Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30624716
PubMed Central
PMC6451098
DOI
10.1093/nar/gky1296
PII: 5280939
Knihovny.cz E-zdroje
- MeSH
- antigeny genetika imunologie MeSH
- buněčné jádro genetika imunologie MeSH
- G-kvadruplexy MeSH
- histokompatibilita - antigeny třídy I genetika imunologie MeSH
- imunitní únik genetika imunologie MeSH
- lidé MeSH
- messenger RNA genetika imunologie MeSH
- nonsense mediated mRNA decay genetika imunologie MeSH
- peptidy genetika imunologie MeSH
- proteosyntéza genetika imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- histokompatibilita - antigeny třídy I MeSH
- messenger RNA MeSH
- peptidy MeSH
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
Department of Medical Biosciences Umeå University Umeå Sweden
ICCVS University of Gdańsk Science ul Wita Stwosza 63 80 308 Gdańsk Poland
Institut Gustave Roussy Université Paris Sud UMR 1015 Villejuif France
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 656 53 Brno Czech Republic
Université de Brest Inserm EFS UMR 1078 GGB F 29200 Brest France
Zobrazit více v PubMed
Hansen T.H., Bouvier M.. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 2009; 9:503–513. PubMed
Apcher S., Daskalogianni C., Manoury B., Fahraeus R.. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 2010; 6:e1001151. PubMed PMC
Tellam J.T., Lekieffre L., Zhong J., Lynn D.J., Khanna R.. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog. 2012; 8:e1003112. PubMed PMC
Yewdell J.W., Anton L.C., Bennink J.R.. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules. J. Immunol. 1996; 157:1823–1826. PubMed
Shastri N., Schwab S., Serwold T.. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 2002; 20:463–493. PubMed
Starck S.R., Shastri N.. Non-conventional sources of peptides presented by MHC class I. Cell. Mol. Life Sci. 2011; 68:1471–1479. PubMed PMC
Apcher S., Daskalogianni C., Lejeune F., Manoury B., Imhoos G., Heslop L., Fahraeus R.. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:11572–11577. PubMed PMC
Apcher S., Millot G., Daskalogianni C., Scherl A., Manoury B., Fahraeus R.. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:17951–17956. PubMed PMC
Schwab S.R., Li K.C., Kang C., Shastri N.. Constitutive display of cryptic translation products by MHC class I molecules. Science. 2003; 301:1367–1371. PubMed
Jackson R.J., Hellen C.U., Pestova T.V.. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010; 11:113–127. PubMed PMC
Martinez-Salas E., Francisco-Velilla R., Fernandez-Chamorro J., Embarek A.M.. Insights into structural and mechanistic features of viral IRES elements. Front. Microbiol. 2017; 8:2629. PubMed PMC
Leppek K., Das R., Barna M.. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2018; 19:158–174. PubMed PMC
Kearse M.G., Wilusz J.E.. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 2017; 31:1717–1731. PubMed PMC
Martins R.P., Fahraeus R.. A matter of maturity: The impact of pre-mRNA processing in gene expression and antigen presentation. Int. J. Biochem. Cell Biol. 2017; 91:203–211. PubMed
Zapp M.L., Green M.R.. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature. 1989; 342:714–716. PubMed
Jia W., Yao Z., Zhao J., Guan Q., Gao L.. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 2017; 186:1–10. PubMed
Lago S., Tosoni E., Nadai M., Palumbo M., Richter S.N.. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim. Biophys. Acta Gen. Subj. 2017; 1861:1371–1381. PubMed PMC
Abdelmohsen K., Tominaga K., Lee E.K., Srikantan S., Kang M.J., Kim M.M., Selimyan R., Martindale J.L., Yang X., Carrier F. et al. .. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res. 2011; 39:8513–8530. PubMed PMC
Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palu G., Fabris D., Richter S.N.. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015; 43:8884–8897. PubMed PMC
Serikawa T., Spanos C., von Hacht A., Budisa N., Rappsilber J., Kurreck J.. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5′ UTR of tumor-associated mRNAs. Biochimie. 2018; 144:169–184. PubMed
Lista M.J., Martins R.P., Billant O., Contesse M.A., Findakly S., Pochard P., Daskalogianni C., Beauvineau C., Guetta C., Jamin C. et al. .. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 2017; 8:16043. PubMed PMC
Lista M.J., Martins R.P., Angrand G., Quillevere A., Daskalogianni C., Voisset C., Teulade-Fichou M.P., Fahraeus R., Blondel M.. A yeast model for the mechanism of the Epstein-Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb. Cell. 2017; 4:305–307. PubMed PMC
Millevoi S., Moine H., Vagner S.. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA. 2012; 3:495–507. PubMed
Song J., Perreault J.P., Topisirovic I., Richard S.. RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin). 2016; 4:e1244031. PubMed PMC
Bugaut A., Balasubramanian S.. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012; 40:4727–4741. PubMed PMC
Yin Y., Manoury B., Fahraeus R.. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science. 2003; 301:1371–1374. PubMed
De Cian A., Delemos E., Mergny J.L., Teulade-Fichou M.P., Monchaud D.. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 2007; 129:1856–1857. PubMed
Candeias M.M., Malbert-Colas L., Powell D.J., Daskalogianni C., Maslon M.M., Naski N., Bourougaa K., Calvo F., Fahraeus R.. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat. Cell Biol. 2008; 10:1098–1105. PubMed
Lyons A.B., Doherty K.V.. Flow cytometric analysis of cell division by dye dilution. Curr. Protoc. Cytom. 2004; doi:10.1002/0471142956.cy0911s27. PubMed
Gnanasundram S.V., Pyndiah S., Daskalogianni C., Armfield K., Nylander K., Wilson J.B., Fahraeus R.. PI3Kdelta activates E2F1 synthesis in response to mRNA translation stress. Nat. Commun. 2017; 8:2103. PubMed PMC
Panda A.C., Martindale J.L., Gorospe M.. Polysome fractionation to analyze mRNA distribution profiles. Bio. Protoc. 2017; 7:e2126. PubMed PMC
Apcher S., Komarova A., Daskalogianni C., Yin Y., Malbert-Colas L., Fahraeus R.. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J. Virol. 2009; 83:1289–1298. PubMed PMC
Shaul O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 2017; 91:145–155. PubMed
Lopez I., Tournillon A.S., Prado Martins R., Karakostis K., Malbert-Colas L., Nylander K., Fahraeus R.. p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ. 2017; 24:1717–1729. PubMed PMC
Allfrey V.G. Amino acid incorporation by isolated thymus Nuclei. I. The role of desoxyribonucleic acid in protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1954; 40:881–885. PubMed PMC
Goidl J.A. Does protein synthesis occur within the nucleus? Good evidence that it does. Trends Biochem. Sci. 1978; 3:N225–N228.
Iborra F.J., Jackson D.A., Cook P.R.. Coupled transcription and translation within nuclei of mammalian cells. Science. 2001; 293:1139–1142. PubMed
Iborra F.J., Escargueil A.E., Kwek K.Y., Akoulitchev A., Cook P.R.. Molecular cross-talk between the transcription, translation, and nonsense-mediated decay machineries. J. Cell Sci. 2004; 117:899–906. PubMed
David A., Dolan B.P., Hickman H.D., Knowlton J.J., Clavarino G., Pierre P., Bennink J.R., Yewdell J.W.. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J. Cell Biol. 2012; 197:45–57. PubMed PMC
Al-Jubran K., Wen J., Abdullahi A., Roy Chaudhury S., Li M., Ramanathan P., Matina A., De S., Piechocki K., Rugjee K.N. et al. .. Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. RNA. 2013; 19:1669–1683. PubMed PMC
Brogna S., Sato T.A., Rosbash M.. Ribosome components are associated with sites of transcription. Mol. Cell. 2002; 10:93–104. PubMed
Baboo S., Bhushan B., Jiang H., Grovenor C.R., Pierre P., Davis B.G., Cook P.R.. Most human proteins made in both nucleus and cytoplasm turn over within minutes. PLoS One. 2014; 9:e99346. PubMed PMC
Apcher S., Prado Martins R., Fahraeus R.. The source of MHC class I presented peptides and its implications. Curr. Opin. Immunol. 2016; 40:117–122. PubMed
Blum J.S., Wearsch P.A., Cresswell P.. Pathways of antigen processing. Annu. Rev. Immunol. 2013; 31:443–473. PubMed PMC
Hocine S., Singer R.H., Grunwald D.. RNA processing and export. Cold Spring Harb. Perspect. Biol. 2010; 2:a000752. PubMed PMC
Bahar Halpern K., Caspi I., Lemze D., Levy M., Landen S., Elinav E., Ulitsky I., Itzkovitz S.. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 2015; 13:2653–2662. PubMed PMC
Wegener M., Muller-McNicoll M.. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin. Cell Dev. Biol. 2018; 79:131–142. PubMed
Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC
Guedin A., Gros J., Alberti P., Mergny J.L.. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010; 38:7858–7868. PubMed PMC
Guo J.U., Bartel D.P.. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016; 353:aaf5371. PubMed PMC
Chalupnikova K., Lattmann S., Selak N., Iwamoto F., Fujiki Y., Nagamine Y.. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J. Biol. Chem. 2008; 283:35186–35198. PubMed PMC
Creacy S.D., Routh E.D., Iwamoto F., Nagamine Y., Akman S.A., Vaughn J.P.. G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J. Biol. Chem. 2008; 283:34626–34634. PubMed PMC
Chakraborty P., Grosse F.. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst.). 2011; 10:654–665. PubMed
Norseen J., Johnson F.B., Lieberman P.M.. Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 2009; 83:10336–10346. PubMed PMC
Abdelmohsen K., Gorospe M.. RNA-binding protein nucleolin in disease. RNA Biol. 2012; 9:799–808. PubMed PMC
Akef A., Zhang H., Masuda S., Palazzo A.F.. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus. 2013; 4:326–340. PubMed PMC
The different activities of RNA G-quadruplex structures are controlled by flanking sequences
MDM2's dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities