Stabilization of human telomeric RNA G-quadruplex by the water-compatible optically pure and biologically-active metallohelices

. 2020 Sep 03 ; 10 (1) : 14543. [epub] 20200903

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32884069
Odkazy

PubMed 32884069
PubMed Central PMC7471899
DOI 10.1038/s41598-020-71429-5
PII: 10.1038/s41598-020-71429-5
Knihovny.cz E-zdroje

RNA G-quadruplexes have been suggested to play key roles in fundamental biological processes and are linked to human diseases. Thus, they also represent good potential therapeutic targets. Here, we describe, using the methods of molecular biophysics, interactions of a series of biologically-active supramolecular cationic metallohelices with human telomeric RNA G-quadruplex. We demonstrate that the investigated metallohelices bind with a high affinity to human telomeric RNA G-quadruplex and that their binding selectivity considerably differs depending on the dimensions and overall shape of the metallohelices. Additionally, the investigated metallohelices inhibit DNA synthesis on the RNA template containing four repeats of the human telomeric sequence by stabilizing the RNA G-quadruplex structure. Collectively, the results of this study suggest that stabilization of RNA sequences capable of G-quadruplex formation by metallohelices investigated in this work might contribute to the mechanism of their biological activity.

Zobrazit více v PubMed

Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids. Res. 2006;34:5402–5415. PubMed PMC

Huppert JL. Four-stranded nucleic acids: Structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008;37:1375–1384. PubMed

Havrila M, et al. Structural dynamics of propeller loop: Towards folding of RNA G-quadruplex. Nucleic Acids Res. 2018;46:8754–8771. PubMed PMC

Xiao CD, Shibata T, Yamamoto Y, Xu Y. An intramolecular antiparallel G-quadruplex formed by human telomere RNA. Chem. Commun. 2018;54:3944–3946. PubMed

Zaccaria F, Fonseca Guerra C. RNA versus DNA G-quadruplex: The origin of increased stability. Chem. Eur. J. 2018;24:16315–16322. PubMed PMC

Beaudoin J-D, Perreault J-P. 5'-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids. Res. 2010;38:7022–7036. PubMed PMC

Fay MM, Lyons SM, Ivanov P. RNA G-quadruplexes in biology: Principles and molecular mechanisms. J. Mol. Biol. 2017;429:2127–2147. PubMed PMC

Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 2014;6:75–80. PubMed PMC

Kwok CK, Balasubramanian S. Targeted detection of G-quadruplexes in cellular RNAs. Angew. Chem. Int. Ed. 2015;54:6751–6754. PubMed PMC

Kwok CK, Marsico G, Sahakyan AB, Chambers VS, Balasubramanian S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 2016;13:841. PubMed

Lipps HJ, Rhodes D. G-quadruplex structures: In vivo evidence and function. Trends Cell Biol. 2009;19:414–422. PubMed

Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182. PubMed PMC

Bugaut A, Balasubramanian S. 5′-UTR RNA G-quadruplexes: Translation regulation and targeting. Nucleic Acids Res. 2012;40:4727–4741. PubMed PMC

Jodoin R, Carrier JC, Rivard N, Bisaillon M, Perreault J-P. G-quadruplex located in the 5′UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance. Nucleic Acids Res. 2019;47:10247–10266. PubMed PMC

Agarwala P, Pandey S, Maiti S. The tale of RNA G-quadruplex. Org. Biomol. Chem. 2015;13:5570–5585. PubMed

Pandey S, Agarwala P, Jayaraj GG, Gargallo R, Maiti S. The RNA stem–loop to G-quadruplex equilibrium controls mature microRNA production inside the cell. Biochemistry. 2015;54:7067–7078. PubMed

Perrone R, et al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem. 2013;56:6521–6530. PubMed PMC

Krafčíková P, Demkovičová E, Víglaský V. Ebola virus derived G-quadruplexes: Thiazole orange interaction. Biochim. Biophys. Acta. 2017;1861:1321–1328. PubMed

Amrane S, Kerkour A, Bedrat A, Vialet B, Andreola ML, Mergny JL. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: A potential target for anti-HIV drug development. J. Am. Chem. Soc. 2014;136:5249–5252. PubMed

Jaubert C, et al. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep. 2018;8:8120. PubMed PMC

Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 2011;40:5867–5892. PubMed

Ferino A, et al. Photodynamic therapy for ras-driven cancers: Targeting G-quadruplex RNA structures with bifunctional alkyl-modified porphyrins. J. Med. Chem. 2020;63:1245–1260. PubMed

Bugaut A, Rodriguez R, Kumari S, Hsu S-TD, Balasubramanian S. Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org. Biomol. Chem. 2010;8:2771–2776. PubMed PMC

Collie G, Reszka AP, Haider SM, Gabelica V, Parkinson GN, Neidle S. Selectivity in small molecule binding to human telomeric RNA and DNA quadruplexes. Chem. Commun. 2009;14:7482–7484. PubMed

Halder K, Largy E, Benzler M, Teulade-Fichou M-P, Hartig JS. Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. ChemBioChem. 2011;12:1663–1668. PubMed

Wheelhouse RT, Sun D, Han H, Han FX, Hurley LH. Cationic porphyrins as telomerase inhibitors: The interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J. Am. Chem. Soc. 1998;120:3261–3262.

Izbicka E, et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999;59:639–644. PubMed

Ruan TL, et al. Lowering the overall charge on TMPyP4 improves its selectivity for G-quadruplex DNA. Biochimie. 2017;132:121–130. PubMed

Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012;40:4137–4145. PubMed PMC

Zamiri B, Reddy K, Macgregor RB, Pearson CE. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J. Biol. Chem. 2014;289:4653–4659. PubMed PMC

Vo T, et al. Substituted naphthalenediimide compounds bind selectively to two human quadruplex structures with parallel topology. ACS Med. Chem. Lett. 2020;11:991–999. PubMed PMC

Wang JS, Chen Y, Ren JS, Zhao CQ, Qu XG. G-Quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res. 2014;42:3792–3802. PubMed PMC

Yu H, Wang X, Fu M, Ren J, Qu X. Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res. 2008;36:5695–5703. PubMed PMC

Zhao A, et al. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res. 2017;45:5026–5035. PubMed PMC

Howson SE, et al. Optically pure, water-stable metallo-helical 'flexicate' assemblies with antibiotic activity. Nat. Chem. 2012;4:31–36. PubMed

Simpson DH, et al. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chem. Sci. 2019;10:9708–9720. PubMed PMC

Hrabina O, et al. Optically pure metallohelices that accumulate in cell nuclei, condense/aggregate DNA, and inhibit activities of DNA processing enzymes. Inorg. Chem. 2020;59:3304–3311. PubMed

Martadinata H, Phan AT. Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J. Am. Chem. Soc. 2009;131:2570–2578. PubMed

Collie GW, Haider SM, Neidle S, Parkinson GN. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 2010;38:5569–5580. PubMed PMC

Xu Y, Kaminaga K, Komiyama M. G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J. Am. Chem. Soc. 2008;130:11179–11184. PubMed

Monchaud D, Allain C, Teulade-Fichou MP. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006;16:4842–4845. PubMed

Rahman KM, et al. The prenylated dioxopiperazine alkaloid Cristatin A has selective telomeric DNA G-quadruplex stabilising properties. Chem. Commun. 2012;48:8760–8762. PubMed

Ang DL, Harper BWJ, Cubo L, Mendoza O, Vilar R, Aldrich-Wright J. Quadruplex DNA-stabilising dinuclear platinum(II) terpyridine complexes with flexible linkers. Chem. Eur. J. 2016;22:2317–2325. PubMed

Han HY, Hurley LH, Salazar M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res. 1999;27:537–542. PubMed PMC

Sielaff A, Mackay H, Brown T, Lee M. 2-aminopurine/cytosine base pair containing oligonucleotides: Fluorescence spectroscopy studies on DNA-polyamide binding. Biochem. Biophys. Res. Commun. 2008;369:630–634. PubMed

Bradrick TD, Marino JP. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA. RNA. 2004;10:1459–1468. PubMed PMC

Holz B, Weinhold E, Klimasauskas S, Serva S. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998;26:1076–1083. PubMed PMC

Rachofsky EL, Osman R, Ross JBA. Probing structure and dynamics of DNA with 2-aminopurine: Effects of local environment on fluorescence. Biochemistry. 2001;40:946–956. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...