The SlDLK2 receptor, involved in the control of arbuscular mycorrhizal symbiosis, regulates hormonal balance in roots
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39723137
PubMed Central
PMC11668738
DOI
10.3389/fmicb.2024.1472449
Knihovny.cz E-zdroje
- Klíčová slova
- DLK2, arbuscular mycorrhiza, plant hormones, tomato, transcriptomics,
- Publikační typ
- časopisecké články MeSH
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and Glomeromycota fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules. SlDLK2, a member of the third clade from the DWARF14 family of α, β-hydrolases closely related to the strigolactone receptor D14, is a negative regulator of arbuscule branching in tomato, but the underlying mechanisms are unknown. We explored the possible role of SlDLK2 on the regulation of hormonal balance. RNA-seq analysis was performed on roots from composite tomato plants overexpressing SlDLK2 and in control plants transformed with the empty vector. Analysis of transcriptomic data predicted that significantly repressed genes were enriched for genes related to hormone biosynthesis pathways, with a special relevance of carotenoid/apocarotenoid biosynthesis genes. Stable transgenic SlDLK2 overexpressing (OE) tomato lines were obtained, and hormone contents were analyzed in their roots and leaves. Interesting significant hormonal changes were found in roots of SlDLK2 OE lines with respect to the control lines, with a strong decrease on jasmonic acid and ABA. In addition, SlDLK2 OE roots showed a slight reduction in auxin contents and in one of the major strigolactones in tomato, solanacol. Overall, our results suggest that the negative regulation of AM symbiosis by SlDLK2 is associated with the repression of genes involved in the biosynthesis of AM-promoting hormones.
Czech Advanced Technology and Research Institute Palacky University Olomouc Czechia
Department of Soil and Plant Microbiology Estación Experimental del Zaidín CSIC Granada Spain
Zobrazit více v PubMed
Ablazov A., Votta C., Fiorilli V., Wang J. Y., Aljedaani F., Jamil M., et al. . (2023). ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiol. 191, 382–399. doi: 10.1093/plphys/kiac472, PMID: PubMed DOI PMC
Akiyama K., Hayashi H. (2006). Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 97, 925–931. doi: 10.1093/aob/mcl063, PMID: PubMed DOI PMC
Akiyama K., Matsuzaki K., Hayashi H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827. doi: 10.1038/nature03608, PMID: PubMed DOI
Akiyama K., Ogasawara S., Ito S., Hayashi H. (2010). Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104–1117. doi: 10.1093/pcp/pcq058, PMID: PubMed DOI PMC
Anders S., Pyl P. T., Huber W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. doi: 10.1093/bioinformatics/btu638, PMID: PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A., et al. . (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153. doi: 10.1093/nar/gkw419, PMID: PubMed DOI PMC
Bedini A., Mercy L., Schneider C., Franken P., Lucic-Mercy E. (2018). Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front. Plant Sci. 9:1800. doi: 10.3389/fpls.2018.01800, PMID: PubMed DOI PMC
Besserer A., Bécard G., Jauneau A., Roux C., Séjalon-Delmas N. (2008). GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148, 402–413. doi: 10.1104/pp.108.121400, PMID: PubMed DOI PMC
Besserer A., Puech-Pages V., Kiefer P., Gomez-Roldan V., Jauneau A., Roy S., et al. . (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226. doi: 10.1371/journal.pbio.0040226, PMID: PubMed DOI PMC
Casarrubias-Castillo K., Montero-Vargas J. M., Dabdoub-González N., Winkler R., Martinez-Gallardo N. A., Zañudo-Hernández J., et al. . (2020). Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. PeerJ 8:e8888. doi: 10.7717/peerj.8888, PMID: PubMed DOI PMC
Charpentier M., Sun J., Wen J., Mysore K. S., Oldroyd G. E. (2014). Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol. 166, 2077–2090. doi: 10.1104/pp.114.246371, PMID: PubMed DOI PMC
Chen X., Chen J., Liao D., Ye H., Li C., Luo Z., et al. . (2022). Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: a role of SlGH3. 4 in tomato. Plant Cell Environ. 45, 955–968. doi: 10.1111/pce.14210, PMID: PubMed DOI
Chen Q., Sun J., Zhai Q., Zhou W., Qi L., Xu L., et al. . (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23, 3335–3352. doi: 10.1105/tpc.111.089870, PMID: PubMed DOI PMC
Choi J., Summers W., Paszkowski U. (2018). Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 56, 135–160. doi: 10.1146/annurev-phyto-080516-035521, PMID: PubMed DOI
Cook C., Whichard L. P., Turner B., Wall M. E., Egley G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190. doi: 10.1126/science.154.3753.1189, PMID: PubMed DOI
de Los Santos R. T., Vierheilig H., Ocampo J. A., García Garrido J. M. (2011). Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants. Plant Signal. Behav. 6, 755–758. doi: 10.4161/psb.6.5.15415 PubMed DOI PMC
Ellul P., Garcia-Sogo B., Pineda B., Rios G., Roig L., Moreno V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. mill.) is genotype and procedure dependent. Theor. App. Genet. 106, 231–238. doi: 10.1007/s00122-002-0928-y, PMID: PubMed DOI
Etemadi M., Gutjahr C., Couzigou J.-M., Zouine M., Lauressergues D., Timmers A., et al. . (2014). Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 166, 281–292. doi: 10.1104/pp.114.246595, PMID: PubMed DOI PMC
Ezquerro M., Li C., Pérez-Pérez J., Burbano-Erazo E., Barja M. V., Wang Y., et al. . (2023). Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. New Phytol. 239, 2292–2306. doi: 10.1111/nph.19109, PMID: PubMed DOI
Floss D. S., Levy J. G., Lévesque-Tremblay V., Pumplin N., Harrison M. J. (2013). DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. 110, E5025–E5034. doi: 10.1073/pnas.1308973110 PubMed DOI PMC
Foo E. (2013). Auxin influences strigolactones in pea mycorrhizal symbiosis. J. Plant Physiol. 170, 523–528. doi: 10.1016/j.jplph.2012.11.002 PubMed DOI
Gomez-Roldan V., Fermas S., Brewer P. B., Puech-Pagès V., Dun E. A., Pillot J. P., et al. . (2008). Strigolactone inhibition of shoot branching. Nature 455, 189–194. doi: 10.1038/nature07271 PubMed DOI
Gutjahr C., Gobbato E., Choi J., Riemann M., Johnston M. G., Summers W., et al. . (2015). Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524. doi: 10.1126/science.aac9715, PMID: PubMed DOI
Hanlon M. T., Coenen C. (2011). Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709. doi: 10.1111/j.1469-8137.2010.03567.x, PMID: PubMed DOI
Hemmerlin A., Hoeffler J.-F., Meyer O., Tritsch D., Kagan I. A., Grosdemange-Billiard C., et al. . (2003). Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278, 26666–26676. doi: 10.1074/jbc.M302526200, PMID: PubMed DOI
Henry L. K., Thomas S. T., Widhalm J. R., Lynch J. H., Davis T. C., Kessler S. A., et al. . (2018). Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat. Plants 4, 721–729. doi: 10.1038/s41477-018-0220-z, PMID: PubMed DOI
Hernandez J. A., Díaz-Vivancos P., Martínez-Sánchez G., Alburquerque N., Martínez D., Barba-Espín G., et al. . (2021). Physiological and biochemical characterization of bud dormancy: evolution of carbohydrate and antioxidant metabolisms and hormonal profile in a low chill peach variety. Sci. Hortic. 281:109957. doi: 10.1016/j.scienta.2021.109957 DOI
Herrera-Medina M. J., Steinkellner S., Vierheilig H., Ocampo Bote J. A., García Garrido J. M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175, 554–564. doi: 10.1111/j.1469-8137.2007.02107.x, PMID: PubMed DOI
Herrera-Medina M. J., Tamayo M. I., Vierheilig H., Ocampo J. A., García-Garrido J. M. (2008). The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato. J. Plant Growth Regul. 27, 221–230. doi: 10.1007/s00344-008-9049-4 DOI
Hewitt E. J. (1966). Sand and water culture methods used in the study of plant nutrition. England: Commenwealth Agricultural Bureaux.
Ho-Plágaro T., García-Garrido J. M. (2022). Molecular regulation of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 23:5960. doi: 10.3390/ijms23115960, PMID: PubMed DOI PMC
Ho-Plágaro T., Huertas R., Tamayo-Navarrete M. I., Ocampo J. A., García-Garrido J. M. (2018). An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods 14:34. doi: 10.1186/s13007-018-0304-9, PMID: PubMed DOI PMC
Ho-Plágaro T., Morcillo R. J., Tamayo-Navarrete M. I., Huertas R., Molinero-Rosales N., López-Ráez J. A., et al. . (2021). DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytol. 229, 548–562. doi: 10.1111/nph.16938, PMID: PubMed DOI
Ho-Plágaro T., Tamayo-Navarrete M. I., García-Garrido J. M. (2020). Histochemical staining and quantification of arbuscular mycorrhizal fungal colonization. Methods Mol. Biol., 2146, 43–2152. doi: 10.1007/978-1-0716-0603-2_4, PMID: PubMed DOI
Itoh A., Schilmiller A. L., Mccaig B. C., Howe G. A. (2002). Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids. J. Biol. Chem. 277, 46051–46058. doi: 10.1074/jbc.M207234200 PubMed DOI
Joung J. G., Corbett A. M., Fellman S. M., Tieman D. M., Klee H. J., Giovannoni J. J., et al. . (2009). Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiol. 151, 1758–1768. doi: 10.1104/pp.109.145169, PMID: PubMed DOI PMC
Ju L., Jing Y., Shi P., Liu J., Chen J., Yan J., et al. . (2019). JAZ proteins modulate seed germination through interaction with ABI 5 in bread wheat and Arabidopsis. New Phytol. 223, 246–260. doi: 10.1111/nph.15757, PMID: PubMed DOI
Kobae Y., Kameoka H., Sugimura Y., Saito K., Ohtomo R., Fujiwara T., et al. . (2018). Strigolactone biosynthesis genes of rice is required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol. 59, 544–553. doi: 10.1093/pcp/pcy001, PMID: PubMed DOI
Kohlen W., Charnikhova T., Bours R., López-Ráez J. A., Bouwmeester H. (2013). Tomato strigolactones: a more detailed look. Plant Signal. Behav. 8:e22785. doi: 10.4161/psb.22785, PMID: PubMed DOI PMC
Koltai H., Lekkala S. P., Bhattacharya C., Mayzlish-Gati E., Resnick N., Wininger S., et al. . (2010). A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J. Exp. Bot. 61, 1739–1749. doi: 10.1093/jxb/erq041, PMID: PubMed DOI PMC
Kretzschmar T., Kohlen W., Sasse J., Borghi L., Schlegel M., Bachelier J. B., et al. . (2012). A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341–344. doi: 10.1038/nature10873, PMID: PubMed DOI
Leon-Morcillo R. J., Angel J., Vierheilig H., Ocampo J. A., García-Garrido J. M. (2012). Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. J. Exp. Bot. 63, 3545–3558. doi: 10.1093/jxb/ers010, PMID: PubMed DOI PMC
Li L., Liu Q., Ge S., Tang M., He L., Zou Y., et al. . (2023). SlIAA23-SlARF6 module controls arbuscular mycorrhizal symbiosis by regulating strigolactone biosynthesis in tomato. Plant Cell Environ. 46, 1921–1934. doi: 10.1111/pce.14580, PMID: PubMed DOI
Liao D., Wang S., Cui M., Liu J., Chen A., Xu G. (2018). Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 19:3146. doi: 10.3390/ijms19103146, PMID: PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI
López-Ráez J. A., Charnikhova T., Gómez-Roldán V., Matusova R., Kohlen W., De Vos R., et al. . (2008). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863–874. doi: 10.1111/j.1469-8137.2008.02406.x, PMID: PubMed DOI
MacLean A. M., Bravo A., Harrison M. J. (2017). Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29, 2319–2335. doi: 10.1105/tpc.17.00555, PMID: PubMed DOI PMC
Martin-Rodriguez J. A., Huertas R., Ho-Plagaro T., Ocampo J. A., Tureckova V., Tarkowska D., et al. . (2016). Gibberellin-Abscisic acid balances during Arbuscular mycorrhiza formation in tomato. Front. Plant Sci. 7:1273. doi: 10.3389/fpls.2016.01273 PubMed DOI PMC
Martín-Rodríguez J. Á., León-Morcillo R., Vierheilig H., Ocampo J. A., Ludwig-Müller J., García-Garrido J. M. (2011). Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol. 190, 193–205. doi: 10.1111/j.1469-8137.2010.03610.x, PMID: PubMed DOI
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., et al. . (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. 108, 18512–18517. doi: 10.1073/pnas.1108434108, PMID: PubMed DOI PMC
Mendoza-Poudereux I., Kutzner E., Huber C., Segura J., Eisenreich W., Arrillaga I. (2015). Metabolic csross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol. Biochem. 95, 113–120. doi: 10.1016/j.plaphy.2015.07.029, PMID: PubMed DOI
Mercy L., Lucic-Mercy E., Nogales A., Poghosyan A., Schneider C., Arnholdt-Schmitt B. (2017). A functional approach towards understanding the role of the mitochondrial respiratory chain in an endomycorrhizal symbiosis. Front. Plant Sci. 8:417. doi: 10.3389/fpls.2017.00417 PubMed DOI PMC
Mi H., Ebert D., Muruganujan A., Mills C., Albou L.-P., Mushayamaha T., et al. . (2021). PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403. doi: 10.1093/nar/gkaa1106, PMID: PubMed DOI PMC
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
Pimprikar P., Carbonnel S., Paries M., Katzer K., Klingl V., Bohmer M. J., et al. . (2016). A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr. Biol. 26, 987–998. doi: 10.1016/j.cub.2016.01.069, PMID: PubMed DOI
Pimprikar P., Gutjahr C. (2018). Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 59, 678–695. doi: 10.1093/pcp/pcy024 PubMed DOI
Pozo M. J., López-Ráez J. A., Azcón-Aguilar C., García-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205, 1431–1436. doi: 10.1111/nph.13252, PMID: PubMed DOI
Pu X., Dong X., Li Q., Chen Z., Liu L. (2021). An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J. Integr. Plant Biol. 63, 1211–1226. doi: 10.1111/jipb.13076, PMID: PubMed DOI
Rial C., Varela R. M., Molinillo J. M., López-Ráez J. A., Macías F. A. (2019). A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem. Anal. 30, 110–116. doi: 10.1002/pca.2796, PMID: PubMed DOI
Rich M. K., Schorderet M., Bapaume L., Falquet L., Morel P., Vandenbussche M., et al. . (2015). The petunia GRAS transcription factor ATA/RAM1 regulates symbiotic gene expression and fungal morphogenesis in arbuscular mycorrhiza. Plant Physiol. 168, 788–797. doi: 10.1104/pp.15.00310, PMID: PubMed DOI PMC
Shi J., Wang X., Wang E. (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74, 569–607. doi: 10.1146/annurev-arplant-061722-090342 PubMed DOI
Song Y. Y., Ye M., Li C. Y., Wang R. L., Wei X. C., Luo S. M., et al. . (2013). Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 39, 1036–1044. doi: 10.1007/s10886-013-0312-1, PMID: PubMed DOI
Stauder R., Welsch R., Camagna M., Kohlen W., Balcke G. U., Tissier A., et al. . (2018). Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family. Front. Plant Sci. 9:255. doi: 10.3389/fpls.2018.00255, PMID: PubMed DOI PMC
Sun Y. K., Flematti G. R., Smith S. M., Waters M. T. (2016). Reporter gene-facilitated detection of compounds in Arabidopsis leaf extracts that activate the Karrikin signaling pathway. Front. Plant Sci. 7:1799. doi: 10.3389/fpls.2016.01799, PMID: PubMed DOI PMC
Tejeda-Sartorius M., Martínez De La Vega O., Délano-Frier J. P. (2008). Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol. Plant. 133, 339–353. doi: 10.1111/j.1399-3054.2008.01081.x, PMID: PubMed DOI
Thompson A., Thorne E., Burbidge A., Jackson A., Sharp R., Taylor I. (2004). Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell Environ. 27, 459–471. doi: 10.1111/j.1365-3040.2003.01164.x DOI
Trapnell C., Pachter L., Salzberg S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. doi: 10.1093/bioinformatics/btp120, PMID: PubMed DOI PMC
Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., Van Baren M. J., et al. . (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621, PMID: PubMed DOI PMC
Umehara M., Hanada A., Yoshida S., Akiyama K., Arite T., Takeda-Kamiya N., et al. . (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200. doi: 10.1038/nature07272, PMID: PubMed DOI
Végh A., Incze N., Fábián A., Huo H., Bradford K. J., Balázs E., et al. . (2017). Comprehensive analysis of DWARF14-LIKE2 (DLK2) reveals its functional divergence from Strigolactone-related paralogs. Front. Plant Sci. 8:1641. doi: 10.3389/fpls.2017.01641, PMID: PubMed DOI PMC
Votta C., Fiorilli V., Haider I., Wang J. Y., Balestrini R., Petřík I., et al. . (2022). Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. Plant J. 111, 1688–1700. doi: 10.1111/tpj.15917, PMID: PubMed DOI PMC
Vranová E., Coman D., Gruissem W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700. doi: 10.1146/annurev-arplant-050312-120116 PubMed DOI
Wagatsuma T., Maejima E., Watanabe T., Toyomasu T., Kuroda M., Muranaka T., et al. . (2018). Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols. J. Exp. Bot. 69, 567–577. doi: 10.1093/jxb/erx414, PMID: PubMed DOI PMC
Walter M. H. (2020). “C13 α-Ionol (Blumenol) glycosides and C14 Mycorradicin: Apocarotenoids accumulating in roots during the Arbuscular Mycorrhizal Symbiosis” in Biology, chemistry and applications of Apocarotenoids. ed. Ramamoorthy S. (Florida: CRC Press; ), 173–187.
Wang K., Guo Q., Froehlich J. E., Hersh H. L., Zienkiewicz A., Howe G. A., et al. . (2018). Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell 30, 1006–1022. doi: 10.1105/tpc.18.00250, PMID: PubMed DOI PMC
Wang J. Y., Haider I., Jamil M., Fiorilli V., Saito Y., Mi J., et al. . (2019). The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat. Commun. 10, 1–9. doi: 10.1038/s41467-019-08461-1 PubMed DOI PMC
Waters M. T., Gutjahr C., Bennett T., Nelson D. C. (2017). Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68, 291–322. doi: 10.1146/annurev-arplant-042916-040925 PubMed DOI
Waters M. T., Nelson D. C. (2023). Karrikin perception and signalling. New Phytol. 237, 1525–1541. doi: 10.1111/nph.18598, PMID: PubMed DOI
Waters M. T., Nelson D. C., Scaffidi A., Flematti G. R., Sun Y. K., Dixon K. W., et al. . (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295. doi: 10.1242/dev.074567, PMID: PubMed DOI
Yang J., Duan G., Li C., Liu L., Han G., Zhang Y., et al. . (2019). The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 10:1349. doi: 10.3389/fpls.2019.01349, PMID: PubMed DOI PMC
Yoneyama K., Yoneyama K., Takeuchi Y., Sekimoto H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031–1038. doi: 10.1007/s00425-006-0410-1, PMID: PubMed DOI
Yoshida S., Kameoka H., Tempo M., Akiyama K., Umehara M., Yamaguchi S., et al. . (2012). The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 196, 1208–1216. doi: 10.1111/j.1469-8137.2012.04339.x PubMed DOI