The different activities of RNA G-quadruplex structures are controlled by flanking sequences

. 2022 Feb ; 5 (2) : . [epub] 20211116

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34785537

The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.

Zobrazit více v PubMed

Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R (2011) Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 108: 11572–11577. 10.1073/pnas.1104104108 PubMed DOI PMC

Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fåhraeus R (2009) mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 83: 1289–1298. 10.1128/JVI.01369-08 PubMed DOI PMC

Arora A, Maiti S (2009) Differential biophysical behavior of human telomeric RNA and DNA quadruplex. J Phys Chem B 113: 10515–10520. 10.1021/jp810638n PubMed DOI

Aznauryan M, Noer SL, Pedersen CW, Mergny J, Teulade‐Fichou M, Birkedal V (2021) Ligand binding to dynamically populated G‐quadruplex DNA. ChemBioChem 22: 1811–1817. 10.1002/cbic.202000792 PubMed DOI

Ballestas ME (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641–644. 10.1126/science.284.5414.641 PubMed DOI

Ballestas ME, Kaye KM (2001) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75: 3250–3258. 10.1128/JVI.75.7.3250-3258.2001 PubMed DOI PMC

Beaudoin J-D, Novoa EM, Vejnar CE, Yartseva V, Takacs CM, Kellis M, Giraldez AJ (2018) Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat Struct Mol Biol 25: 677–686. 10.1038/s41594-018-0091-z PubMed DOI PMC

Beaudoin J-D, Perreault J-P (2010) 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 38: 7022–7036. 10.1093/nar/gkq557 PubMed DOI PMC

Beltran M, Tavares M, Justin N, Khandelwal G, Ambrose J, Foster BM, Worlock KB, Tvardovskiy A, Kunzelmann S, Herrero J, et al. (2019) G-tract RNA removes Polycomb repressive complex 2 from genes. Nat Struct Mol Biol 26: 899–909. 10.1038/s41594-019-0293-z PubMed DOI PMC

Bezzi G, Piga EJ, Binolfi A, Armas P (2021) CNBP binds and unfolds in vitro G-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands. Int J Mol Sci 22: 2614. 10.3390/ijms22052614 PubMed DOI PMC

Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6: 75–80. 10.1038/nchem.1805 PubMed DOI PMC

Bohálová N, Cantara A, Bartas M, Kaura P, Šťastný J, Pečinka P, Fojta M, Mergny J-L, Brázda V (2021) Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 186: 13–27. 10.1016/j.biochi.2021.03.017 PubMed DOI

Borkosky SS, Camporeale G, Chemes LB, Risso M, Noval MG, Sánchez IE, Alonso LG, de Prat Gay G (2017) Hidden structural codes in protein intrinsic disorder. Biochemistry 56: 5560–5569. 10.1021/acs.biochem.7b00721 PubMed DOI

Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fåhraeus R (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10: 1098–1105. 10.1038/ncb1770 PubMed DOI

Cardinaud S, Moris A, Février M, Rohrlich P-S, Weiss L, Langlade-Demoyen P, Lemonnier FA, Schwartz O, Habel A (2004) Identification of cryptic MHC I–restricted epitopes encoded by HIV-1 alternative reading frames. J Exp Med 199: 1053–1063. 10.1084/jem.20031869 PubMed DOI PMC

Ceci M, Fazi F, Romano N (2021) The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 1867: 166046. 10.1016/j.bbadis.2020.166046 PubMed DOI

Chen X-C, Chen S-B, Dai J, Yuan J-H, Ou T-M, Huang Z-S, Tan J-H (2018) Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed 57: 4702–4706. 10.1002/anie.201801999 PubMed DOI

Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001) Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: Formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J VIROL 75: 5614–5626. 10.1128/JVI.75.12.5614-5626.2001 PubMed DOI PMC

Dabral P, Babu J, Zareie A, Verma SC (2019) LANA and hnRNP A1 regulate the translation of LANA mRNA through G-quadruplexes. J Virol 94: e01508–e01519. 10.1128/JVI.01508-19 PubMed DOI PMC

del Villar‐Guerra R, Gray RD, Chaires JB (2017) Characterization of quadruplex DNA structure by circular dichroism. Curr Protoc Nucleic Acid Chem 68: 17.8.1-17.8.16. 10.1002/cpnc.23 PubMed DOI PMC

Dumas L, Herviou P, Dassi E, Cammas A, Millevoi S (2021) G-quadruplexes in RNA biology: Recent advances and future directions. Trends Biochem Sci 46: 270–283. 10.1016/j.tibs.2020.11.001 PubMed DOI

Duss O, Stepanyuk GA, Puglisi JD, Williamson JR (2019) Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179: 1357–1369.e16. 10.1016/j.cell.2019.10.035 PubMed DOI PMC

Endoh T, Kawasaki Y, Sugimoto N (2013. a) Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res 41: 6222–6231. 10.1093/nar/gkt286 PubMed DOI PMC

Endoh T, Kawasaki Y, Sugimoto N (2013. b) Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew Chem Int Ed 52: 5522–5526. 10.1002/anie.201300058 PubMed DOI

Endoh T, Sugimoto N (2016) Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci Rep 6: 22719. 10.1038/srep22719 PubMed DOI PMC

Endoh T, Sugimoto N (2013) Unusual −1 ribosomal frameshift caused by stable RNA G-quadruplex in open reading frame. Anal Chem 85: 11435–11439. 10.1021/ac402497x PubMed DOI

Fay MM, Lyons SM, Ivanov P (2017) RNA G-quadruplexes in biology: Principles and molecular mechanisms. J Mol Biol 429: 2127–2147. 10.1016/j.jmb.2017.05.017 PubMed DOI PMC

Fleming AM, Ding Y, Alenko A, Burrows CJ (2016) Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the Flaviviridae family. ACS Infect Dis 2: 674–681. 10.1021/acsinfecdis.6b00109 PubMed DOI PMC

Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fåhraeus R (2017) PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun 8: 2103. 10.1038/s41467-017-02282-w PubMed DOI PMC

Guo JU, Bartel DP (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353: aaf5371. 10.1126/science.aaf5371 PubMed DOI PMC

Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114: 6561–6588. 10.1021/cr400514h PubMed DOI

Harris LM, Merrick CJ (2015) G-quadruplexes in pathogens: A common route to virulence control? PLoS Pathog 11: e1004562. 10.1371/journal.ppat.1004562 PubMed DOI PMC

Herdy B, Mayer C, Varshney D, Marsico G, Murat P, Taylor C, D’Santos C, Tannahill D, Balasubramanian S (2018) Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res 46: 11592–11604. 10.1093/nar/gky861 PubMed DOI PMC

Herviou P, Le Bras M, Dumas L, Hieblot C, Gilhodes J, Cioci G, Hugnot J-P, Ameadan A, Guillonneau F, Dassi E, et al. (2020) hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat Commun 11: 2661. 10.1038/s41467-020-16168-x PubMed DOI PMC

Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127. 10.1038/nrm2838 PubMed DOI PMC

Jaubert C, Bedrat A, Bartolucci L, Di Primo C, Ventura M, Mergny J-L, Amrane S, Andreola M-L (2018) RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci Rep 8: 8120. 10.1038/s41598-018-26582-3 PubMed DOI PMC

Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y (2021) Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinform 22: 1150–1160. 10.1093/bib/bbaa114 PubMed DOI PMC

Kikin O, D’Antonio L, Bagga PS (2006) QGRS mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34: W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC

Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y (2007) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics epstein-barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81: 8225–8235. 10.1128/JVI.00411-07 PubMed DOI PMC

Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting rta: A potential mechanism for virus-mediated control of latency. J Virol 78: 6585–6594. 10.1128/JVI.78.12.6585-6594.2004 PubMed DOI PMC

Lavigne M, Helynck O, Rigolet P, Boudria-Souilah R, Nowakowski M, Baron B, Guittat L, Beauvineau C, Petres S, Granzhan A, et al. (2021) SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res 49: 7695–7712. 10.1093/nar/gkab571 PubMed DOI PMC

Lewis CJT, Pan T, Kalsotra A (2017) RNA modifications and structures cooperate to guide RNA–protein interactions. Nat Rev Mol Cell Biol 18: 202–210. 10.1038/nrm.2016.163 PubMed DOI PMC

Lin JQ, van Tartwijk FW, Holt CE (2020) Axonal mRNA translation in neurological disorders. RNA Biol 18: 936–961. 10.1080/15476286.2020.1822638 PubMed DOI PMC

Lista MJ, Martins RP, Angrand G, Quillévéré A, Daskalogianni C, Voisset C, Teulade-Fichou M-P, Fåhraeus R, Blondel M (2017. a) A yeast model for the mechanism of the Epstein‐Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb Cell 4: 305–307. 10.15698/mic2017.09.590 PubMed DOI PMC

Lista MJ, Martins RP, Billant O, Contesse M-A, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, et al. (2017. b) Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 8: 16043. 10.1038/ncomms16043 PubMed DOI PMC

Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518: 560–564. 10.1038/nature14234 PubMed DOI PMC

Lyonnais S, Gorelick RJ, Mergny J-L, Le Cam E, Mirambeau G (2003) G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res 31: 5754–5763. 10.1093/nar/gkg716 PubMed DOI PMC

Majee P, Kumar Mishra S, Pandya N, Shankar U, Pasadi S, Muniyappa K, Nayak D, Kumar A (2020) Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep 10: 1477. 10.1038/s41598-020-58406-8 PubMed DOI PMC

Marquet R, Baudin F, Gabus C, Darlix J-L, Mougel M, Ehresmann C, Ehresmann B (1991) Dimerization of human immunodeficiency virus (type 1) RNA: Stimulation by cations and possible mechanism. Nucleic Acids Res 19: 2349–2357. 10.1093/nar/19.9.2349 PubMed DOI PMC

Marquet R, Paillart J-C, Skripkin E, Ehresmann C, Ehresmann B (1994) Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res 22: 145–151. 10.1093/nar/22.2.145 PubMed DOI PMC

Martins RP, Findakly S, Daskalogianni C, Teulade-Fichou M-P, Blondel M, Fåhraeus R (2018) In cellulo protein-mRNA interaction assay to determine the action of G-quadruplex-binding molecules. Molecules 23: 3124. 10.3390/molecules23123124 PubMed DOI PMC

Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fåhraeus R (2019) Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 47: 3086–3100. 10.1093/nar/gky1296 PubMed DOI PMC

McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, et al. (2018) CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol 16: e2005970. 10.1371/journal.pbio.2005970 PubMed DOI PMC

Métifiot M, Amrane S, Litvak S, Andreola M-L (2014) G-quadruplexes in viruses: Function and potential therapeutic applications. Nucleic Acids Res 42: 12352–12366. 10.1093/nar/gku999 PubMed DOI PMC

Münz C (ed) (2015) Epstein barr virus volume 2: One herpes virus: Many diseases. In Current Topics in Microbiology and Immunology. Cham: Springer International Publishing. 10.1007/978-3-319-22834-1 DOI

Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J (2014) G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 10: 358–364. 10.1038/nchembio.1479 PubMed DOI PMC

Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fåhraeus R, Candeias MM (2009) The p53 mRNA-Mdm2 interaction. Cell Cycle 8: 31–34. 10.4161/cc.8.1.7326 PubMed DOI

Piekna-Przybylska D, Sharma G, Bambara RA (2013) Mechanism of HIV-1 RNA dimerization in the central region of the genome and significance for viral evolution. J Biol Chem 288: 24140–24150. 10.1074/jbc.M113.477265 PubMed DOI PMC

Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, Herrington CS, Moore PS, Schulz TF (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71: 5915–5921. 10.1128/JVI.71.8.5915-5921.1997 PubMed DOI PMC

Reznichenko O, Quillévéré A, Martins RP, Loaëc N, Kang H, Lista MJ, Beauvineau C, González-García J, Guillot R, Voisset C, et al. (2019) Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur J Med Chem 178: 13–29. 10.1016/j.ejmech.2019.05.042 PubMed DOI

Rodgers ML, Woodson SA (2019) Transcription increases the cooperativity of ribonucleoprotein assembly. Cell 179: 1370–1381.e12. 10.1016/j.cell.2019.11.007 PubMed DOI PMC

Ruggiero E, Tassinari M, Perrone R, Nadai M, Richter SN (2019) Stable and conserved G-quadruplexes in the long terminal repeat promoter of retroviruses. ACS Infect Dis 5: 1150–1159. 10.1021/acsinfecdis.9b00011 PubMed DOI PMC

Sanchez de Groot N, Armaos A, Graña-Montes R, Alriquet M, Calloni G, Vabulas RM, Tartaglia GG (2019) RNA structure drives interaction with proteins. Nat Commun 10: 3246. 10.1038/s41467-019-10923-5 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152: 17–24. 10.1016/j.cell.2012.12.024 PubMed DOI PMC

Starck SR, Ow Y, Jiang V, Tokuyama M, Rivera M, Qi X, Roberts RW, Shastri N (2008) A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS One 3: e3460. 10.1371/journal.pone.0003460 PubMed DOI PMC

Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, Palù G, Fabris D, Richter SN (2015) Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 43: 8884–8897. 10.1093/nar/gkv897 PubMed DOI PMC

Vannutelli A, Belhamiti S, Garant J-M, Ouangraoua A, Perreault J-P (2020) Where are G-quadruplexes located in the human transcriptome? NAR Genomics Bioinforma 2: lqaa035. 10.1093/nargab/lqaa035 PubMed DOI PMC

Waldron JA, Raza F, Le Quesne J (2018) eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Res 46: 3075–3087. 10.1093/nar/gky108 PubMed DOI PMC

Wang S-R, Min Y-Q, Wang J-Q, Liu C-X, Fu B-S, Wu F, Wu L-Y, Qiao Z-X, Song Y-Y, Xu G-H, et al. (2016. a) A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti–hepatitis C target. Sci Adv 2: e1501535. 10.1126/sciadv.1501535 PubMed DOI PMC

Wang S-R, Zhang Q-Y, Wang J-Q, Ge X-Y, Song Y-Y, Wang Y-F, Li X-D, Fu B-S, Xu G-H, Shu B, et al. (2016. b) Chemical targeting of a G-quadruplex RNA in the ebola virus L gene. Cell Chem. Biol 23: 1113–1122. 10.1016/j.chembiol.2016.07.019 PubMed DOI

Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, Vincent A, Catez F, Ferré S, Ayadi L, et al. (2019) Ribosomal proteins regulate MHC class I peptide generation for immunosurveillance. Mol Cell 73: 1162–1173.e5. 10.1016/j.molcel.2018.12.020 PubMed DOI PMC

Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, et al. (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513: 65–70. 10.1038/nature13485 PubMed DOI PMC

Yang SY, Lejault P, Chevrier S, Boidot R, Robertson AG, Wong JMY, Monchaud D (2018) Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat Commun 9: 4730. 10.1038/s41467-018-07224-8 PubMed DOI PMC

Yewdell JW, Dersh D, Fåhraeus R (2019) Peptide channeling: The key to MHC class I immunosurveillance? Trends Cell Biol 29: 929–939. 10.1016/j.tcb.2019.09.004 PubMed DOI

Yin Y (2003) Self-inhibition of synthesis and antigen presentation by epstein-barr virus-encoded EBNA1. Science 301: 1371–1374. 10.1126/science.1088902 PubMed DOI

Zhao C, Qin G, Niu J, Wang Z, Wang C, Ren J, Qu X (2021) Targeting RNA G‐quadruplex in SARS‐CoV‐2: A promising therapeutic target for COVID‐19? Angew Chem Int Ed 60: 432–438. 10.1002/anie.202011419 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...