/gad.274118.115. PubMed DOI PMC

Karakostis K, Ponnuswamy A, Fusee LT, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fahraeus R. p53 mRNA and p53 protein structures have evolved independently to interact with MDM2. Mol Biol Evol. 2016;33(5):1280–1292. doi: 10.1093/molbev/msw012. PubMed DOI

Aberg E, Saccoccia F, Grabherr M, Ore WYJ, Jemth P, Hultqvist G. Evolution of the p53-MDM2 pathway. BMC Evol Biol. 2017;17(1):177. doi: 10.1186/s12862-017-1023-y. PubMed DOI PMC

Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. PubMed DOI

Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell. 2006;23(2):251–263. doi: 10.1016/j.molcel.2006.05.029. PubMed DOI

Maclaine NJ, Hupp TR. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging. 2009;1(5):490–502. doi: 10.18632/aging.100047. PubMed DOI PMC

MacLaine NJ, Hupp TR. How phosphorylation controls p53. Cell Cycle. 2011;10(6):916–921. doi: 10.4161/cc.10.6.15076. PubMed DOI

Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fahraeus R. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21(1):25–35. doi: 10.1016/j.ccr.2011.11.016. PubMed DOI

Ponnuswamy A, Hupp T, Fahraeus R. Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer. 2012;3(3–4):291–297. doi: 10.1177/1947601912454140. PubMed DOI PMC

Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell. 2014;54(3):500–511. doi: 10.1016/j.molcel.2014.02.035. PubMed DOI

Aymard F, Legube G. A TAD closer to ATM. Mol Cell Oncol. 2016;3(3):e1134411. doi: 10.1080/23723556.2015.1134411. PubMed DOI PMC

Karakostis Konstantinos, Vadivel Gnanasundram Sivakumar, López Ignacio, Thermou Aikaterini, Wang Lixiao, Nylander Karin, Olivares-Illana Vanesa, Fåhraeus Robin. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. Journal of Molecular Cell Biology. 2018;11(3):187–199. doi: 10.1093/jmcb/mjy049. PubMed DOI PMC

Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10(9):1098–1105. doi: 10.1038/ncb1770. PubMed DOI

Medina-Medina Ixaura, García-Beltrán Paola, de la Mora-de la Mora Ignacio, Oria-Hernández Jesús, Millot Guy, Fahraeus Robin, Reyes-Vivas Horacio, Sampedro José G., Olivares-Illana Vanesa. Allosteric Interactions byp53mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Molecular and Cellular Biology. 2016;36(16):2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC

Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010;2(9):a004887. doi: 10.1101/cshperspect.a004887. PubMed DOI PMC

Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8(1):25–37. doi: 10.1038/nrclinonc.2010.174. PubMed DOI

Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 2014;588(16):2571–2579. doi: 10.1016/j.febslet.2014.04.014. PubMed DOI

Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16(7):393–405. doi: 10.1038/nrm4007. PubMed DOI

Pressman A, Blanco C, Chen IA. The RNA world as a model system to study the origin of life. Curr Biol. 2015;25(19):R953–R963. doi: 10.1016/j.cub.2015.06.016. PubMed DOI

Muchowska KB, Varma SJ, Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569(7754):104–107. doi: 10.1038/s41586-019-1151-1. PubMed DOI PMC

Gilbert W. Origin of life: the RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/SQB.1966.031.01.093. PubMed DOI

Crick FH. The origin of the genetic code. J Mol Biol. 1968;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. PubMed DOI

Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459(7244):239–242. doi: 10.1038/nature08013. PubMed DOI

Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem. 2015;7(4):301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC

Blanco C, Bayas M, Yan F, Chen IA. Analysis of evolutionarily independent protein-RNA complexes yields a criterion to evaluate the relevance of prebiotic scenarios. Curr Biol. 2018;28(4):526–537. doi: 10.1016/j.cub.2018.01.014. PubMed DOI

Wiegand TW, Janssen RC, Eaton BE. Selection of RNA amide synthases. Chem Biol. 1997;4(9):675–683. doi: 10.1016/S1074-5521(97)90223-4. PubMed DOI

Zhang B, Cech TR. Peptide bond formation by in vitro selected ribozymes. Nature. 1997;390(6655):96–100. doi: 10.1038/36375. PubMed DOI

Tamura K. Origin of amino acid homochirality: relationship with the RNA world and origin of tRNA aminoacylation. Bio Systems. 2008;92(1):91–98. doi: 10.1016/j.biosystems.2007.12.005. PubMed DOI

Penny D. Evolutionary biology: relativity for molecular clocks. Nature. 2005;436(7048):183–184. doi: 10.1038/436183a. PubMed DOI

Szathmary E, Smith JM. The major evolutionary transitions. Nature. 1995;374(6519):227–232. doi: 10.1038/374227a0. PubMed DOI

Butterfield GL, Lajoie MJ, Gustafson HH, Sellers DL, Nattermann U, Ellis D, Bale JB, Ke S, Lenz GH, Yehdego A, et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature. 2017;552(7685):415–420. doi: 10.1038/nature25157. PubMed DOI PMC

Saito H, Yamada A, Ohmori R, Kato Y, Yamanaka T, Yoshikawa K, Inoue T. 2007 International Symposium on Micro-NanoMechatronics and Human Science: 11–14 Nov. 2007. Towards constructing synthetic cells: RNA/RNP evolution and cell-free translational systems in giant liposomes; pp. 286–291.

Yarus M, Caporaso JG, Knight R. Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem. 2005;74:179–198. doi: 10.1146/annurev.biochem.74.082803.133119. PubMed DOI

Cojocaru R, Unrau PJ. Transitioning to DNA genomes in an RNA world. eLife. 2017;6:e32330. PubMed PMC

Cech TR. The RNA worlds in context. Cold Spring Harb Perspect Biol. 2012;4(7):a006742. doi: 10.1101/cshperspect.a006742. PubMed DOI PMC

Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5(1):237–247. doi: 10.1016/j.celrep.2013.08.049. PubMed DOI PMC

Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus evolution. 2015;1(1):vev003. PubMed PMC

Wang Y, Zirbel CL, Leontis NB, Ding B. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog. 2018;14(2):e1006801. doi: 10.1371/journal.ppat.1006801. PubMed DOI PMC

van der Gulik PT, Speijer D. How amino acids and peptides shaped the RNA world. Life. 2015;5(1):230–246. doi: 10.3390/life5010230. PubMed DOI PMC

Kruger DM, Neubacher S, Grossmann TN. Protein-RNA interactions: structural characteristics and hotspot amino acids. Rna. 2018;24(11):1457–1465. doi: 10.1261/rna.066464.118. PubMed DOI PMC

Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol Cell. 2018;70(5):854–867. doi: 10.1016/j.molcel.2018.05.001. PubMed DOI PMC

Hu W, Qin L, Li M, Pu X, Guo Y. A structural dissection of protein–RNA interactions based on different RNA base areas of interfaces. RSC Adv. 2018;8(19):10582–10592. doi: 10.1039/C8RA00598B. PubMed DOI PMC

Gu W, Li M, Xu Y, Wang T, Ko JH, Zhou T. The impact of RNA structure on coding sequence evolution in both bacteria and eukaryotes. BMC Evol Biol. 2014;14:87. doi: 10.1186/1471-2148-14-87. PubMed DOI PMC

Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M, Gross M, Backofen R, Diederichs S. A pan-cancer analysis of synonymous mutations. Nat Commun. 2019;10(1):2569. doi: 10.1038/s41467-019-10489-2. PubMed DOI PMC

Sanjuan R, Borderia AV. Interplay between RNA structure and protein evolution in HIV-1. Mol Biol Evol. 2011;28(4):1333–1338. doi: 10.1093/molbev/msq329. PubMed DOI

Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324(5924):255–258. doi: 10.1126/science.1170160. PubMed DOI PMC

Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol. 2005;15(3):342–348. doi: 10.1016/j.sbi.2005.05.003. PubMed DOI

Kaempfer R. RNA sensors: novel regulators of gene expression. EMBO Rep. 2003;4(11):1043–1047. doi: 10.1038/sj.embor.7400005. PubMed DOI PMC

Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Jr, Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–716. doi: 10.1038/nature08237. PubMed DOI PMC

Berkhout B. HIV-1 as RNA evolution machine. RNA Biol. 2011;8(2):225–229. doi: 10.4161/rna.8.2.14801. PubMed DOI

Nagata S, Imai J, Makino G, Tomita M, Kanai A. Evolutionary analysis of HIV-1 pol proteins reveals representative residues for viral subtype differentiation. Front Microbiol. 2017;8:2151. doi: 10.3389/fmicb.2017.02151. PubMed DOI PMC

Munk C, Jensen BE, Zielonka J, Haussinger D, Kamp C. Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses. 2012;4(11):3132–3161. doi: 10.3390/v4113132. PubMed DOI PMC

Jankowsky E, Harris ME. Specificity and nonspecificity in RNA-protein interactions. Nat Rev Mol Cell Biol. 2015;16(9):533–544. doi: 10.1038/nrm4032. PubMed DOI PMC

Yang S, Wang J, Ng RT. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution. BMC bioinformatics. 2018;19(1):96. doi: 10.1186/s12859-018-2091-8. PubMed DOI PMC

Lamech LT, Mallam AL, Lambowitz AM. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. PLoS Biol. 2014;12(12):e1002028. doi: 10.1371/journal.pbio.1002028. PubMed DOI PMC

Hall KB. RNA-protein interactions. Curr Opin Struct Biol. 2002;12(3):283–288. doi: 10.1016/S0959-440X(02)00323-8. PubMed DOI

Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–845. doi: 10.1038/nrg3813. PubMed DOI PMC

Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–341. doi: 10.1038/nrm.2017.130. PubMed DOI

Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun. 2015;6:10127. doi: 10.1038/ncomms10127. PubMed DOI PMC

Coppin L, Leclerc J, Vincent A, Porchet N, Pigny P. Messenger RNA Life-Cycle in Cancer Cells: Emerging Role of Conventional and Non-Conventional RNA-Binding Proteins? Int J Mol Sci. 2018;19(3):650. PubMed PMC

Lucchesi C, Zhang J, Chen X. Modulation of the p53 family network by RNA-binding proteins. Transl Cancer Res. 2016;5(6):676–684. doi: 10.21037/tcr.2016.08.30. PubMed DOI PMC

Uversky Vladimir. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure–Function Continuum Concept. International Journal of Molecular Sciences. 2016;17(11):1874. doi: 10.3390/ijms17111874. PubMed DOI PMC

Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fahraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res. 2019;47(7):3257–3271. doi: 10.1093/nar/gkz124. PubMed DOI PMC

Zhou Q, Kunder N, De la Paz JA, Lasley AE, Bhat VD, Morcos F, Campbell ZT. Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun. 2018;9(1):2511. doi: 10.1038/s41467-018-04729-0. PubMed DOI PMC

Zanzoni A, Spinelli L, Ribeiro DM, Tartaglia GG, Brun C. Post-transcriptional regulatory patterns revealed by protein-RNA interactions. Sci Rep. 2019;9(1):4302. doi: 10.1038/s41598-019-40939-2. PubMed DOI PMC

Geller R, Pechmann S, Acevedo A, Andino R, Frydman J. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun. 2018;9(1):1781. doi: 10.1038/s41467-018-04203-x. PubMed DOI PMC

Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998;396(6709):336–342. doi: 10.1038/24550. PubMed DOI

Lovci MT, Bengtson MH, Massirer KB. Post-translational modifications and RNA-binding proteins. Adv Exp Med Biol. 2016;907:297–317. doi: 10.1007/978-3-319-29073-7_12. PubMed DOI

Wallingford JB, Seufert DW, Virta VC, Vize PD. p53 activity is essential for normal development in Xenopus. Curr Biol. 1997;7(10):747–757. doi: 10.1016/S0960-9822(06)00333-2. PubMed DOI

Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–1670. PubMed

Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1(14):1001–1008. PubMed

Lopez I, Tournillon AS, Prado Martins R, Karakostis K, Malbert-Colas L, Nylander K, Fahraeus R. p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ. 2017;24(10):1717–1729. doi: 10.1038/cdd.2017.96. PubMed DOI PMC

Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol. 2010;10:8. doi: 10.1186/1471-2148-10-8. PubMed DOI PMC

Harms KL, Chen X. The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ. 2006;13(6):890–897. doi: 10.1038/sj.cdd.4401904. PubMed DOI

Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol. 2010;2(7):a001131. doi: 10.1101/cshperspect.a001131. PubMed DOI PMC

Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2010;2(6):a001198. doi: 10.1101/cshperspect.a001198. PubMed DOI PMC

Muttray AF, O'Toole TF, Morrill W, Van Beneden RJ, Baldwin SA. An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol B, Biochem Mol Biol. 2010;156(4):298–308. doi: 10.1016/j.cbpb.2010.04.008. PubMed DOI PMC

Dos Santos HG, Nunez-Castilla J, Siltberg-Liberles J. Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS One. 2016;11(3):e0151961. doi: 10.1371/journal.pone.0151961. PubMed DOI PMC

Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. Correction: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife. 2016;5:e24307. PubMed PMC

Schmitz JF, Zimmer F, Bornberg-Bauer E. Mechanisms of transcription factor evolution in Metazoa. Nucleic Acids Res. 2016;44(13):6287–6297. doi: 10.1093/nar/gkw492. PubMed DOI PMC

del Sol A, Carbonell P. The modular organization of domain structures: insights into protein-protein binding. PLoS Comput Biol. 2007;3(12):e239. doi: 10.1371/journal.pcbi.0030239. PubMed DOI PMC

Wu YC, Rasmussen MD, Kellis M. Evolution at the subgene level: domain rearrangements in the Drosophila phylogeny. Mol Biol Evol. 2012;29(2):689–705. doi: 10.1093/molbev/msr222. PubMed DOI PMC

Dohn M, Zhang S, Chen X. p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene. 2001;20(25):3193–3205. doi: 10.1038/sj.onc.1204427. PubMed DOI

Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer. 2002;2(8):605–615. doi: 10.1038/nrc861. PubMed DOI

Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274(5289):948–953. doi: 10.1126/science.274.5289.948. PubMed DOI

Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420(1):25–27. doi: 10.1016/S0014-5793(97)01480-4. PubMed DOI

Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145(4):571–583. doi: 10.1016/j.cell.2011.03.035. PubMed DOI PMC

Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. doi: 10.1038/cdd.2017.174. PubMed DOI PMC

Raj Nitin, Attardi Laura D. The Transactivation Domains of the p53 Protein. Cold Spring Harbor Perspectives in Medicine. 2016;7(1):a026047. doi: 10.1101/cshperspect.a026047. PubMed DOI PMC

Medina-Medina I, Garcia-Beltran P, de la Mora-de la Mora I, Oria-Hernandez J, Millot G, Fahraeus R, Reyes-Vivas H, Sampedro JG, Olivares-Illana V. Allosteric interactions by p53 mRNA govern HDM2 E3 ubiquitin ligase specificity under different conditions. Mol Cell Biol. 2016;36(16):2195–2205. doi: 10.1128/MCB.00113-16. PubMed DOI PMC

Hernandez-Monge J, Rousset-Roman AB, Medina-Medina I, Olivares-Illana V. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB. Genes & cancer. 2016;7(9–10):278–287. PubMed PMC

Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. PubMed DOI

Gannon HS, Woda BA, Jones SN. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21(5):668–679. doi: 10.1016/j.ccr.2012.04.011. PubMed DOI PMC

Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3(12):995–1000. doi: 10.1038/nmeth947. PubMed DOI

Gullberg Mats, Göransson Charlotta, Fredriksson Simon. Duolink-“In-cell Co-IP” for visualization of protein interactions in situ. Nature Methods. 2011;8(11):i–ii. doi: 10.1038/nmeth.f.351. DOI

Koos B, Andersson L, Clausson CM, Grannas K, Klaesson A, Cane G, Soderberg O. Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol. 2014;377:111–126. PubMed

Tournillon A-S, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, Fåhraeus R. p53 binds the mdmx mRNA and controls its translation. Oncogene. 2016;36(5):723–730. doi: 10.1038/onc.2016.236. PubMed DOI

Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, Corcoran MM, Chapman RM, Thomas PW, Copplestone JA, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100(4):1177–1184. PubMed

Weibrecht I, Lundin E, Kiflemariam S, Mignardi M, Grundberg I, Larsson C, Koos B, Nilsson M, Soderberg O. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat Protoc. 2013;8(2):355–372. doi: 10.1038/nprot.2013.006. PubMed DOI

Marz M, Vanzo N, Stadler PF. Temperature-dependent structural variability of RNAs: spliced leader RNAs and their evolutionary history. J Bioinforma Comput Biol. 2010;8(1):1–17. doi: 10.1142/S0219720010004525. PubMed DOI

Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449–470. doi: 10.1146/annurev.mi.48.100194.002313. PubMed DOI

Close A. Development by degrees. Nurs Stand. 1999;13(41):59. doi: 10.7748/ns.13.41.59.s55. PubMed DOI

Bellas J, Beiras R, Vazquez E. A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies. Water Res. 2003;37(19):4613–4622. doi: 10.1016/S0043-1354(03)00396-8. PubMed DOI

Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol. 2012;10(4):255–265. doi: 10.1038/nrmicro2730. PubMed DOI

Meyer M, Plass M, Perez-Valle J, Eyras E, Vilardell J. Deciphering 3'ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell. 2011;43(6):1033–1039. doi: 10.1016/j.molcel.2011.07.030. PubMed DOI

Meyer E, Aglyamova GV, Matz MV. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol. 2011;20(17):3599–3616. PubMed

Vandivier L, Li F, Zheng Q, Willmann M, Chen Y, Gregory B. Arabidopsis mRNA secondary structure correlates with protein function and domains. Plant Signal Behav. 2013;8(6):e24301. doi: 10.4161/psb.24301. PubMed DOI PMC

DeHart CJ, Chahal JS, Flint SJ, Perlman DH. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol Cell Proteomics. 2014;13(1):1–17. doi: 10.1074/mcp.M113.030254. PubMed DOI PMC

Fan QD, Wu G, Liu ZR. Dynamics of posttranslational modifications of p53. Comput Math Methods Med. 2014;2014:245610. PubMed PMC

Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154–160. doi: 10.1038/cdd.2017.180. PubMed DOI PMC

Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–299. doi: 10.1038/387296a0. PubMed DOI

Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387(6630):299–303. doi: 10.1038/387299a0. PubMed DOI

Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15(9):1067–1077. doi: 10.1101/gad.886901. PubMed DOI PMC

Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fahraeus R, Candeias MM. The p53 mRNA-Mdm2 interaction. Cell Cycle. 2009;8(1):31–34. doi: 10.4161/cc.8.1.7326. PubMed DOI

Grover R, Sharathchandra A, Ponnuswamy A, Khan D, Das S. Effect of mutations on the p53 IRES RNA structure: implications for de-regulation of the synthesis of p53 isoforms. RNA Biol. 2011;8(1):132–142. doi: 10.4161/rna.8.1.14260. PubMed DOI

Swiatkowska A, Zydowicz P, Gorska A, Suchacka J, Dutkiewicz M, Ciesiolka J. The role of structural elements of the 5′-terminal region of p53 mRNA in translation under stress conditions assayed by the antisense oligonucleotide approach. PLoS One. 2015;10(10):e0141676. doi: 10.1371/journal.pone.0141676. PubMed DOI PMC

Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994;14(11):7414–7420. doi: 10.1128/MCB.14.11.7414. PubMed DOI PMC

Daftuar L, Zhu Y, Jacq X, Prives C. Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 2013;8(7):e68667. doi: 10.1371/journal.pone.0068667. PubMed DOI PMC

Tong QH, Tao T, Xie LQ, Lu HJ. ELISA-PLA: a novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens Bioelectron. 2016;80:385–391. doi: 10.1016/j.bios.2016.02.006. PubMed DOI

Marcel Virginie, Nguyen Van Long Flora, Diaz Jean-Jacques. 40 Years of Research Put p53 in Translation. Cancers. 2018;10(5):152. doi: 10.3390/cancers10050152. PubMed DOI PMC

Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010;330(6003):517–521. doi: 10.1126/science.1192912. PubMed DOI

Stavridi ES, Halazonetis TD. p53 and stress in the ER. Genes Dev. 2004;18(3):241–244. doi: 10.1101/gad.1181704. PubMed DOI

Fahraeus R, Marin M, Olivares-Illana V. Whisper mutations: cryptic messages within the genetic code. Oncogene. 2016;35(29):3753–3759. doi: 10.1038/onc.2015.454. PubMed DOI

Lane DP, Verma CS. p53: updates on mechanisms, biology and therapy (I) J Mol Cell Biol. 2019;11(3):185–186. doi: 10.1093/jmcb/mjz017. PubMed DOI PMC

Fares MA, Travers SA. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics. 2006;173(1):9–23. doi: 10.1534/genetics.105.053249. PubMed DOI PMC

Brandman R, Brandman Y, Pande VS. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. PLoS One. 2012;7(1):e30022. doi: 10.1371/journal.pone.0030022. PubMed DOI PMC

Jegga AG, Inga A, Menendez D, Aronow BJ, Resnick MA. Functional evolution of the p53 regulatory network through its target response elements. Proc Natl Acad Sci U S A. 2008;105(3):944–949. doi: 10.1073/pnas.0704694105. PubMed DOI PMC

Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3(6):577–587. doi: 10.1016/S1535-6108(03)00134-X. PubMed DOI

Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 2015;29(14):1524–1534. doi: 10.1101/gad.261792.115. PubMed DOI PMC

Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 pathway: linking ribosomal biogenesis and tumor surveillance. Trends in cancer. 2016;2(4):191–204. doi: 10.1016/j.trecan.2016.03.002. PubMed DOI PMC

Sagar V, Caldarola S, Aria V, Monteleone V, Fuoco C, Gargioli C, Cannata S, Loreni F. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget. 2016;7(17):23837–23849. doi: 10.18632/oncotarget.8070. PubMed DOI PMC

Lindstrom MS, Deisenroth C, Zhang Y. Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle. 2007;6(4):434–437. doi: 10.4161/cc.6.4.3861. PubMed DOI

Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol. 2007;27(3):1056–1068. doi: 10.1128/MCB.01307-06. PubMed DOI PMC

Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98. doi: 10.1016/j.celrep.2013.05.045. PubMed DOI PMC

Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta. 2014;1842(6):817–830. doi: 10.1016/j.bbadis.2013.08.014. PubMed DOI

Bottery MJ, Wood AJ, Brockhurst MA. Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nature ecology & evolution. 2017;1(9):1364–1369. doi: 10.1038/s41559-017-0242-3. PubMed DOI PMC

Huang W, Traulsen A, Werner B, Hiltunen T, Becks L. Dynamical trade-offs arise from antagonistic coevolution and decrease intraspecific diversity. Nat Commun. 2017;8(1):2059. doi: 10.1038/s41467-017-01957-8. PubMed DOI PMC

Bottery Michael J., Wood A. Jamie, Brockhurst Michael A. Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. The ISME Journal. 2018;13(2):559–562. doi: 10.1038/s41396-018-0276-9. PubMed DOI PMC

Casas-Selves M, Degregori J. How cancer shapes evolution, and how evolution shapes cancer. Evolution. 2011;4(4):624–634. PubMed PMC

Kamps Rick, Brandão Rita, Bosch Bianca, Paulussen Aimee, Xanthoulea Sofia, Blok Marinus, Romano Andrea. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences. 2017;18(2):308. doi: 10.3390/ijms18020308. PubMed DOI PMC

Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8(5):8921–8946. doi: 10.18632/oncotarget.13475. PubMed DOI PMC

Franco M, Jeggari A, Peuget S, Bottger F, Selivanova G, Alexeyenko A. Prediction of response to anti-cancer drugs becomes robust via network integration of molecular data. Sci Rep. 2019;9(1):2379. doi: 10.1038/s41598-019-39019-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace