The different activities of RNA G-quadruplex structures are controlled by flanking sequences
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34785537
PubMed Central
PMC8605322
DOI
10.26508/lsa.202101232
PII: 5/2/e202101232
Knihovny.cz E-zdroje
- MeSH
- G-kvadruplexy * MeSH
- intergenová DNA chemie genetika MeSH
- lidé MeSH
- regulace genové exprese MeSH
- RNA virová MeSH
- RNA chemie genetika MeSH
- transport RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EBV-encoded nuclear antigen 1 MeSH Prohlížeč
- intergenová DNA MeSH
- RNA virová MeSH
- RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny MeSH
The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.
CNRS UMR9187 INSERM U1196 Institut Curie PSL Research University Orsay France
CNRS UMR9187 INSERM U1196 Université Paris Sud Université Paris Saclay Orsay France
Department of Medical Biosciences Umeå University Umeå Sweden
ICCVS University of Gdańsk Science Gdańsk Poland
Inserm UMR1078 Université de Bretagne Occidentale Bretagne CHRU Brest Brest France
Inserm UMRS1131 Institut de Génétique Moléculaire Université Paris 7 Hôpital St Louis Paris France
ISP INRAE Université de Tours UMR1282 Tours France
RECAMO Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R (2011) Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 108: 11572–11577. 10.1073/pnas.1104104108 PubMed DOI PMC
Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fåhraeus R (2009) mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 83: 1289–1298. 10.1128/JVI.01369-08 PubMed DOI PMC
Arora A, Maiti S (2009) Differential biophysical behavior of human telomeric RNA and DNA quadruplex. J Phys Chem B 113: 10515–10520. 10.1021/jp810638n PubMed DOI
Aznauryan M, Noer SL, Pedersen CW, Mergny J, Teulade‐Fichou M, Birkedal V (2021) Ligand binding to dynamically populated G‐quadruplex DNA. ChemBioChem 22: 1811–1817. 10.1002/cbic.202000792 PubMed DOI
Ballestas ME (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641–644. 10.1126/science.284.5414.641 PubMed DOI
Ballestas ME, Kaye KM (2001) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75: 3250–3258. 10.1128/JVI.75.7.3250-3258.2001 PubMed DOI PMC
Beaudoin J-D, Novoa EM, Vejnar CE, Yartseva V, Takacs CM, Kellis M, Giraldez AJ (2018) Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat Struct Mol Biol 25: 677–686. 10.1038/s41594-018-0091-z PubMed DOI PMC
Beaudoin J-D, Perreault J-P (2010) 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 38: 7022–7036. 10.1093/nar/gkq557 PubMed DOI PMC
Beltran M, Tavares M, Justin N, Khandelwal G, Ambrose J, Foster BM, Worlock KB, Tvardovskiy A, Kunzelmann S, Herrero J, et al. (2019) G-tract RNA removes Polycomb repressive complex 2 from genes. Nat Struct Mol Biol 26: 899–909. 10.1038/s41594-019-0293-z PubMed DOI PMC
Bezzi G, Piga EJ, Binolfi A, Armas P (2021) CNBP binds and unfolds in vitro G-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands. Int J Mol Sci 22: 2614. 10.3390/ijms22052614 PubMed DOI PMC
Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6: 75–80. 10.1038/nchem.1805 PubMed DOI PMC
Bohálová N, Cantara A, Bartas M, Kaura P, Šťastný J, Pečinka P, Fojta M, Mergny J-L, Brázda V (2021) Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 186: 13–27. 10.1016/j.biochi.2021.03.017 PubMed DOI
Borkosky SS, Camporeale G, Chemes LB, Risso M, Noval MG, Sánchez IE, Alonso LG, de Prat Gay G (2017) Hidden structural codes in protein intrinsic disorder. Biochemistry 56: 5560–5569. 10.1021/acs.biochem.7b00721 PubMed DOI
Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fåhraeus R (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10: 1098–1105. 10.1038/ncb1770 PubMed DOI
Cardinaud S, Moris A, Février M, Rohrlich P-S, Weiss L, Langlade-Demoyen P, Lemonnier FA, Schwartz O, Habel A (2004) Identification of cryptic MHC I–restricted epitopes encoded by HIV-1 alternative reading frames. J Exp Med 199: 1053–1063. 10.1084/jem.20031869 PubMed DOI PMC
Ceci M, Fazi F, Romano N (2021) The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 1867: 166046. 10.1016/j.bbadis.2020.166046 PubMed DOI
Chen X-C, Chen S-B, Dai J, Yuan J-H, Ou T-M, Huang Z-S, Tan J-H (2018) Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed 57: 4702–4706. 10.1002/anie.201801999 PubMed DOI
Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001) Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: Formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J VIROL 75: 5614–5626. 10.1128/JVI.75.12.5614-5626.2001 PubMed DOI PMC
Dabral P, Babu J, Zareie A, Verma SC (2019) LANA and hnRNP A1 regulate the translation of LANA mRNA through G-quadruplexes. J Virol 94: e01508–e01519. 10.1128/JVI.01508-19 PubMed DOI PMC
del Villar‐Guerra R, Gray RD, Chaires JB (2017) Characterization of quadruplex DNA structure by circular dichroism. Curr Protoc Nucleic Acid Chem 68: 17.8.1-17.8.16. 10.1002/cpnc.23 PubMed DOI PMC
Dumas L, Herviou P, Dassi E, Cammas A, Millevoi S (2021) G-quadruplexes in RNA biology: Recent advances and future directions. Trends Biochem Sci 46: 270–283. 10.1016/j.tibs.2020.11.001 PubMed DOI
Duss O, Stepanyuk GA, Puglisi JD, Williamson JR (2019) Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179: 1357–1369.e16. 10.1016/j.cell.2019.10.035 PubMed DOI PMC
Endoh T, Kawasaki Y, Sugimoto N (2013. a) Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res 41: 6222–6231. 10.1093/nar/gkt286 PubMed DOI PMC
Endoh T, Kawasaki Y, Sugimoto N (2013. b) Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew Chem Int Ed 52: 5522–5526. 10.1002/anie.201300058 PubMed DOI
Endoh T, Sugimoto N (2016) Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci Rep 6: 22719. 10.1038/srep22719 PubMed DOI PMC
Endoh T, Sugimoto N (2013) Unusual −1 ribosomal frameshift caused by stable RNA G-quadruplex in open reading frame. Anal Chem 85: 11435–11439. 10.1021/ac402497x PubMed DOI
Fay MM, Lyons SM, Ivanov P (2017) RNA G-quadruplexes in biology: Principles and molecular mechanisms. J Mol Biol 429: 2127–2147. 10.1016/j.jmb.2017.05.017 PubMed DOI PMC
Fleming AM, Ding Y, Alenko A, Burrows CJ (2016) Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the Flaviviridae family. ACS Infect Dis 2: 674–681. 10.1021/acsinfecdis.6b00109 PubMed DOI PMC
Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fåhraeus R (2017) PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun 8: 2103. 10.1038/s41467-017-02282-w PubMed DOI PMC
Guo JU, Bartel DP (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353: aaf5371. 10.1126/science.aaf5371 PubMed DOI PMC
Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114: 6561–6588. 10.1021/cr400514h PubMed DOI
Harris LM, Merrick CJ (2015) G-quadruplexes in pathogens: A common route to virulence control? PLoS Pathog 11: e1004562. 10.1371/journal.ppat.1004562 PubMed DOI PMC
Herdy B, Mayer C, Varshney D, Marsico G, Murat P, Taylor C, D’Santos C, Tannahill D, Balasubramanian S (2018) Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res 46: 11592–11604. 10.1093/nar/gky861 PubMed DOI PMC
Herviou P, Le Bras M, Dumas L, Hieblot C, Gilhodes J, Cioci G, Hugnot J-P, Ameadan A, Guillonneau F, Dassi E, et al. (2020) hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat Commun 11: 2661. 10.1038/s41467-020-16168-x PubMed DOI PMC
Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127. 10.1038/nrm2838 PubMed DOI PMC
Jaubert C, Bedrat A, Bartolucci L, Di Primo C, Ventura M, Mergny J-L, Amrane S, Andreola M-L (2018) RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci Rep 8: 8120. 10.1038/s41598-018-26582-3 PubMed DOI PMC
Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y (2021) Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinform 22: 1150–1160. 10.1093/bib/bbaa114 PubMed DOI PMC
Kikin O, D’Antonio L, Bagga PS (2006) QGRS mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34: W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC
Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y (2007) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics epstein-barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81: 8225–8235. 10.1128/JVI.00411-07 PubMed DOI PMC
Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting rta: A potential mechanism for virus-mediated control of latency. J Virol 78: 6585–6594. 10.1128/JVI.78.12.6585-6594.2004 PubMed DOI PMC
Lavigne M, Helynck O, Rigolet P, Boudria-Souilah R, Nowakowski M, Baron B, Guittat L, Beauvineau C, Petres S, Granzhan A, et al. (2021) SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res 49: 7695–7712. 10.1093/nar/gkab571 PubMed DOI PMC
Lewis CJT, Pan T, Kalsotra A (2017) RNA modifications and structures cooperate to guide RNA–protein interactions. Nat Rev Mol Cell Biol 18: 202–210. 10.1038/nrm.2016.163 PubMed DOI PMC
Lin JQ, van Tartwijk FW, Holt CE (2020) Axonal mRNA translation in neurological disorders. RNA Biol 18: 936–961. 10.1080/15476286.2020.1822638 PubMed DOI PMC
Lista MJ, Martins RP, Angrand G, Quillévéré A, Daskalogianni C, Voisset C, Teulade-Fichou M-P, Fåhraeus R, Blondel M (2017. a) A yeast model for the mechanism of the Epstein‐Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb Cell 4: 305–307. 10.15698/mic2017.09.590 PubMed DOI PMC
Lista MJ, Martins RP, Billant O, Contesse M-A, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, et al. (2017. b) Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 8: 16043. 10.1038/ncomms16043 PubMed DOI PMC
Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518: 560–564. 10.1038/nature14234 PubMed DOI PMC
Lyonnais S, Gorelick RJ, Mergny J-L, Le Cam E, Mirambeau G (2003) G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res 31: 5754–5763. 10.1093/nar/gkg716 PubMed DOI PMC
Majee P, Kumar Mishra S, Pandya N, Shankar U, Pasadi S, Muniyappa K, Nayak D, Kumar A (2020) Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep 10: 1477. 10.1038/s41598-020-58406-8 PubMed DOI PMC
Marquet R, Baudin F, Gabus C, Darlix J-L, Mougel M, Ehresmann C, Ehresmann B (1991) Dimerization of human immunodeficiency virus (type 1) RNA: Stimulation by cations and possible mechanism. Nucleic Acids Res 19: 2349–2357. 10.1093/nar/19.9.2349 PubMed DOI PMC
Marquet R, Paillart J-C, Skripkin E, Ehresmann C, Ehresmann B (1994) Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res 22: 145–151. 10.1093/nar/22.2.145 PubMed DOI PMC
Martins RP, Findakly S, Daskalogianni C, Teulade-Fichou M-P, Blondel M, Fåhraeus R (2018) In cellulo protein-mRNA interaction assay to determine the action of G-quadruplex-binding molecules. Molecules 23: 3124. 10.3390/molecules23123124 PubMed DOI PMC
Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fåhraeus R (2019) Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 47: 3086–3100. 10.1093/nar/gky1296 PubMed DOI PMC
McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, et al. (2018) CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol 16: e2005970. 10.1371/journal.pbio.2005970 PubMed DOI PMC
Métifiot M, Amrane S, Litvak S, Andreola M-L (2014) G-quadruplexes in viruses: Function and potential therapeutic applications. Nucleic Acids Res 42: 12352–12366. 10.1093/nar/gku999 PubMed DOI PMC
Münz C (ed) (2015) Epstein barr virus volume 2: One herpes virus: Many diseases. In Current Topics in Microbiology and Immunology. Cham: Springer International Publishing. 10.1007/978-3-319-22834-1 DOI
Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J (2014) G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 10: 358–364. 10.1038/nchembio.1479 PubMed DOI PMC
Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fåhraeus R, Candeias MM (2009) The p53 mRNA-Mdm2 interaction. Cell Cycle 8: 31–34. 10.4161/cc.8.1.7326 PubMed DOI
Piekna-Przybylska D, Sharma G, Bambara RA (2013) Mechanism of HIV-1 RNA dimerization in the central region of the genome and significance for viral evolution. J Biol Chem 288: 24140–24150. 10.1074/jbc.M113.477265 PubMed DOI PMC
Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H, Herrington CS, Moore PS, Schulz TF (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71: 5915–5921. 10.1128/JVI.71.8.5915-5921.1997 PubMed DOI PMC
Reznichenko O, Quillévéré A, Martins RP, Loaëc N, Kang H, Lista MJ, Beauvineau C, González-García J, Guillot R, Voisset C, et al. (2019) Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur J Med Chem 178: 13–29. 10.1016/j.ejmech.2019.05.042 PubMed DOI
Rodgers ML, Woodson SA (2019) Transcription increases the cooperativity of ribonucleoprotein assembly. Cell 179: 1370–1381.e12. 10.1016/j.cell.2019.11.007 PubMed DOI PMC
Ruggiero E, Tassinari M, Perrone R, Nadai M, Richter SN (2019) Stable and conserved G-quadruplexes in the long terminal repeat promoter of retroviruses. ACS Infect Dis 5: 1150–1159. 10.1021/acsinfecdis.9b00011 PubMed DOI PMC
Sanchez de Groot N, Armaos A, Graña-Montes R, Alriquet M, Calloni G, Vabulas RM, Tartaglia GG (2019) RNA structure drives interaction with proteins. Nat Commun 10: 3246. 10.1038/s41467-019-10923-5 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152: 17–24. 10.1016/j.cell.2012.12.024 PubMed DOI PMC
Starck SR, Ow Y, Jiang V, Tokuyama M, Rivera M, Qi X, Roberts RW, Shastri N (2008) A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS One 3: e3460. 10.1371/journal.pone.0003460 PubMed DOI PMC
Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, Palù G, Fabris D, Richter SN (2015) Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 43: 8884–8897. 10.1093/nar/gkv897 PubMed DOI PMC
Vannutelli A, Belhamiti S, Garant J-M, Ouangraoua A, Perreault J-P (2020) Where are G-quadruplexes located in the human transcriptome? NAR Genomics Bioinforma 2: lqaa035. 10.1093/nargab/lqaa035 PubMed DOI PMC
Waldron JA, Raza F, Le Quesne J (2018) eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Res 46: 3075–3087. 10.1093/nar/gky108 PubMed DOI PMC
Wang S-R, Min Y-Q, Wang J-Q, Liu C-X, Fu B-S, Wu F, Wu L-Y, Qiao Z-X, Song Y-Y, Xu G-H, et al. (2016. a) A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti–hepatitis C target. Sci Adv 2: e1501535. 10.1126/sciadv.1501535 PubMed DOI PMC
Wang S-R, Zhang Q-Y, Wang J-Q, Ge X-Y, Song Y-Y, Wang Y-F, Li X-D, Fu B-S, Xu G-H, Shu B, et al. (2016. b) Chemical targeting of a G-quadruplex RNA in the ebola virus L gene. Cell Chem. Biol 23: 1113–1122. 10.1016/j.chembiol.2016.07.019 PubMed DOI
Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, Vincent A, Catez F, Ferré S, Ayadi L, et al. (2019) Ribosomal proteins regulate MHC class I peptide generation for immunosurveillance. Mol Cell 73: 1162–1173.e5. 10.1016/j.molcel.2018.12.020 PubMed DOI PMC
Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, et al. (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513: 65–70. 10.1038/nature13485 PubMed DOI PMC
Yang SY, Lejault P, Chevrier S, Boidot R, Robertson AG, Wong JMY, Monchaud D (2018) Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat Commun 9: 4730. 10.1038/s41467-018-07224-8 PubMed DOI PMC
Yewdell JW, Dersh D, Fåhraeus R (2019) Peptide channeling: The key to MHC class I immunosurveillance? Trends Cell Biol 29: 929–939. 10.1016/j.tcb.2019.09.004 PubMed DOI
Yin Y (2003) Self-inhibition of synthesis and antigen presentation by epstein-barr virus-encoded EBNA1. Science 301: 1371–1374. 10.1126/science.1088902 PubMed DOI
Zhao C, Qin G, Niu J, Wang Z, Wang C, Ren J, Qu X (2021) Targeting RNA G‐quadruplex in SARS‐CoV‐2: A promising therapeutic target for COVID‐19? Angew Chem Int Ed 60: 432–438. 10.1002/anie.202011419 PubMed DOI
Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes