Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells

. 2023 Aug 11 ; 51 (14) : 7174-7183.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37351627

DNA three-way junctions (3WJ) represent one of the simplest supramolecular DNA structures arising as intermediates in homologous recombination in the absence of replication. They are also formed transiently during DNA replication. Here we examine the ability of Fe(II)-based metallohelices to act as DNA 3WJ binders and induce DNA damage in cells. We investigated the interaction of eight pairs of enantiomerically pure Fe(II) metallohelices with four different DNA junctions using biophysical and molecular biology methods. The results show that the metallohelices stabilize all types of tested DNA junctions, with the highest selectivity for the Y-shaped 3WJ and minimal selectivity for the 4WJ. The potential of the best stabilizer of DNA junctions and, at the same time, the most selective 3WJ binder investigated in this work to induce DNA damage was determined in human colon cancer HCT116 cells. These metallohelices proved to be efficient in killing cancer cells and triggering DNA damage that could yield therapeutic benefits.

Zobrazit více v PubMed

Duckett D.R., Lilley D.M.J.. The 3-Way DNA junction is a Y-shaped molecule in which there is no helix helix stacking. EMBO J. 1990; 9:1659–1664. PubMed PMC

Khristich A.N., Mirkin S.M.. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 2020; 295:4134–4170. PubMed PMC

Leonard C.J., Berns K.I.. Adeno-associated virus type 2: a latent life cycle. Prog. Nucleic Acid Res. Mol. Biol. 1994; 48:29–52. PubMed

Lee J.B., Roh Y.H., Um S.H., Funabashi H., Cheng W., Cha J.J., Kiatwuthinon P., Muller D.A., Luo D.. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat. Nanotechnol. 2009; 4:430–436. PubMed PMC

Seeman N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010; 79:65–87. PubMed PMC

Lilley D.M.J. Structures of helical junctions in nucleic acids. Quart. Rev. Biophys. 2000; 33:109–159. PubMed

Welch J.B., Walter F., Lilley D.M.J.. Two inequivalent folding isomers of the three-way DNA junction with unpaired bases: sequence-dependence of the folded conformation. J. Mol. Biol. 1995; 251:507–519. PubMed

Sabir T., Toulmin A., Ma L., Jones A.C., McGlynn P., Schröder G.F., Magennis S.W.. Branchpoint expansion in a fully complementary three-way DNA junction. J. Am. Chem. Soc. 2012; 134:6280–6285. PubMed

Oleksi A., Blanco A.G., Boer R., Usón I., Aymamí J., Rodger A., Hannon M.J., Coll M.. Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew. Chem., Intl. Ed. 2006; 45:1227–1231. PubMed

Novotna J., Laguerre A., Granzhan A., Pirrotta M., Teulade-Fichou M.-P., Monchaud D.. Cationic azacryptands as selective three-way DNA junction binding agents. Org. Biomol. Chem. 2015; 13:215–222. PubMed

Belotserkovskii B.P., Mirkin S.M., Hanawalt P.C.. DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev. 2013; 113:8620–8637. PubMed

Duskova K., Lejault P., Benchimol É., Guillot R., Britton S., Granzhan A., Monchaud D.. DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells. J. Am. Chem. Soc. 2020; 142:424–435. PubMed

Zell J., Rota Sperti F., Britton S., Monchaud D.. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem. Biol. 2021; 2:47–76. PubMed PMC

Malina J., Hannon M.J., Brabec V.. Recognition of DNA three-way junctions by metallosupramolecular cylinders: gel electrophoresis studies. Chem. Eur. J. 2007; 13:3871–3877. PubMed

Ivens E., Cominetti M.M.D., Searcey M.. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg. Med. Chem. 2022; 69:116897. PubMed

McQuaid K.T., Pipier A., Cardin C.J., Monchaud D.. Interactions of small molecules with DNA junctions. Nucleic Acids Res. 2022; 50:12636–12656. PubMed PMC

Gómez-González J., Pérez Y., Sciortino G., Roldan-Martín L., Martínez-Costas J., Maréchal J.D., Alfonso I., Vázquez López M., Vázquez M.E.. Dynamic stereoselection of peptide helicates and their selective labeling of DNA replication foci in cells. Angew. Chem. Int. Ed. 2021; 60:8859–8866. PubMed PMC

Brabec V., Howson S.E., Kaner R.A., Lord R.M., Malina J., Phillips R.M., Abdallah Q.M.A., McGowan P.C., Rodger A., Scott P.. Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding. Chem. Sci. 2013; 4:4407–4416.

Simpson D.H., Hapeshi A., Rogers N.J., Brabec V., Clarkson G.J., Fox D.J., Hrabina O., Kay G.L., King A.K., Malina J.et al. .. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chem. Sci. 2019; 10:9708–9720. PubMed PMC

Malina J., Kostrhunova H., Scott P., Brabec V.. FeII metallohelices stabilize DNA G-quadruplexes and downregulate the expression of G-quadruplex-regulated oncogenes. Chem. Eur. J. 2021; 27:11682–11692. PubMed

Malina J., Scott P., Brabec V.. Stabilization of human telomeric RNA G-quadruplex by the water-compatible optically pure and biologically-active metallohelices. Sci. Rep. 2020; 10:14543. PubMed PMC

Marras S.A., Kramer F.R., Tyagi S.. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucl. Acids. Res. 2002; 30:e122. PubMed PMC

Eichman B.F., Ortiz-Lombardía M., Aymamí J., Coll M., Ho P.S.. The inherent properties of DNA four-way junctions: comparing the crystal structures of Holliday junctions. J. Mol. Biol. 2002; 320:1037–1051. PubMed PMC

Zell J., Duskova K., Chouh L., Bossaert M., Chéron N., Granzhan A., Britton S., Monchaud D.. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res. 2021; 49:10275–10288. PubMed PMC

Bonner W.M., Redon C.E., Dickey J.S., Nakamura A.J., Sedelnikova O.A., Solier S., Pommier Y.. GammaH2AX and cancer. Nature Rev. Cancer. 2008; 8:957–967. PubMed PMC

Ewald B., Sampath D., Plunkett W.. H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol. Cancer Ther. 2007; 6:1239–1248. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...