p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28622297
PubMed Central
PMC5596431
DOI
10.1038/cdd.2017.96
PII: cdd201796
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- apoptóza fyziologie MeSH
- chaperon endoplazmatického retikula BiP MeSH
- endoplazmatické retikulum metabolismus MeSH
- endoribonukleasy metabolismus MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny regulující apoptózu metabolismus MeSH
- proteiny tepelného šoku metabolismus MeSH
- signální dráha UPR fyziologie MeSH
- stres endoplazmatického retikula fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- Bik protein, mouse MeSH Prohlížeč
- chaperon endoplazmatického retikula BiP MeSH
- endoribonukleasy MeSH
- mitochondriální proteiny MeSH
- nádorový supresorový protein p53 MeSH
- protein-serin-threoninkinasy MeSH
- proteiny regulující apoptózu MeSH
- proteiny tepelného šoku MeSH
- TP53 protein, human MeSH Prohlížeč
Physiological and pathological conditions that affect the folding capacity of the endoplasmic reticulum (ER) provoke ER stress and trigger the unfolded protein response (UPR). The UPR aims to either restore the balance between newly synthesized and misfolded proteins or if the damage is severe, to trigger cell death. However, the molecular events underlying the switch between repair and cell death are not well understood. The ER-resident chaperone BiP governs the UPR by sensing misfolded proteins and thereby releasing and activating the three mediators of the UPR: PERK, IRE1 and ATF6. PERK promotes G2 cell cycle arrest and cellular repair by inducing the alternative translated p53 isoform p53ΔN40 (p53/47), which activates 14-3-3σ via suppression of p21CDKN1A. Here we show that prolonged ER stress promotes apoptosis via a p53-dependent inhibition of BiP expression. This leads to the release of the pro-apoptotic BH3-only BIK from BiP and activation of apoptosis. Suppression of bip mRNA translation is mediated via the specific binding of p53 to the first 346-nt of the bip mRNA and via a p53 trans-suppression domain located within the first seven N-terminal amino acids of p53ΔN40. This work shows how p53 targets BiP to promote apoptosis during severe ER stress and further illustrates how regulation of mRNA translation has a key role in p53-mediated regulation of gene expression during the UPR.
Department of Medical Biosciences; Umeå University Umeå Sweden
RECAMO Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427: 1589–1608. PubMed PMC
Morito D, Nagata K. Pathogenic hijacking of ER-associated degradation: is ERAD flexible? Mol Cell 2015; 59: 335–344. PubMed
Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12: 703–719. PubMed
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96. PubMed
Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16: 452–466. PubMed PMC
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881–891. PubMed
Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313: 104–107. PubMed
Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11: 113–127. PubMed PMC
Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S et al. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 2010; 38: 78–88. PubMed
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6: 1099–1108. PubMed
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 2004; 101: 11269–11274. PubMed PMC
Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10: 3787–3799. PubMed PMC
Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 2014; 14: 263–276. PubMed PMC
Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273: 33741–33749. PubMed
Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381–389. PubMed
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochim Biophys Acta 2013; 1833: 3507–3517. PubMed
Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12: 982–995. PubMed PMC
Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2: 326–332. PubMed
Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3: 99–111. PubMed
Gulow K, Bienert D, Haas IG. BiP is feed-back regulated by control of protein translation efficiency. J Cell Sci 2002; 115: 2443–2452. PubMed
Macejak DG, Sarnow P. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature 1991; 353: 90–94. PubMed
Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K et al. Translation from the 5' untranslated region shapes the integrated stress response. Science 2016; 351: aad3867. PubMed PMC
Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006; 26: 5688–5697. PubMed PMC
Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514: 122–128. PubMed PMC
Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 2007; 67: 3734–3740. PubMed
Zhou H, Zhang Y, Fu Y, Chan L, Lee AS. Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK). J Biol Chem 2011; 286: 25687–25696. PubMed PMC
Chinnadurai G, Vijayalingam S, Rashmi R. BIK the founding member of the BH3-only family proteins: mechanisms of cell death and role in cancer and pathogenic processes. Oncogene 2008; 27: S20–S29. PubMed PMC
Wilfling F, Weber A, Potthoff S, Vogtle FN, Meisinger C, Paschen SA et al. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax. Cell Death Differ 2012; 19: 1328–1336. PubMed PMC
Germain M, Mathai JP, Shore GC. BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J Biol Chem 2002; 277: 18053–18060. PubMed
Mathai JP, Germain M, Marcellus RC, Shore GC. Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 2002; 21: 2534–2544. PubMed
Mathai JP, Germain M, Shore GC. BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 2005; 280: 23829–23836. PubMed
Wang X, Olberding KE, White C, Li C. Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ 2011; 18: 38–47. PubMed PMC
Gillissen B, Essmann F, Hemmati PG, Richter A, Richter A, Oztop I et al. Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. J Cell Biol 2007; 179: 701–715. PubMed PMC
Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994–1002. PubMed
el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169–1174. PubMed
Kracikova M, Akiri G, George A, Sachidanandam R, Aaronson SA. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ 2013; 20: 576–588. PubMed PMC
Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299. PubMed
Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B et al. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 2006; 25: 6936–6947. PubMed
Ray PS, Grover R, Das S. Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 2006; 7: 404–410. PubMed PMC
Mlynarczyk C, Fahraeus R. Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat Commun 2014; 5: 5067. PubMed
Galy B, Creancier L, Prado-Lourenco L, Prats AC, Prats H. p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001; 20: 4613–4620. PubMed
Galy B, Creancier L, Zanibellato C, Prats AC, Prats H. Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 2001; 20: 1669–1677. PubMed
Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME. p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000; 20: 8420–8431. PubMed PMC
Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 1995; 14: 4442–4449. PubMed PMC
Tournillon AS, Lopez I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V et al. p53 binds the mdmx mRNA and controls its translation. Oncogene 2017; 36: 723–730. PubMed
Rogers TB, Inesi G, Wade R, Lederer WJ. Use of thapsigargin to study Ca2+ homeostasis in cardiac cells. Biosci Rep 1995; 15: 341–349. PubMed
Chaitanya GV, Steven AJ, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010; 8: 31. PubMed PMC
Tkacz JS, Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun 1975; 65: 248–257. PubMed
Mujtaba T, Dou QP. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med 2011; 12: 471–480. PubMed PMC
Riley KJ, Cassiday LA, Kumar A, Maher LJ 3rd. Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA 2006; 12: 620–630. PubMed PMC
Riley KJ, Maher LJ 3rd. p53 RNA interactions: new clues in an old mystery. RNA 2007; 13: 1825–1833. PubMed PMC
Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A et al. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA 2005; 102: 15412–15417. PubMed PMC
Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T, Yamaguchi H et al. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 2006; 22: 731–740. PubMed
Ghosh A, Stewart D, Matlashewski G. Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 2004; 24: 7987–7997. PubMed PMC
Phang BH, Othman R, Bougeard G, Chia RH, Frebourg T, Tang CL et al. Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc Natl Acad Sci USA 2015; 112: E6349–E6358. PubMed PMC
Yin Y, Stephen CW, Luciani MG, Fahraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4: 462–467. PubMed
Lopez I, Tournillon AS, Nylander K, Fahraeus R. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress. Cell Cycle 2015; 14: 3373–3378. PubMed PMC
DNA and RNA Binding Proteins: From Motifs to Roles in Cancer
p53 mRNA Metabolism Links with the DNA Damage Response
Alternative Mechanisms of p53 Action During the Unfolded Protein Response
Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures
The p53 mRNA: an integral part of the cellular stress response
A single synonymous mutation determines the phosphorylation and stability of the nascent protein