In Cellulo Protein-mRNA Interaction Assay to Determine the Action of G-Quadruplex-Binding Molecules
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30501034
PubMed Central
PMC6321085
DOI
10.3390/molecules23123124
PII: molecules23123124
Knihovny.cz E-zdroje
- Klíčová slova
- EBNA1, Epstein-Barr virus (EBV), G-quadruplexes, PhenDC3, protein-mRNA interactions, pyridostatin, structure-activity relationship,
- MeSH
- aminochinoliny chemie MeSH
- biotest metody MeSH
- fosfoproteiny metabolismus MeSH
- G-kvadruplexy * MeSH
- kyseliny pikolinové chemie MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- nádorové buněčné linie MeSH
- nukleolin MeSH
- proteiny vázající RNA metabolismus MeSH
- virus Epsteinův-Barrové - jaderné antigeny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminochinoliny MeSH
- EBV-encoded nuclear antigen 1 MeSH Prohlížeč
- fosfoproteiny MeSH
- kyseliny pikolinové MeSH
- messenger RNA MeSH
- proteiny vázající RNA MeSH
- pyridostatin MeSH Prohlížeč
- virus Epsteinův-Barrové - jaderné antigeny MeSH
Protein-RNA interactions (PRIs) control pivotal steps in RNA biogenesis, regulate multiple physiological and pathological cellular networks, and are emerging as important drug targets. However, targeting of specific protein-RNA interactions for therapeutic developments is still poorly advanced. Studies and manipulation of these interactions are technically challenging and in vitro drug screening assays are often hampered due to the complexity of RNA structures. The binding of nucleolin (NCL) to a G-quadruplex (G4) structure in the messenger RNA (mRNA) of the Epstein-Barr virus (EBV)-encoded EBNA1 has emerged as an interesting therapeutic target to interfere with immune evasion of EBV-associated cancers. Using the NCL-EBNA1 mRNA interaction as a model, we describe a quantitative proximity ligation assay (PLA)-based in cellulo approach to determine the structure activity relationship of small chemical G4 ligands. Our results show how different G4 ligands have different effects on NCL binding to G4 of the EBNA1 mRNA and highlight the importance of in-cellulo screening assays for targeting RNA structure-dependent interactions.
Department of Medical Biosciences Umeå University 90187 Umeå Sweden
GGB Université de Brest Inserm CHRU Brest EFS UMR 1078 F 29200 Brest France
ICCVS University of Gdańsk Science ul Wita Stwosza 63 80 308 Gdańsk Poland
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 65653 Brno Czech Republic
Zobrazit více v PubMed
Beckmann B.M., Castello A., Medenbach J. The expanding universe of ribonucleoproteins: Of novel RNA-binding proteins and unconventional interactions. Pflugers Arch. 2016;468:1029–1040. doi: 10.1007/s00424-016-1819-4. PubMed DOI PMC
Bao H.L., Ishizuka T., Sakamoto T., Fujimoto K., Uechi T., Kenmochi N., Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res. 2017;45:5501–5511. doi: 10.1093/nar/gkx109. PubMed DOI PMC
Bao H.L., Xu Y. Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by (19)F NMR spectroscopy. Nat. Protoc. 2018;13:652–665. doi: 10.1038/nprot.2017.156. PubMed DOI
Haeusler A.R., Donnelly C.J., Periz G., Simko E.A., Shaw P.G., Kim M.S., Maragakis N.J., Troncoso J.C., Pandey A., Sattler R., et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507:195–200. doi: 10.1038/nature13124. PubMed DOI PMC
Taylor J.P. Neurodegenerative diseases: G-quadruplex poses quadruple threat. Nature. 2014;507:175–177. doi: 10.1038/nature13067. PubMed DOI
Wolfe A.L., Singh K., Zhong Y., Drewe P., Rajasekhar V.K., Sanghvi V.R., Mavrakis K.J., Jiang M., Roderick J.E., Van der Meulen J., et al. RNA G-quadruplexes cause eIF4a-dependent oncogene translation in cancer. Nature. 2014;513:65–70. doi: 10.1038/nature13485. PubMed DOI PMC
Largy E., Granzhan A., Hamon F., Verga D., Teulade-Fichou M.P. Visualizing the quadruplex: From fluorescent ligands to light-up probes. Top Curr. Chem. 2013;330:111–177. PubMed
Mendoza O., Bourdoncle A., Boule J.B., Brosh R.M., Jr., Mergny J.L. G-quadruplexes and helicases. Nucleic Acids Res. 2016;44:1989–2006. doi: 10.1093/nar/gkw079. PubMed DOI PMC
Song J., Perreault J.P., Topisirovic I., Richard S. RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin) 2016;4 doi: 10.1080/21690731.2016.1244031. PubMed DOI PMC
Lista M.J., Martins R.P., Angrand G., Quillevere A., Daskalogianni C., Voisset C., Teulade-Fichou M.P., Fahraeus R., Blondel M. A yeast model for the mechanism of the Epstein-Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb. Cell. 2017;4:305–307. doi: 10.15698/mic2017.09.590. PubMed DOI PMC
Lista M.J., Martins R.P., Billant O., Contesse M.A., Findakly S., Pochard P., Daskalogianni C., Beauvineau C., Guetta C., Jamin C., et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 2017;8 doi: 10.1038/ncomms16043. PubMed DOI PMC
De Cian A., Delemos E., Mergny J.L., Teulade-Fichou M.P., Monchaud D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 2007;129:1856–1857. doi: 10.1021/ja067352b. PubMed DOI
Yin Y., Manoury B., Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science. 2003;301:1371–1374. doi: 10.1126/science.1088902. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J. G-quadruplexes regulate Epstein-Barr virus-encoded Nuclear Antigen 1 mRNA translation. Nat. Chem. Biol. 2014;10:358–364. doi: 10.1038/nchembio.1479. PubMed DOI PMC
Soderberg O., Gullberg M., Jarvius M., Ridderstrale K., Leuchowius K.J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G., et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006;3:995–1000. doi: 10.1038/nmeth947. PubMed DOI
Gomez D., Shankman L.S., Nguyen A.T., Owens G.K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods. 2013;10:171–177. doi: 10.1038/nmeth.2332. PubMed DOI PMC
de Klerk E., t Hoen P.A. Alternative mRNA transcription, processing, and translation: Insights from RNA sequencing. Trends Genet. 2015;31:128–139. doi: 10.1016/j.tig.2015.01.001. PubMed DOI
Mitchell S.F., Parker R. Principles and properties of eukaryotic mRNPs. Mol. Cell. 2014;54:547–558. doi: 10.1016/j.molcel.2014.04.033. PubMed DOI
Daskalogianni C., Pyndiah S., Apcher S., Mazars A., Manoury B., Ammari N., Nylander K., Voisset C., Blondel M., Fahraeus R. Epstein-Barr virus-encoded EBNA1 and ZEBRA: Targets for therapeutic strategies against EBV-carrying cancers. J. Pathol. 2015;235:334–341. doi: 10.1002/path.4431. PubMed DOI
Wilson J.B., Manet E., Gruffat H., Busson P., Blondel M., Fahraeus R. EBNA1: Oncogenic activity, immune evasion and biochemical functions provide targets for novel therapeutic strategies against Epstein-Barr virus-associated cancers. Cancers (Basel) 2018;10:109. doi: 10.3390/cancers10040109. PubMed DOI PMC
Biffi G., Di Antonio M., Tannahill D., Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem. 2014;6:75–80. doi: 10.1038/nchem.1805. PubMed DOI PMC
Hermann T. Strategies for the design of drugs targeting RNA and RNA-protein complexes. Angew. Chem. Int. Ed. Engl. 2000;39:1890–1904. doi: 10.1002/1521-3773(20000602)39:11<1890::AID-ANIE1890>3.0.CO;2-D. PubMed DOI
Yangyuoru P.M., Di Antonio M., Ghimire C., Biffi G., Balasubramanian S., Mao H. Dual binding of an antibody and a small molecule increases the stability of terra G-quadruplex. Angew. Chem. Int. Ed. Engl. 2015;54:910–913. doi: 10.1002/anie.201408113. PubMed DOI PMC
Gabelica V., Maeda R., Fujimoto T., Yaku H., Murashima T., Sugimoto N., Miyoshi D. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry. 2013;52:5620–5628. doi: 10.1021/bi4006072. PubMed DOI
The different activities of RNA G-quadruplex structures are controlled by flanking sequences