Gibberellin-Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27602046
PubMed Central
PMC4993810
DOI
10.3389/fpls.2016.01273
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, arbuscular mycorrhiza, gibberellins, plant hormones, symbiosis, tomato,
- Publikační typ
- časopisecké články MeSH
Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots.
Zobrazit více v PubMed
Achard P., Cheng H., Grauwe L., Decat J., Schoutteten H., Moritz T., et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311 91–94. 10.1126/science.1118642 PubMed DOI
Balestrini R., Gómez-Ariza J., Lanfranco L., Bonfante P. (2007). Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculared cells. Mol. Plant Microbe Interact. 20 1055–1062. 10.1094/MPMI-20-9-1055 PubMed DOI
Bassel G. W., Mullen R. T., Bewley J. D. (2008). Procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J. Exp. Bot. 59 585–593. 10.1093/jxb/erm354 PubMed DOI
Bonfante P., Genre A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:48 10.1038/ncomms1046 PubMed DOI
Brown R. G. S., Kawaide H., Yang Y. Y., Kamiya Y. (1997). Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiol. Plant 101 309–313. 10.1111/j.1399-3054.1997.tb01001.x DOI
Chabot C., Bécard G., Piché Y. (1992). Life cycle of Glomus intraradix in root organ culture. Mycologia 84 315–321. 10.2307/3760183 DOI
Charpentier M., Sun J., Wen J., Mysore K. S., Oldroyd G. (2014). ABA promotion of arbuscular mycorrhizal colonization requires a component of the PP2A protein phosphatase complex. Plant Physiol. 166 2077–2090. 10.1104/pp.114.246371 PubMed DOI PMC
Chitarra W., Pagliarani C. H., Maserti B., Lumini E., Siciliano I., Cascone P., et al. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171 1009–1023. 10.1104/pp.16.00307 PubMed DOI PMC
Cosme M., Ramireddy E., Franken P., Schmülling T., Wurst S. (2016). Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 1–12. 10.1007/s00572-016-0706-3 PubMed DOI PMC
El Ghachtouli N., Martin-Tanguy J., Paynot M., Gianinazzi S. (1996). First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett. 385 189–192. 10.1016/0014-5793(96)00379-1 PubMed DOI
Etemadi M., Gutjahr C., Couzigou J.-M., Zouine M., Lauressergues D., Timmers A., et al. (2014). Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 166 281–292. 10.1104/pp.114.246595 PubMed DOI PMC
Fiorilli V., Catoni M., Miozzi L., Novero M., Accotto G. P., Lanfranco L. (2009). Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol. 184 975–987. 10.1111/j.1469-8137.2009.03031.x PubMed DOI
Floss D., Levy J., Lévesque-Tremblay V., Pumplin N., Harrison M. (2013). DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U. S. A. 110 E5025–E5034. 10.1073/pnas.1308973110 PubMed DOI PMC
Foo E., Rossi J. J., Jones W. T., Reid J. B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111 769–779. 10.1093/aob/mct041 PubMed DOI PMC
García-Garrido J. M., León-Morcillo R. J., Martín-Rodríguez J. A., Ocampo-Bote J. A. (2010). Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol. Plant Microbe Interact. 23 651–664. 10.1094/MPMI-23-5-0651 PubMed DOI
Gonai T., Kawahara S., Tougou M., Satoh S., Hashiba T., Hirai N., et al. (2004). Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J. Exp. Bot. 55 111–118. 10.1093/jxb/erh023 PubMed DOI
Gutjahr C. (2014). Phytohormone signaling in arbuscular mycorrhiza development. Curr. Opin. Plant Biol. 20 26–34. 10.1016/j.pbi.2014.04.003 PubMed DOI
Hedden P., Thomas G. (2012). Gibberellin biosynthesis and its regulation. Biochem. J. 444 11–25. 10.1042/BJ20120245 PubMed DOI
Herrera-Medina M. J., Steinkellner S., Vierheilig H., Ocampo Bote J. A., García-Garrido J. M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175 554–564. 10.1111/j.1469-8137.2007.02107.x PubMed DOI
Hewitt E. J. (1966). Sand Water Culture Methods Used in the Study of Plant Nutrition. Technical Communication 22 Farnham Royal: Commonwealth Agricultural Bureaux.
Hradecká V., Novák O., Havlíček L., Strnad M. (2007). Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. J. Chromatogr. B 847 162–173. 10.1016/j.jchromb.2006.09.034 PubMed DOI
Kang S. M., Kim J. T., Hamayun M., Hwang I. C., Khan A. L., Kim Y. H., et al. (2010). Influence of prohexadione-calcium on growth and gibberellins content of Chinese cabbage grown in alpine region of South Korea. Sci. Hort. 125 88–92. 10.1016/j.scienta.2010.02.018 DOI
Kim H. Y., Lee I. J., Hamayun M., Kim J. T., Won J. G., Hwang I. C., et al. (2007). Effect of prohexadione calcium on growth components and endogenous gibberellins contents of rice (Oryza sativa L.). J. Agron. Crop Sci. 193 445–451. 10.1111/j.1439-037X.2007.00280.x DOI
Kim Y. H., Khan A. L., Hamayun M., Kim J. T., Lee J. H., Hwang I. C., et al. (2010). Effects of prohexadione calcium on growth and gibberellins contents of Chrysanthemum morifolium R. cv Monalisa White. Sci. Hort. 123 423–427. 10.1016/j.scienta.2009.09.022 DOI
Kucera B., Cohn M. A., Leubner-Metzger G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15 281–307. 10.1079/SSR2005218 DOI
Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., et al. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23 1647–1656. 10.1038/sj.emboj.7600121 PubMed DOI PMC
Lee K. H., Piao H. L., Kim H. Y., Choi S. M., Jiang F., Hartung W., et al. (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126 1109–1120. 10.1016/j.cell.2006.07.034 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI
López-Ráez J. A., Kohlen W., Charnikhova T., Mulder P., Undas A. K., Sergeant M. J., et al. (2010). Does abscisic acid affect strigolactone biosynthesis? New Phytol. 187 343–354. 10.1111/j.1469-8137.2010.03291.x PubMed DOI
Ludwig-Müller J. (2010). “Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi,” in Arbuscular Mycorrhizas: Physiology and Function eds Koltai H., Kapulnik Y. (Springer: Science Business Media B.V; ) 169–190.
Mahouachi J., Gómez-Cadenas A., Primo-Millo E., Talon M. (2005). Antagonistic changes between abscisic acid and gibberellins in citrus fruits subjected to a series of different water conditions. J. Plant Growth Regul. 24 179–187. 10.1007/s00344-004-0001-y DOI
Martín-Rodríguez J. A., León-Morcillo R., Vierheilig H., Ocampo Bote J. A., Ludwig-Müllerm J., García-Garrido J. M., et al. (2010). Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. J. Plant Physiol. 167 606–613. 10.1016/j.jplph.2009.11.014 PubMed DOI
Martín-Rodríguez J. A., León-Morcillo R. J., Vierheilig H., Ocampo-Bote J. A., Ludwig-Müller J., García-Garrido J. M. (2011). Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol. 190 193–205. 10.1111/j.1469-8137.2010.03610.x PubMed DOI
Martín-Rodríguez J. A., Ocampo J. A., Molinero-Rosales N., Tarkowská D., Ruíz-Rivero O., García-Garrido J. M. (2015). Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol. Plant 154 66–81. 10.1111/ppl.12274 PubMed DOI
Oh E., Yamaguchi S., Hu J. H., Yusuke J., Jung B., Paik I., et al. (2007). PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19 1192–1208. 10.1105/tpc.107.050153 PubMed DOI PMC
Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55 158–161. 10.1016/S0007-1536(70)80110-3 DOI
Pimprikar P., Carbonnel S., Paries M., Katzer K., Klingl V., Bohmer M. J., et al. (2016). A CCaMK-CYCLOPS-DELLA complex activates transciption of RAM1 to regulate arbuscule branching. Curr. Biol. 26 1–12. 10.1016/j.cub.2016.01.069 PubMed DOI
Pozo M. J., López-Ráez J. A., Azcón C., García-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205 1431–1436. 10.1111/nph.13252 PubMed DOI
Rittenberg D., Foster G. L. (1940). New procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133 737–744.
Rodríguez-Gacio M., Matilla-Vázquez M. A., Matilla A. J. (2009). Seed dormancy and ABA signaling. Plant Signal. Behav. 4 1035–1048. 10.4161/psb.4.11.9902 PubMed DOI PMC
Ruiz-Lozano J. M., Aroca R., Zamarreño A. M., Molina S., Andreo-Jiménez B., Porcel R., et al. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 39 441–452. 10.1111/pce.1263 PubMed DOI
Schüßler A., Walker C. (2010). The Glomeromycota. A Species List With New Families and New Genera. Edinburgh: The Royal Botanic Garden.
Seo M., Hanada A., Kuwahara A., Endo A., Okamoto M., Yamauchi Y., et al. (2006). Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 48 354–366. 10.1111/j.1365-313X.2006.02881.x PubMed DOI
Shaul-Keinan O., Gadkar V., Ginzberg I., Grünzweig J. M., Chet I., Elad Y., et al. (2002). Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154 501–507. 10.1046/j.1469-8137.2002.00388.x PubMed DOI
Shu K., Chen Q., Wu Y., Liu R., Zhang H., Wang P., et al. (2016). ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J. 85 348–361. 10.1111/tpj.13109 PubMed DOI
Silverstone A., Jung H.-S., Dill A., Kawaide H., Kamiya Y., Sun T. (2001). Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13 1555–1565. 10.1105/TPC.010047 PubMed DOI PMC
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. London: Academic Press.
Taylor I. B., Linforth R. S. T., Al Naieb R. J., Bowman W. R., Marples B. A. (1988). The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ. 11 739–745. 10.1111/j.1365-3040.1988.tb01158.x DOI
Trouvelot A., Kough J. L., Gianinazzi-Pearson V. (1986). “Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de methods d’estimation ayant une signification fonctionelle,” in Physiological and Genetical Aspects of Mycorrhizae eds Gianinazzi-Pearson V., Gianinazzi S. (France: INRA Paris; ) 217–221.
Turečková V., Novák O., Strnad M. (2009). Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta 80 390–399. 10.1016/j.talanta.2009.06.027 PubMed DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra-performance liquid chromatography–tandem mass spectrometry. Talanta 112 85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI
Van Tuinen A., Peters A. H. L. J., Kendrick R. E., Zeevaart J. A. D., Koornneef M. (1999). Characterisation of the procera mutant of tomato and the interaction of gibberellins with end-of-day far-red light treatments. Physiol. Plant 106 121–128. 10.1034/j.1399-3054.1999.106117.x DOI
Weiss D., Ori N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144 1240–1246. 10.1104/pp.107.100370 PubMed DOI PMC
White C. N., Proebsting W. M., Hedden P., Rivin C. J. (2000). Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122 1081–1088. 10.1104/pp.122.4.1081 PubMed DOI PMC
Yu N., Luo D., Zhang X., Liu J., Wang W., Jin Y., et al. (2014). A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res. 24 130–133. 10.1038/cr.2013.167 PubMed DOI PMC
Zentella R., Zhang Z. L., Park M., Thomas S. G., Endo A., Murase K., et al. (2007). Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19 3037–3057. 10.1105/tpc.107.054999 PubMed DOI PMC
A dual regulatory role for the arbuscular mycorrhizal master regulator RAM1 in tomato
Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice