RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29802381
PubMed Central
PMC5970142
DOI
10.1038/s41598-018-26582-3
PII: 10.1038/s41598-018-26582-3
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- G-kvadruplexy * MeSH
- Hepacivirus genetika fyziologie MeSH
- konzervovaná sekvence MeSH
- lidé MeSH
- replikace viru MeSH
- RNA virová biosyntéza chemie genetika metabolismus MeSH
- RNA-dependentní RNA-polymerasa metabolismus MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
- RNA-dependentní RNA-polymerasa MeSH
DNA and RNA guanine-rich oligonucleotides can form non-canonical structures called G-quadruplexes or "G4" that are based on the stacking of G-quartets. The role of DNA and RNA G4 is documented in eukaryotic cells and in pathogens such as viruses. Yet, G4 have been identified only in a few RNA viruses, including the Flaviviridae family. In this study, we analysed the last 157 nucleotides at the 3'end of the HCV (-) strand. This sequence is known to be the minimal sequence required for an efficient RNA replication. Using bioinformatics and biophysics, we identified a highly conserved G4-prone sequence located in the stem-loop IIy' of the negative strand. We also showed that the formation of this G-quadruplex inhibits the in vitro RNA synthesis by the RdRp. Furthermore, Phen-DC3, a specific G-quadruplex binder, is able to inhibit HCV viral replication in cells in conditions where no cytotoxicity was measured. Considering that this domain of the negative RNA strand is well conserved among HCV genotypes, G4 ligands could be of interest for new antiviral therapies.
Institute of Biophysics Academy of Sciences of the Czech Republic 612 65 Brno Czech Republic
Univ Bordeaux ARNA laboratory INSERM U1212 CNRS UMR 5320 IECB F 33600 Pessac France
Univ Bordeaux CNRS UMR5234 MFP laboratory F 33000 Bordeaux France
Zobrazit více v PubMed
Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;18:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Harris LM, Merrick CJ. G-Quadruplexes in Pathogens: A Common Route to Virulence Control? PLoS Pathog. 2015;11:e1004562. doi: 10.1371/journal.ppat.1004562. PubMed DOI PMC
Métifiot M, Amrane S, Litvak S, Andreola M-L. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res. 2014;42:12352–12366. doi: 10.1093/nar/gku999. PubMed DOI PMC
Norseen J, Johnson FB, Lieberman PM. Role for G-Quadruplex RNA Binding by Epstein-Barr Virus Nuclear Antigen 1 in DNA Replication and Metaphase Chromosome Attachment. J. Virol. 2009;83:10336–10346. doi: 10.1128/JVI.00747-09. PubMed DOI PMC
Tlučková K, et al. Human Papillomavirus G-Quadruplexes. Biochemistry (Mosc.) 2013;52:7207–7216. doi: 10.1021/bi400897g. PubMed DOI
Patel PK, Bhavesh NS, Hosur RV. NMR Observation of a Novel C-Tetrad in the Structure of the SV40 Repeat Sequence GGGCGG. Biochem. Biophys. Res. Commun. 2000;270:967–971. doi: 10.1006/bbrc.2000.2479. PubMed DOI
Artusi S, et al. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015;118:123–131. doi: 10.1016/j.antiviral.2015.03.016. PubMed DOI PMC
Piekna-Przybylska D, Sullivan MA, Sharma G, Bambara RA. U3 Region in the HIV-1 Genome Adopts a G-Quadruplex Structure in Its RNA and DNA Sequence. Biochemistry (Mosc.) 2014;53:2581–2593. doi: 10.1021/bi4016692. PubMed DOI PMC
Lyonnais S, Gorelick RJ, Mergny J-L, Le Cam E, Mirambeau G. G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res. 2003;31:5754–5763. doi: 10.1093/nar/gkg716. PubMed DOI PMC
Amrane S, et al. Topology of a DNA G-Quadruplex Structure Formed in the HIV-1 Promoter: A Potential Target for Anti-HIV Drug Development. J. Am. Chem. Soc. 2014;136:5249–5252. doi: 10.1021/ja501500c. PubMed DOI
Perrone R, et al. A Dynamic G-Quadruplex Region Regulates the HIV-1 Long Terminal Repeat Promoter. J. Med. Chem. 2013;56:6521–6530. doi: 10.1021/jm400914r. PubMed DOI PMC
Amrane, S., Bedrat, A. & Mergny, J. L. Methods and pharmaceutical compositions for the treatment of filovirus infections. WO2016142449 A1 (2015).
Krafčíková P, Demkovičová E, Víglaský V. Ebola virus derived G-quadruplexes: Thiazole orange interaction. Biochim. Biophys. Acta BBA - Gen. Subj. 2017;1861:1321–1328. doi: 10.1016/j.bbagen.2016.12.009. PubMed DOI
Wang S-R, et al. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem. Biol. 2016;23:1113–1122. doi: 10.1016/j.chembiol.2016.07.019. PubMed DOI
Fleming AM, Ding Y, Alenko A, Burrows CJ. Zika Virus Genomic RNA Possesses Conserved G-Quadruplexes Characteristic of the Flaviviridae Family. ACS Infect. Dis. 2016;2:674–681. doi: 10.1021/acsinfecdis.6b00109. PubMed DOI PMC
Mauger DM, et al. Functionally conserved architecture of hepatitis C virus RNA genomes. Proc. Natl. Acad. Sci. 2015;112:3692–3697. PubMed PMC
Palau W, Masante C, Ventura M, Di Primo C. Direct evidence for RNA–RNA interactions at the 3′ end of the Hepatitis C virus genome using surface plasmon resonance. RNA. 2013;19:982–981. doi: 10.1261/rna.037606.112. PubMed DOI PMC
Friebe P, Boudet J, Simorre JP, Bartenschlager R. Kissing-Loop Interaction in the 3′ End of the Hepatitis C Virus Genome Essential for RNA Replication. J Virol. 2005;79:380–392. doi: 10.1128/JVI.79.1.380-392.2005. PubMed DOI PMC
Piñeiro D, Martinez-Salas E. RNA Structural Elements of Hepatitis C Virus Controlling Viral RNA Translation and the Implications for Viral Pathogenesis. Viruses. 2012;4:2233–2250. doi: 10.3390/v4102233. PubMed DOI PMC
Romero-López C. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J. Med. Genet. 2014;4:6. doi: 10.5496/wjmg.v4.i2.6. DOI
Schuster C, et al. Secondary Structure of the 3′ Terminus of Hepatitis C Virus Minus-Strand RNA. J Virol. 2002;76:8058–8068. doi: 10.1128/JVI.76.16.8058-8068.2002. PubMed DOI PMC
Smith RM, Walton CM, Wu CH, Wu GY. Secondary Structure and Hybridization Accessibility of Hepatitis C Virus 3′-Terminal Sequences. J Virol. 2002;76:9563–9574. doi: 10.1128/JVI.76.19.9563-9574.2002. PubMed DOI PMC
Astier-Gin T, Bellecave P, Litvak S, Ventura M. Template requirements and binding of hepatitis C virus NS5B polymerase during in vitro RNA synthesis from the 3′-end of virus minus-strand RNA. Febs J. 2005;272:3872–86. doi: 10.1111/j.1742-4658.2005.04804.x. PubMed DOI
Friebe P, Lohmann V, Krieger N, Bartenschlager R. Sequences in the 5′ Nontranslated Region of Hepatitis C Virus Required for RNA Replication. J Virol. 2001;75:12047–12057. doi: 10.1128/JVI.75.24.12047-12057.2001. PubMed DOI PMC
Mahias K, et al. Identification of a structural element of the hepatitis C virus minus strand RNA involved in the initiation of RNA synthesis. Nucleic Acids Res. 2010;38:4079–4091. doi: 10.1093/nar/gkq109. PubMed DOI PMC
Binder M, et al. Identification of determinants involved in initiation of hepatitis C virus RNA synthesis by using intergenotypic replicase chimeras. J Virol. 2007;81:5270–5283. doi: 10.1128/JVI.00032-07. PubMed DOI PMC
Wang L, Jeng K-S, Lai MMC. Poly(C)-binding protein 2 interacts with sequences required for viral replication in the hepatitis C virus (HCV) 5′ untranslated region and directs HCV RNA replication through circularizing the viral genome. J. Virol. 2011;85:7954–7964. doi: 10.1128/JVI.00339-11. PubMed DOI PMC
Wang Shao-Ru, Min Yuan-Qin, Wang Jia-Qi, Liu Chao-Xing, Fu Bo-Shi, Wu Fan, Wu Ling-Yu, Qiao Zhi-Xian, Song Yan-Yan, Xu Guo-Hua, Wu Zhi-Guo, Huang Gai, Peng Nan-Fang, Huang Rong, Mao Wu-Xiang, Peng Shuang, Chen Yu-Qi, Zhu Ying, Tian Tian, Zhang Xiao-Lian, Zhou Xiang. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti–hepatitis C target. Science Advances. 2016;2(4):e1501535. doi: 10.1126/sciadv.1501535. PubMed DOI PMC
Mergny J-L, Phan A-T, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435:74–78. doi: 10.1016/S0014-5793(98)01043-6. PubMed DOI
Mergny J-L, Li J, Lacroix L, Amrane S, Chaires JB. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005;33:e138–e138. doi: 10.1093/nar/gni134. PubMed DOI PMC
Masante C, et al. Mutations of the SL2 dimerization sequence of the hepatitis C genome abrogate viral replication. Cell. Mol. Life Sci. 2015;72:3375–3385. doi: 10.1007/s00018-015-1893-3. PubMed DOI PMC
Renčiuk D, et al. A FRET-based screening assay for nucleic acid ligands. Methods. 2012;57:122–128. doi: 10.1016/j.ymeth.2012.03.020. PubMed DOI
Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–59. doi: 10.1093/nar/gkw006. PubMed DOI PMC
De Cian A, DeLemos E, Mergny J-L, Teulade-Fichou M-P, Monchaud D. Highly Efficient G-Quadruplex Recognition by Bisquinolinium Compounds. J. Am. Chem. Soc. 2007;129:1856–1857. doi: 10.1021/ja067352b. PubMed DOI
De Rache A, Mergny J-L. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie. 2015;115:194–202. doi: 10.1016/j.biochi.2015.06.002. PubMed DOI
Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses
A sodium/potassium switch for G4-prone G/C-rich sequences
The different activities of RNA G-quadruplex structures are controlled by flanking sequences
Tracing dsDNA Virus-Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences
SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci