The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36107769
PubMed Central
PMC9508830
DOI
10.1093/nar/gkac751
PII: 6701593
Knihovny.cz E-zdroje
- MeSH
- alanin MeSH
- fosfoproteiny MeSH
- glycin MeSH
- infekce virem Epsteina-Barrové * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nukleolin MeSH
- peptidy genetika MeSH
- proteinové agregáty MeSH
- proteiny vázající RNA metabolismus MeSH
- virus Epsteinův-Barrové - jaderné antigeny metabolismus MeSH
- virus Epsteinův-Barrové * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- fosfoproteiny MeSH
- glycin MeSH
- messenger RNA MeSH
- peptidy MeSH
- proteinové agregáty MeSH
- proteiny vázající RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny MeSH
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine-alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Department of Medical Biosciences Building 6M Umeå University 901 85 Umeå Sweden
ICCVS University of Gdańsk Science ul Wita Stwosza 63 80 308 Gdańsk Poland
Inserm UMR 1078 Université de Bretagne Occidentale Bretagne CHRU Brest 29200 Brest France
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 65653 Brno Czech Republic
Zobrazit více v PubMed
Candelise N., Scaricamazza S., Salvatori I., Ferri A., Valle C., Manganelli V., Garofalo T., Sorice M., Misasi R.. Protein aggregation landscape in neurodegenerative diseases: clinical relevance and future applications. Int. J. Mol. Sci. 2021; 22:6016. PubMed PMC
Mogk A., Bukau B., Kampinga H.H.. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell. 2018; 69:214–226. PubMed
Goncalves C.C., Sharon I., Schmeing T.M., Ramos C.H.I., Young J.C.. The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70. Sci. Rep. 2021; 11:17139. PubMed PMC
Genest O., Wickner S., Doyle S.M.. Hsp90 and hsp70 chaperones: collaborators in protein remodeling. J. Biol. Chem. 2019; 294:2109–2120. PubMed PMC
Mizuno M., Ebine S., Shounai O., Nakajima S., Tomomatsu S., Ikeuchi K., Matsuo Y., Inada T.. The nascent polypeptide in the 60S subunit determines the Rqc2-dependency of ribosomal quality control. Nucleic Acids Res. 2021; 49:2102–2113. PubMed PMC
Joazeiro C.A.P. Mechanisms and functions of ribosome-associated protein quality control. Nat. Rev. Mol. Cell Biol. 2019; 20:368–383. PubMed PMC
Stein K.C., Frydman J.. The stop-and-go traffic regulating protein biogenesis: how translation kinetics controls proteostasis. J. Biol. Chem. 2019; 294:2076–2084. PubMed PMC
Chandrasekaran V., Juszkiewicz S., Choi J., Puglisi J.D., Brown A., Shao S., Ramakrishnan V., Hegde R.S.. Mechanism of ribosome stalling during translation of a poly(A) tail. Nat. Struct. Mol. Biol. 2019; 26:1132–1140. PubMed PMC
Deuerling E., Gamerdinger M., Kreft S.G.. Chaperone interactions at the ribosome. Cold Spring Harb. Perspect. Biol. 2019; 11:a033977. PubMed PMC
Liu Y., Hu Y., Li X., Niu L., Teng M.. The crystal structure of the human nascent polypeptide-associated complex domain reveals a nucleic acid-binding region on the NACA subunit. Biochemistry. 2010; 49:2890–2896. PubMed
Gamerdinger M., Kobayashi K., Wallisch A., Kreft S.G., Sailer C., Schlomer R., Sachs N., Jomaa A., Stengel F., Ban N.et al. .. Early scanning of nascent polypeptides inside the ribosomal tunnel by NAC. Mol. Cell. 2019; 75:996–1006. PubMed
del Alamo M., Hogan D.J., Pechmann S., Albanese V., Brown P.O., Frydman J.. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 2011; 9:e1001100. PubMed PMC
Wang S., Sakai H., Wiedmann M.. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell Biol. 1995; 130:519–528. PubMed PMC
Martin E.M., Jackson M.P., Gamerdinger M., Gense K., Karamonos T.K., Humes J.R., Deuerling E., Ashcroft A.E., Radford S.E.. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J. Biol. Chem. 2018; 293:8554–8568. PubMed PMC
Shen K., Gamerdinger M., Chan R., Gense K., Martin E.M., Sachs N., Knight P.D., Schlomer R., Calabrese A.N., Stewart K.L.et al. .. Dual role of ribosome-binding domain of NAC as a potent suppressor of protein aggregation and aging-related proteinopathies. Mol. Cell. 2019; 74:729–741. PubMed PMC
Kirstein-Miles J., Scior A., Deuerling E., Morimoto R.I.. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 2013; 32:1451–1468. PubMed PMC
Fabbri L., Chakraborty A., Robert C., Vagner S.. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat. Rev. Cancer. 2021; 21:558–577. PubMed
Holcik M., Sonenberg N.. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 2005; 6:318–327. PubMed
Sysoev V.O., Fischer B., Frese C.K., Gupta I., Krijgsveld J., Hentze M.W., Castello A., Ephrussi A.. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in drosophila. Nat. Commun. 2016; 7:12128. PubMed PMC
Garcia-Moreno M., Noerenberg M., Ni S., Jarvelin A.I., Gonzalez-Almela E., Lenz C.E., Bach-Pages M., Cox V., Avolio R., Davis T.et al. .. System-wide profiling of RNA-Binding proteins uncovers key regulators of virus infection. Mol. Cell. 2019; 74:196–211. PubMed PMC
Beaudoin J.D., Novoa E.M., Vejnar C.E., Yartseva V., Takacs C.M., Kellis M., Giraldez A.J.. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 2018; 25:677–686. PubMed PMC
Lista M.J., Martins R.P., Billant O., Contesse M.A., Findakly S., Pochard P., Daskalogianni C., Beauvineau C., Guetta C., Jamin C.et al. .. Nucleolin directly mediates epstein-barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 2017; 8:16043. PubMed PMC
Yin Y., Manoury B., Fahraeus R.. Self-inhibition of synthesis and antigen presentation by epstein-barr virus-encoded EBNA1. Science. 2003; 301:1371–1374. PubMed
Apcher S., Daskalogianni C., Manoury B., Fahraeus R.. Epstein barr virus-encoded EBNA1 interference with MHC class i antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 2010; 6:e1001151. PubMed PMC
Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate epstein-barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC
Apcher S., Komarova A., Daskalogianni C., Yin Y., Malbert-Colas L., Fahraeus R.. mRNA translation regulation by the gly-ala repeat of epstein-barr virus nuclear antigen 1. J. Virol. 2009; 83:1289–1298. PubMed PMC
Kikin O., D’Antonio L., Bagga P.S.. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006; 34:W676–W682. PubMed PMC
Hon J., Marusiak M., Martinek T., Kunka A., Zendulka J., Bednar D., Damborsky J.. SoluProt: prediction of soluble protein expression in escherichia coli. Bioinformatics. 2021; 37:23–28. PubMed PMC
Martins R.P., Malbert-Colas L., Lista M.J., Daskalogianni C., Apcher S., Pla M., Findakly S., Blondel M., Fahraeus R.. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res. 2019; 47:3086–3100. PubMed PMC
Apcher S., Daskalogianni C., Lejeune F., Manoury B., Imhoos G., Heslop L., Fahraeus R.. Major source of antigenic peptides for the MHC class i pathway is produced during the pioneer round of mRNA translation. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:11572–11577. PubMed PMC
McQuin C., Goodman A., Chernyshev V., Kamentsky L., Cimini B.A., Karhohs K.W., Doan M., Ding L., Rafelski S.M., Thirstrup D.et al. .. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018; 16:e2005970. PubMed PMC
Zheng A.J., Thermou A., Guixens Gallardo P., Malbert-Colas L., Daskalogianni C., Vaudiau N., Brohagen P., Granzhan A., Blondel M., Teulade-Fichou M.P.et al. .. The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Sci. Alliance. 2022; 5:e202101232. PubMed PMC
Guo B., Huang J., Wu W., Feng D., Wang X., Chen Y., Zhang H.. The nascent polypeptide-associated complex is essential for autophagic flux. Autophagy. 2014; 10:1738–1748. PubMed PMC
Tovar Fernandez M.C., Sroka E.M., Lavigne M., Thermou A., Daskalogianni C., Manoury B., Prado Martins R., Fahraeus R.. Substrate-specific presentation of MHC class I-restricted antigens via autophagy pathway. Cell. Immunol. 2022; 374:104484. PubMed
Meury T., Akhouayri O., Jafarov T., Mandic V., St-Arnaud R.. Nuclear alpha NAC influences bone matrix mineralization and osteoblast maturation in vivo. Mol. Cell. Biol. 2010; 30:43–53. PubMed PMC
Lin Z., Gasic I., Chandrasekaran V., Peters N., Shao S., Mitchison T.J., Hegde R.S.. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science. 2020; 367:100–104. PubMed PMC
Herviou P., Le Bras M., Dumas L., Hieblot C., Gilhodes J., Cioci G., Hugnot J.P., Ameadan A., Guillonneau F., Dassi E.et al. .. hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat. Commun. 2020; 11:2661. PubMed PMC
Benhalevy D., Gupta S.K., Danan C.H., Ghosal S., Sun H.W., Kazemier H.G., Paeschke K., Hafner M., Juranek S.A.. The human CCHC-type zinc finger nucleic acid-binding protein binds G-Rich elements in target mRNA coding sequences and promotes translation. Cell Rep. 2017; 18:2979–2990. PubMed PMC
Lista M.J., Voisset C., Contesse M.A., Friocourt G., Daskalogianni C., Bihel F., Fahraeus R., Blondel M.. The long-lasting love affair between the budding yeast saccharomyces cerevisiae and the epstein-barr virus. Biotechnol. J. 2015; 10:1670–1681. PubMed
Kearse M.G., Wilusz J.E.. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 2017; 31:1717–1731. PubMed PMC
Todd P.K., Oh S.Y., Krans A., He F., Sellier C., Frazer M., Renoux A.J., Chen K.C., Scaglione K.M., Basrur V.et al. .. CGG repeat-associated translation mediates neurodegeneration in fragile x tremor ataxia syndrome. Neuron. 2013; 78:440–455. PubMed PMC
Cleary J.D., Pattamatta A., Ranum L.P.W.. Repeat-associated non-ATG (RAN) translation. J. Biol. Chem. 2018; 293:16127–16141. PubMed PMC
Fratta P., Mizielinska S., Nicoll A.J., Zloh M., Fisher E.M., Parkinson G., Isaacs A.M.. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci. Rep. 2012; 2:1016. PubMed PMC
Ofer N., Weisman-Shomer P., Shklover J., Fry M.. The quadruplex r(CGG)n destabilizing cationic porphyrin TMPyP4 cooperates with hnRNPs to increase the translation efficiency of fragile x premutation mRNA. Nucleic Acids Res. 2009; 37:2712–2722. PubMed PMC
Kharel P., Becker G., Tsvetkov V., Ivanov P.. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res. 2020; 48:12534–12555. PubMed PMC
Ash P.E., Bieniek K.F., Gendron T.F., Caulfield T., Lin W.L., Dejesus-Hernandez M., van Blitterswijk M.M., Jansen-West K., Paul J.W.,3rd, Rademakers R.et al. .. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013; 77:639–646. PubMed PMC
Mori K., Arzberger T., Grasser F.A., Gijselinck I., May S., Rentzsch K., Weng S.M., Schludi M.H., van der Zee J., Cruts M.et al. .. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 2013; 126:881–893. PubMed