Type I arginine methyltransferases are intervention points to unveil the oncogenic Epstein-Barr virus to the immune system

. 2022 Nov 11 ; 50 (20) : 11799-11819.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36350639

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.

Zobrazit více v PubMed

Ozoya O.O., Sokol L., Dalia S.. EBV-related malignancies, outcomes and novel prevention strategies. Infect. Disord. Drug Targets. 2016; 16:4–21. PubMed

Thorley-Lawson D.A., Allday M.J.. The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat. Rev. Microbiol. 2008; 6:913–924. PubMed

Young L.S., Rickinson A.B.. Epstein–Barr virus: 40 years on. Nat. Rev. Cancer. 2004; 4:757–768. PubMed

Cohen J.I., Fauci A.S., Varmus H., Nabel G.J.. Epstein–Barr virus: an important vaccine target for cancer prevention. Sci. Transl. Med. 2011; 3:107fs107. PubMed PMC

Akhtar S., Vranic S., Cyprian F.S., Al Moustafa A.E.. Epstein–Barr virus in gliomas: cause, association, or artifact?. Front. Oncol. 2018; 8:123. PubMed PMC

Daskalogianni C., Pyndiah S., Apcher S., Mazars A., Manoury B., Ammari N., Nylander K., Voisset C., Blondel M., Fahraeus R.. Epstein–Barr virus-encoded EBNA1 and ZEBRA: targets for therapeutic strategies against EBV-carrying cancers. J. Pathol. 2015; 235:334–341. PubMed

Wilson J.B., Manet E., Gruffat H., Busson P., Blondel M., Fahraeus R.. EBNA1: oncogenic activity, immune evasion and biochemical functions provide targets for novel therapeutic strategies against Epstein–Barr virus-associated cancers. Cancers (Basel). 2018; 10:109. PubMed PMC

Blake N., Lee S., Redchenko I., Thomas W., Steven N., Leese A., Steigerwald-Mullen P., Kurilla M.G., Frappier L., Rickinson A.. Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly–Ala)-containing protein requires exogenous processing. Immunity. 1997; 7:791–802. PubMed

Lee S.P., Brooks J.M., Al-Jarrah H., Thomas W.A., Haigh T.A., Taylor G.S., Humme S., Schepers A., Hammerschmidt W., Yates J.L.et al. .. CD8 T cell recognition of endogenously expressed Epstein–Barr virus nuclear antigen 1. J. Exp. Med. 2004; 199:1409–1420. PubMed PMC

Voo K.S., Fu T., Wang H.Y., Tellam J., Heslop H.E., Brenner M.K., Rooney C.M., Wang R.F.. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J. Exp. Med. 2004; 199:459–470. PubMed PMC

Tellam J., Connolly G., Green K.J., Miles J.J., Moss D.J., Burrows S.R., Khanna R.. Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J. Exp. Med. 2004; 199:1421–1431. PubMed PMC

Yin Y., Manoury B., Fahraeus R.. Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science. 2003; 301:1371–1374. PubMed

Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate Epstein–Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC

Beaudoin J.D., Perreault J.P.. 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 2010; 38:7022–7036. PubMed PMC

Didiot M.C., Tian Z., Schaeffer C., Subramanian M., Mandel J.L., Moine H.. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 2008; 36:4902–4912. PubMed PMC

Gomez D., Lemarteleur T., Lacroix L., Mailliet P., Mergny J.L., Riou J.F.. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res. 2004; 32:371–379. PubMed PMC

Marcel V., Tran P.L., Sagne C., Martel-Planche G., Vaslin L., Teulade-Fichou M.P., Hall J., Mergny J.L., Hainaut P., Van Dyck E.. G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis. 2011; 32:271–278. PubMed

Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H.. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA. 2002; 99:11593–11598. PubMed PMC

Song J., Perreault J.P., Topisirovic I., Richard S.. RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin). 2016; 4:e1244031. PubMed PMC

Lista M.J., Martins R.P., Angrand G., Quillevere A., Daskalogianni C., Voisset C., Teulade-Fichou M.P., Fahraeus R., Blondel M.. A yeast model for the mechanism of the Epstein–Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb. Cell. 2017; 4:305–307. PubMed PMC

Lista M.J., Martins R.P., Billant O., Contesse M.A., Findakly S., Pochard P., Daskalogianni C., Beauvineau C., Guetta C., Jamin C.et al. .. Nucleolin directly mediates Epstein–Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 2017; 8:16043. PubMed PMC

Reznichenko O., Quillevere A., Martins R.P., Loaec N., Kang H., Lista M.J., Beauvineau C., Gonzalez-Garcia J., Guillot R., Voisset C.et al. .. Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur. J. Med. Chem. 2019; 178:13–29. PubMed

Abdelmohsen K., Gorospe M.. RNA-binding protein nucleolin in disease. RNA Biol. 2012; 9:799–808. PubMed PMC

Ginisty H., Sicard H., Roger B., Bouvet P.. Structure and functions of nucleolin. J. Cell Sci. 1999; 112:761–772. PubMed

Ugrinova I., Petrova M., Chalabi-Dchar M., Bouvet P.. Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv. Protein Chem. Struct. Biol. 2018; 111:133–164. PubMed

Hanakahi L.A., Sun H., Maizels N.. High affinity interactions of nucleolin with G–G-paired rDNA. J. Biol. Chem. 1999; 274:15908–15912. PubMed

Gonzalez V., Hurley L.H.. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry. 2010; 49:9706–9714. PubMed PMC

Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palu G., Fabris D., Richter S.N.. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015; 43:8884–8897. PubMed PMC

Bian W.X., Xie Y., Wang X.N., Xu G.H., Fu B.S., Li S., Long G., Zhou X., Zhang X.L.. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res. 2019; 47:56–68. PubMed PMC

Dickerhoff J., Onel B., Chen L., Chen Y., Yang D. Solution structure of a MYC promoter G-quadruplex with 1:6:1 loop length. ACS Omega. 2019; 4:2533–2539. PubMed PMC

Lago S., Tosoni E., Nadai M., Palumbo M., Richter S.N.. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim. Biophys, Acta. 2017; 1861:1371–1381. PubMed PMC

Saha A., Duchambon P., Masson V., Loew D., Bombard S., Teulade-Fichou M.P.. Nucleolin discriminates drastically between long-loop and short-loop quadruplexes. Biochemistry. 2020; 59:1261–1272. PubMed

Poornima G., Mythili R., Nag P., Parbin S., Verma P.K., Hussain T., Rajyaguru P.I.. RGG-motif self-association regulates eIF4G-binding translation repressor protein Scd6. RNA Biol. 2019; 16:1215–1227. PubMed PMC

Thandapani P., O’Connor T.R., Bailey T.L., Richard S.. Defining the RGG/RG motif. Mol. Cell. 2013; 50:613–623. PubMed

Wu Q., Schapira M., Arrowsmith C.H., Barsyte-Lovejoy D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov. 2021; 20:509–530. PubMed

Bedford M.T. Arginine methylation at a glance. J. Cell Sci. 2007; 120:4243–4246. PubMed

Blanc R.S., Richard S.. Arginine methylation: the coming of age. Mol. Cell. 2017; 65:8–24. PubMed

Hamey J.J., Separovich R.J., Wilkins M.R.. MT-MAMS: protein methyltransferase motif analysis by mass spectrometry. J. Proteome Res. 2018; 17:3485–3491. PubMed

Lorton B.M., Shechter D. Cellular consequences of arginine methylation. Cell. Mol. Life Sci. 2019; 76:2933–2956. PubMed PMC

Yagoub D., Tay A.P., Chen Z., Hamey J.J., Cai C., Chia S.Z., Hart-Smith G., Wilkins M.R.. Proteogenomic discovery of a small, novel protein in yeast reveals a strategy for the detection of unannotated short open reading frames. J. Proteome Res. 2015; 14:5038–5047. PubMed

Chia S.Z., Lai Y.W., Yagoub D., Lev S., Hamey J.J., Pang C.N.I., Desmarini D., Chen Z., Djordjevic J.T., Erce M.A.et al. .. Knockout of the hmt1p arginine methyltransferase in Saccharomyces cerevisiae leads to the dysregulation of Phosphate-associated genes and processes. Mol. Cell. Proteomics. 2018; 17:2462–2479. PubMed PMC

Blondel M., Bach S., Bamps S., Dobbelaere J., Wiget P., Longaretti C., Barral Y., Meijer L., Peter M.. Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J. 2005; 24:1440–1452. PubMed PMC

Voisset C., Daskalogianni C., Contesse M.A., Mazars A., Arbach H., Le Cann M., Soubigou F., Apcher S., Fahraeus R., Blondel M.. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein–Barr virus. Dis. Model. Mech. 2014; 7:435–444. PubMed PMC

Lee W.C., Xue Z.X., Melese T.. The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J. Cell Biol. 1991; 113:1–12. PubMed PMC

Singh S., Berroyer A., Kim M., Kim N.. Yeast nucleolin nsr1 impedes replication and elevates genome instability at an actively transcribed guanine-rich G4 DNA-forming sequence. Genetics. 2020; 216:1023–1037. PubMed PMC

von Hacht A., Seifert O., Menger M., Schutze T., Arora A., Konthur Z., Neubauer P., Wagner A., Weise C., Kurreck J.. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 2014; 42:6630–6644. PubMed PMC

Cheng D., Yadav N., King R.W., Swanson M.S., Weinstein E.J., Bedford M.T.. Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 2004; 279:23892–23899. PubMed

Zhang B., Dong S., Zhu R., Hu C., Hou J., Li Y., Zhao Q., Shao X., Bu Q., Li H.et al. .. Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Oncotarget. 2015; 6:22799–22811. PubMed PMC

Borchardt R.T. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents. J. Med. Chem. 1980; 23:347–357. PubMed

Kryukov G.V., Wilson F.H., Ruth J.R., Paulk J., Tsherniak A., Marlow S.E., Vazquez F., Weir B.A., Fitzgerald M.E., Tanaka M.et al. .. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science. 2016; 351:1214–1218. PubMed PMC

Mavrakis K.J., McDonald E.R., Schlabach M.R., Billy E., Hoffman G.R., deWeck A., Ruddy D.A., Venkatesan K., Yu J., McAllister G.et al. .. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science. 2016; 351:1208–1213. PubMed

Eram M.S., Shen Y., Szewczyk M., Wu H., Senisterra G., Li F., Butler K.V., Kaniskan H.U., Speed B.A., Dela Sena C.et al. .. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol. 2016; 11:772–781. PubMed PMC

Prado Martins R., Findakly S., Daskalogianni C., Teulade-Fichou M.P., Blondel M., Fahraeus R. In cellulo protein–mRNA interaction assay to determine the action of G-quadruplex-binding molecules. Molecules. 2018; 23:314. PubMed PMC

Evich M., Stroeva E., Zheng Y.G., Germann M.W.. Effect of methylation on the side-chain pKa value of arginine. Protein Sci. 2016; 25:479–486. PubMed PMC

Hughes R.M., Waters M.L.. Arginine methylation in a beta-hairpin peptide: implications for Arg–pi interactions, DeltaCp(o), and the cold denatured state. J. Am. Chem. Soc. 2006; 128:12735–12742. PubMed

Campbell M., Chang P.C., Huerta S., Izumiya C., Davis R., Tepper C.G., Kim K.Y., Shevchenko B., Wang D.H., Jung J.U.et al. .. Protein arginine methyltransferase 1-directed methylation of Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen. J. Biol. Chem. 2012; 287:5806–5818. PubMed PMC

Mostaqul Huq M.D., Gupta P., Tsai N.P., White R., Parker M.G., Wei L.N. Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J. 2006; 25:5094–5104. PubMed PMC

Martins R.P., Malbert-Colas L., Lista M.J., Daskalogianni C., Apcher S., Pla M., Findakly S., Blondel M., Fahraeus R.. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res. 2019; 47:3086–3100. PubMed PMC

Masuzawa T., Oyoshi T.. Roles of the RGG domain and RNA recognition motif of nucleolin in G-quadruplex stabilization. ACS Omega. 2020; 5:5202–5208. PubMed PMC

Thandapani P., Song J., Gandin V., Cai Y., Rouleau S.G., Garant J.M., Boisvert F.M., Yu Z., Perreault J.P., Topisirovic I.et al. .. Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. Elife. 2015; 4:e06234. PubMed PMC

Chavali S.S., Cavender C.E., Mathews D.H., Wedekind J.E.. Arginine forks are a widespread motif to recognize phosphate backbones and guanine nucleobases in the RNA major groove. J. Am. Chem. Soc. 2020; 142:19835–19839. PubMed PMC

Bouvet P., Diaz J.J., Kindbeiter K., Madjar J.J., Amalric F.. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 1998; 273:19025–19029. PubMed

Hanakahi L.A., Bu Z., Maizels N.. The C-terminal domain of nucleolin accelerates nucleic acid annealing. Biochemistry. 2000; 39:15493–15499. PubMed

Norseen J., Johnson F.B., Lieberman P.M.. Role for G-quadruplex RNA binding by Epstein–Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 2009; 83:10336–10346. PubMed PMC

Leonard S., Gordon N., Smith N., Rowe M., Murray P.G., Woodman C.B.. Arginine methyltransferases are regulated by Epstein–Barr virus in B cells and are differentially expressed in Hodgkin's lymphoma. Pathogens. 2012; 1:52–64. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...