Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37351627
PubMed Central
PMC10415117
DOI
10.1093/nar/gkad536
PII: 7205766
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nádory * genetika MeSH
- poškození DNA MeSH
- železnaté sloučeniny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
- železnaté sloučeniny MeSH
DNA three-way junctions (3WJ) represent one of the simplest supramolecular DNA structures arising as intermediates in homologous recombination in the absence of replication. They are also formed transiently during DNA replication. Here we examine the ability of Fe(II)-based metallohelices to act as DNA 3WJ binders and induce DNA damage in cells. We investigated the interaction of eight pairs of enantiomerically pure Fe(II) metallohelices with four different DNA junctions using biophysical and molecular biology methods. The results show that the metallohelices stabilize all types of tested DNA junctions, with the highest selectivity for the Y-shaped 3WJ and minimal selectivity for the 4WJ. The potential of the best stabilizer of DNA junctions and, at the same time, the most selective 3WJ binder investigated in this work to induce DNA damage was determined in human colon cancer HCT116 cells. These metallohelices proved to be efficient in killing cancer cells and triggering DNA damage that could yield therapeutic benefits.
Czech Academy of Sciences Institute of Biophysics Brno CZ 61200 Czech Republic
Department of Chemistry University of Warwick Coventry CV4 7AL UK
Zobrazit více v PubMed
Duckett D.R., Lilley D.M.J.. The 3-Way DNA junction is a Y-shaped molecule in which there is no helix helix stacking. EMBO J. 1990; 9:1659–1664. PubMed PMC
Khristich A.N., Mirkin S.M.. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 2020; 295:4134–4170. PubMed PMC
Leonard C.J., Berns K.I.. Adeno-associated virus type 2: a latent life cycle. Prog. Nucleic Acid Res. Mol. Biol. 1994; 48:29–52. PubMed
Lee J.B., Roh Y.H., Um S.H., Funabashi H., Cheng W., Cha J.J., Kiatwuthinon P., Muller D.A., Luo D.. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat. Nanotechnol. 2009; 4:430–436. PubMed PMC
Seeman N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010; 79:65–87. PubMed PMC
Lilley D.M.J. Structures of helical junctions in nucleic acids. Quart. Rev. Biophys. 2000; 33:109–159. PubMed
Welch J.B., Walter F., Lilley D.M.J.. Two inequivalent folding isomers of the three-way DNA junction with unpaired bases: sequence-dependence of the folded conformation. J. Mol. Biol. 1995; 251:507–519. PubMed
Sabir T., Toulmin A., Ma L., Jones A.C., McGlynn P., Schröder G.F., Magennis S.W.. Branchpoint expansion in a fully complementary three-way DNA junction. J. Am. Chem. Soc. 2012; 134:6280–6285. PubMed
Oleksi A., Blanco A.G., Boer R., Usón I., Aymamí J., Rodger A., Hannon M.J., Coll M.. Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew. Chem., Intl. Ed. 2006; 45:1227–1231. PubMed
Novotna J., Laguerre A., Granzhan A., Pirrotta M., Teulade-Fichou M.-P., Monchaud D.. Cationic azacryptands as selective three-way DNA junction binding agents. Org. Biomol. Chem. 2015; 13:215–222. PubMed
Belotserkovskii B.P., Mirkin S.M., Hanawalt P.C.. DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev. 2013; 113:8620–8637. PubMed
Duskova K., Lejault P., Benchimol É., Guillot R., Britton S., Granzhan A., Monchaud D.. DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells. J. Am. Chem. Soc. 2020; 142:424–435. PubMed
Zell J., Rota Sperti F., Britton S., Monchaud D.. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem. Biol. 2021; 2:47–76. PubMed PMC
Malina J., Hannon M.J., Brabec V.. Recognition of DNA three-way junctions by metallosupramolecular cylinders: gel electrophoresis studies. Chem. Eur. J. 2007; 13:3871–3877. PubMed
Ivens E., Cominetti M.M.D., Searcey M.. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg. Med. Chem. 2022; 69:116897. PubMed
McQuaid K.T., Pipier A., Cardin C.J., Monchaud D.. Interactions of small molecules with DNA junctions. Nucleic Acids Res. 2022; 50:12636–12656. PubMed PMC
Gómez-González J., Pérez Y., Sciortino G., Roldan-Martín L., Martínez-Costas J., Maréchal J.D., Alfonso I., Vázquez López M., Vázquez M.E.. Dynamic stereoselection of peptide helicates and their selective labeling of DNA replication foci in cells. Angew. Chem. Int. Ed. 2021; 60:8859–8866. PubMed PMC
Brabec V., Howson S.E., Kaner R.A., Lord R.M., Malina J., Phillips R.M., Abdallah Q.M.A., McGowan P.C., Rodger A., Scott P.. Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding. Chem. Sci. 2013; 4:4407–4416.
Simpson D.H., Hapeshi A., Rogers N.J., Brabec V., Clarkson G.J., Fox D.J., Hrabina O., Kay G.L., King A.K., Malina J.et al. .. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chem. Sci. 2019; 10:9708–9720. PubMed PMC
Malina J., Kostrhunova H., Scott P., Brabec V.. FeII metallohelices stabilize DNA G-quadruplexes and downregulate the expression of G-quadruplex-regulated oncogenes. Chem. Eur. J. 2021; 27:11682–11692. PubMed
Malina J., Scott P., Brabec V.. Stabilization of human telomeric RNA G-quadruplex by the water-compatible optically pure and biologically-active metallohelices. Sci. Rep. 2020; 10:14543. PubMed PMC
Marras S.A., Kramer F.R., Tyagi S.. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucl. Acids. Res. 2002; 30:e122. PubMed PMC
Eichman B.F., Ortiz-Lombardía M., Aymamí J., Coll M., Ho P.S.. The inherent properties of DNA four-way junctions: comparing the crystal structures of Holliday junctions. J. Mol. Biol. 2002; 320:1037–1051. PubMed PMC
Zell J., Duskova K., Chouh L., Bossaert M., Chéron N., Granzhan A., Britton S., Monchaud D.. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res. 2021; 49:10275–10288. PubMed PMC
Bonner W.M., Redon C.E., Dickey J.S., Nakamura A.J., Sedelnikova O.A., Solier S., Pommier Y.. GammaH2AX and cancer. Nature Rev. Cancer. 2008; 8:957–967. PubMed PMC
Ewald B., Sampath D., Plunkett W.. H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol. Cancer Ther. 2007; 6:1239–1248. PubMed