Stabilization of human telomeric RNA G-quadruplex by the water-compatible optically pure and biologically-active metallohelices
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32884069
PubMed Central
PMC7471899
DOI
10.1038/s41598-020-71429-5
PII: 10.1038/s41598-020-71429-5
Knihovny.cz E-zdroje
- MeSH
- DNA chemie metabolismus MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- RNA chemie metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
RNA G-quadruplexes have been suggested to play key roles in fundamental biological processes and are linked to human diseases. Thus, they also represent good potential therapeutic targets. Here, we describe, using the methods of molecular biophysics, interactions of a series of biologically-active supramolecular cationic metallohelices with human telomeric RNA G-quadruplex. We demonstrate that the investigated metallohelices bind with a high affinity to human telomeric RNA G-quadruplex and that their binding selectivity considerably differs depending on the dimensions and overall shape of the metallohelices. Additionally, the investigated metallohelices inhibit DNA synthesis on the RNA template containing four repeats of the human telomeric sequence by stabilizing the RNA G-quadruplex structure. Collectively, the results of this study suggest that stabilization of RNA sequences capable of G-quadruplex formation by metallohelices investigated in this work might contribute to the mechanism of their biological activity.
Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids. Res. 2006;34:5402–5415. PubMed PMC
Huppert JL. Four-stranded nucleic acids: Structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008;37:1375–1384. PubMed
Havrila M, et al. Structural dynamics of propeller loop: Towards folding of RNA G-quadruplex. Nucleic Acids Res. 2018;46:8754–8771. PubMed PMC
Xiao CD, Shibata T, Yamamoto Y, Xu Y. An intramolecular antiparallel G-quadruplex formed by human telomere RNA. Chem. Commun. 2018;54:3944–3946. PubMed
Zaccaria F, Fonseca Guerra C. RNA versus DNA G-quadruplex: The origin of increased stability. Chem. Eur. J. 2018;24:16315–16322. PubMed PMC
Beaudoin J-D, Perreault J-P. 5'-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids. Res. 2010;38:7022–7036. PubMed PMC
Fay MM, Lyons SM, Ivanov P. RNA G-quadruplexes in biology: Principles and molecular mechanisms. J. Mol. Biol. 2017;429:2127–2147. PubMed PMC
Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 2014;6:75–80. PubMed PMC
Kwok CK, Balasubramanian S. Targeted detection of G-quadruplexes in cellular RNAs. Angew. Chem. Int. Ed. 2015;54:6751–6754. PubMed PMC
Kwok CK, Marsico G, Sahakyan AB, Chambers VS, Balasubramanian S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 2016;13:841. PubMed
Lipps HJ, Rhodes D. G-quadruplex structures: In vivo evidence and function. Trends Cell Biol. 2009;19:414–422. PubMed
Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182. PubMed PMC
Bugaut A, Balasubramanian S. 5′-UTR RNA G-quadruplexes: Translation regulation and targeting. Nucleic Acids Res. 2012;40:4727–4741. PubMed PMC
Jodoin R, Carrier JC, Rivard N, Bisaillon M, Perreault J-P. G-quadruplex located in the 5′UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance. Nucleic Acids Res. 2019;47:10247–10266. PubMed PMC
Agarwala P, Pandey S, Maiti S. The tale of RNA G-quadruplex. Org. Biomol. Chem. 2015;13:5570–5585. PubMed
Pandey S, Agarwala P, Jayaraj GG, Gargallo R, Maiti S. The RNA stem–loop to G-quadruplex equilibrium controls mature microRNA production inside the cell. Biochemistry. 2015;54:7067–7078. PubMed
Perrone R, et al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem. 2013;56:6521–6530. PubMed PMC
Krafčíková P, Demkovičová E, Víglaský V. Ebola virus derived G-quadruplexes: Thiazole orange interaction. Biochim. Biophys. Acta. 2017;1861:1321–1328. PubMed
Amrane S, Kerkour A, Bedrat A, Vialet B, Andreola ML, Mergny JL. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: A potential target for anti-HIV drug development. J. Am. Chem. Soc. 2014;136:5249–5252. PubMed
Jaubert C, et al. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep. 2018;8:8120. PubMed PMC
Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 2011;40:5867–5892. PubMed
Ferino A, et al. Photodynamic therapy for ras-driven cancers: Targeting G-quadruplex RNA structures with bifunctional alkyl-modified porphyrins. J. Med. Chem. 2020;63:1245–1260. PubMed
Bugaut A, Rodriguez R, Kumari S, Hsu S-TD, Balasubramanian S. Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org. Biomol. Chem. 2010;8:2771–2776. PubMed PMC
Collie G, Reszka AP, Haider SM, Gabelica V, Parkinson GN, Neidle S. Selectivity in small molecule binding to human telomeric RNA and DNA quadruplexes. Chem. Commun. 2009;14:7482–7484. PubMed
Halder K, Largy E, Benzler M, Teulade-Fichou M-P, Hartig JS. Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. ChemBioChem. 2011;12:1663–1668. PubMed
Wheelhouse RT, Sun D, Han H, Han FX, Hurley LH. Cationic porphyrins as telomerase inhibitors: The interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J. Am. Chem. Soc. 1998;120:3261–3262.
Izbicka E, et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999;59:639–644. PubMed
Ruan TL, et al. Lowering the overall charge on TMPyP4 improves its selectivity for G-quadruplex DNA. Biochimie. 2017;132:121–130. PubMed
Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012;40:4137–4145. PubMed PMC
Zamiri B, Reddy K, Macgregor RB, Pearson CE. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J. Biol. Chem. 2014;289:4653–4659. PubMed PMC
Vo T, et al. Substituted naphthalenediimide compounds bind selectively to two human quadruplex structures with parallel topology. ACS Med. Chem. Lett. 2020;11:991–999. PubMed PMC
Wang JS, Chen Y, Ren JS, Zhao CQ, Qu XG. G-Quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res. 2014;42:3792–3802. PubMed PMC
Yu H, Wang X, Fu M, Ren J, Qu X. Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res. 2008;36:5695–5703. PubMed PMC
Zhao A, et al. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res. 2017;45:5026–5035. PubMed PMC
Howson SE, et al. Optically pure, water-stable metallo-helical 'flexicate' assemblies with antibiotic activity. Nat. Chem. 2012;4:31–36. PubMed
Simpson DH, et al. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chem. Sci. 2019;10:9708–9720. PubMed PMC
Hrabina O, et al. Optically pure metallohelices that accumulate in cell nuclei, condense/aggregate DNA, and inhibit activities of DNA processing enzymes. Inorg. Chem. 2020;59:3304–3311. PubMed
Martadinata H, Phan AT. Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J. Am. Chem. Soc. 2009;131:2570–2578. PubMed
Collie GW, Haider SM, Neidle S, Parkinson GN. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 2010;38:5569–5580. PubMed PMC
Xu Y, Kaminaga K, Komiyama M. G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J. Am. Chem. Soc. 2008;130:11179–11184. PubMed
Monchaud D, Allain C, Teulade-Fichou MP. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006;16:4842–4845. PubMed
Rahman KM, et al. The prenylated dioxopiperazine alkaloid Cristatin A has selective telomeric DNA G-quadruplex stabilising properties. Chem. Commun. 2012;48:8760–8762. PubMed
Ang DL, Harper BWJ, Cubo L, Mendoza O, Vilar R, Aldrich-Wright J. Quadruplex DNA-stabilising dinuclear platinum(II) terpyridine complexes with flexible linkers. Chem. Eur. J. 2016;22:2317–2325. PubMed
Han HY, Hurley LH, Salazar M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res. 1999;27:537–542. PubMed PMC
Sielaff A, Mackay H, Brown T, Lee M. 2-aminopurine/cytosine base pair containing oligonucleotides: Fluorescence spectroscopy studies on DNA-polyamide binding. Biochem. Biophys. Res. Commun. 2008;369:630–634. PubMed
Bradrick TD, Marino JP. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA. RNA. 2004;10:1459–1468. PubMed PMC
Holz B, Weinhold E, Klimasauskas S, Serva S. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998;26:1076–1083. PubMed PMC
Rachofsky EL, Osman R, Ross JBA. Probing structure and dynamics of DNA with 2-aminopurine: Effects of local environment on fluorescence. Biochemistry. 2001;40:946–956. PubMed
Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells