Dicobalt(ii) helices kill colon cancer cells via enantiomer-specific mechanisms; DNA damage or microtubule disruption

. 2024 Jul 17 ; 15 (28) : 11029-11037. [epub] 20240614

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39027295

Highly diastereoselective self-assembly reactions give both enantiomers (Λ and Δ) of anti-parallel triple-stranded bimetallic Co(ii) and Co(iii) cationic helices, without the need for resolution; the first such reaction for Co. The complexes are water soluble and stable, even in the case of Co(ii). Studies in a range of cancer and healthy cell lines indicate high activity and selectivity, and substantial differences between enantiomers. The oxidation state has little effect, and correspondingly, Co(iii) compounds are reduced to Co(ii) e.g. by glutathione. In HCT116 colon cancer cells the Λ enantiomer induces dose-dependent G2-M arrest in the cell cycle and disrupts microtubule architectures. This Co(ii) Λ enantiomer is ca. five times more potent than the isostructural Fe(ii) compound. Since the measured cellular uptakes are similar this implies a higher affinity of the Co system for the intracellular target(s); while the two systems are isostructural they have substantially different charge distributions as shown by calculated hydrophobicity maps. In contrast to the Λ enantiomer, Δ-Co(ii) induces G1 arrest in HCT116 cells, efficiently inhibits the topoisomerase I-catalyzed relaxation of supercoiled plasmid DNA, and, unlike the isostructural Fe(ii) system, causes DNA damage. It thus seems very likely that redox chemistry plays a role in the latter.

Zobrazit více v PubMed

Howson S. E. Bolhuis A. Brabec V. Clarkson G. J. Malina J. Rodger A. Scott P. Nat. Chem. 2012;4:31–36. doi: 10.1038/nchem.1206. PubMed DOI

Brabec V. Howson S. E. Kaner R. A. Lord R. M. Malina J. Phillips R. M. Abdallah Q. M. A. McGowan P. C. Rodger A. Scott P. Chem. Sci. 2013;4:4407–4416. doi: 10.1039/C3SC51731D. DOI

Howson S. E. Clarkson G. J. Faulkner A. D. Kaner R. A. Whitmore M. J. Scott P. Dalton Trans. 2013;42:14967–14981. doi: 10.1039/C3DT51725J. PubMed DOI

Faulkner A. D. Kaner R. A. Abdallah Q. M. A. Clarkson G. Fox D. J. Gurnani P. Howson S. E. Phillips R. M. Roper D. I. Simpson D. H. Scott P. Nat. Chem. 2014;6:797–803. doi: 10.1038/nchem.2024. PubMed DOI

Kaner R. A. Allison S. J. Faulkner A. D. Phillips R. M. Roper D. I. Shepherd S. L. Simpson D. H. Waterfield N. R. Scott P. Chem. Sci. 2016;7:951–958. doi: 10.1039/C5SC03677A. PubMed DOI PMC

Song H. Rogers N. J. Brabec V. Clarkson G. J. Coverdale J. P. C. Kostrhunova H. Phillips R. M. Postings M. Shepherd S. L. Scott P. Chem. Commun. 2020;56:6392–6395. doi: 10.1039/D0CC02429E. PubMed DOI

Simpson D. H. Hapeshi A. Rogers N. J. Brabec V. Clarkson G. J. Fox D. J. Hrabina O. Kay G. L. King A. K. Malina J. Millard A. D. Moat J. Roper D. I. Song H. Waterfield N. R. Scott P. Chem. Sci. 2019;10:9708–9720. doi: 10.1039/C9SC03532J. PubMed DOI PMC

Lehn J.-M. Rigault A. Siegel J. Harrowfield J. Chevrier B. Moras D. Proc. Natl. Acad. Sci. U.S.A. 1987;84:2565–2569. doi: 10.1073/pnas.84.9.2565. PubMed DOI PMC

Hotze A. C. Kariuki B. M. Hannon M. J. Angew. Chem., Int. Ed. 2006;45:4839–4842. doi: 10.1002/anie.200601351. PubMed DOI

Vellas S. K. Lewis J. E. Shankar M. Sagatova A. Tyndall J. D. Monk B. C. Fitchett C. M. Hanton L. R. Crowley J. D. Molecules. 2013;18:6383–6407. doi: 10.3390/molecules18066383. PubMed DOI PMC

Glasson C. R. Meehan G. V. Motti C. A. Clegg J. K. Turner P. Jensen P. Lindoy L. F. Dalton Trans. 2011;40:10481–10490. doi: 10.1039/C1DT10667H. PubMed DOI

Gamba I. Rama G. Ortega-Carrasco E. Maréchal J.-D. Martínez-Costas J. Eugenio Vázquez M. López M. V. Chem. Commun. 2014;50:11097–11100. doi: 10.1039/C4CC03606A. PubMed DOI

Howson S. E. Allan L. E. N. Chmel N. P. Clarkson G. J. Deeth R. J. Faulkner A. D. Simpson D. H. Scott P. Dalton Trans. 2011;40:10416–10433. doi: 10.1039/C1DT10588D. PubMed DOI

Song H. Rogers N. J. Allison S. J. Brabec V. Bridgewater H. Kostrhunova H. Markova L. Phillips R. M. Pinder E. C. Shepherd S. L. Young L. S. Zajac J. Scott P. Chem. Sci. 2019;10:8547–8557. doi: 10.1039/C9SC02651G. PubMed DOI PMC

Song H. Allison S. J. Brabec V. Bridgewater H. E. Kasparkova J. Kostrhunova H. Novohradsky V. Phillips R. M. Pracharova J. Rogers N. J. Shepherd S. L. Scott P. Angew. Chem., Int. Ed. 2020;59:14677–14685. doi: 10.1002/anie.202006814. PubMed DOI PMC

Coverdale J. P. C. Kostrhunova H. Markova L. Song H. Postings M. Bridgewater H. E. Brabec V. Rogers N. J. Scott P. Dalton Trans. 2023;52:6656–6667. doi: 10.1039/D3DT00948C. PubMed DOI

Malina J. Scott P. Brabec V. Nucleic Acids Res. 2015;43:5297–5306. doi: 10.1093/nar/gkv438. PubMed DOI PMC

Zhao A. D. Howson S. E. Zhao C. Q. Ren J. S. Scott P. Wang C. Y. Qu X. G. Nucleic Acids Res. 2017;45:5026–5035. doi: 10.1093/nar/gkx244. PubMed DOI PMC

Zhao C. Song H. Scott P. Zhao A. Tateishi-Karimata H. Sugimoto N. Ren J. Qu X. Angew. Chem., Int. Ed. 2018;57:15723–15727. doi: 10.1002/anie.201809207. PubMed DOI

Malina J. Kostrhunova H. Song H. Scott P. Brabec V. J. Enzyme Inhib. Med. Chem. 2023;38:2198678. doi: 10.1080/14756366.2023.2198678. PubMed DOI PMC

Malina J. Kostrhunova H. Scott P. Brabec V. Nucleic Acids Res. 2023;51:7174–7183. doi: 10.1093/nar/gkad536. PubMed DOI PMC

Malina J. Kostrhunova H. Novohradsky V. Scott P. Brabec V. Nucleic Acids Res. 2022;50:674–683. doi: 10.1093/nar/gkab1277. PubMed DOI PMC

Hrabina O. Malina J. Scott P. Brabec V. Chem.–Eur. J. 2020;26:16554–16562. doi: 10.1002/chem.202004060. PubMed DOI

Malina J. Scott P. Brabec V. Sci. Rep. 2020;10:14543. doi: 10.1038/s41598-020-71429-5. PubMed DOI PMC

Malina J. Scott P. Brabec V. Chem.–Eur. J. 2020;26:8435–8442. doi: 10.1002/chem.202001107. PubMed DOI

Hrabina O. Malina J. Kostrhunova H. Novohradsky V. Pracharova J. Rogers N. Simpson D. H. Scott P. Brabec V. Inorg. Chem. 2020;59:3304–3311. doi: 10.1021/acs.inorgchem.0c00092. PubMed DOI

Malina J. Scott P. Brabec V. Dalton Trans. 2015;44:14656–14665. doi: 10.1039/C5DT02018B. PubMed DOI

Li M. Howson S. E. Dong K. Gao N. Ren J. Scott P. Qu X. J. Am. Chem. Soc. 2014;136:11655–11663. doi: 10.1021/ja502789e. PubMed DOI

Guan Y. Du Z. Gao N. Cao Y. Wang X. Scott P. Song H. Ren J. Qu X. Sci. Adv. 2018;4:eaao6718. doi: 10.1126/sciadv.aao6718. PubMed DOI PMC

Du Z. Liu C. Liu Z. Song H. Scott P. Du X. Ren J. Qu X. Chem. Sci. 2023;14:506–513. doi: 10.1039/D2SC05897A. PubMed DOI PMC

Liu Z. Yu D. Song H. Postings M. L. Scott P. Wang Z. Ren J. Qu X. ACS Nano. 2023;17:8141–8152. doi: 10.1021/acsnano.2c11476. PubMed DOI

Mitchell D. E. Clarkson G. Fox D. J. Vipond R. A. Scott P. Gibson M. I. J. Am. Chem. Soc. 2017;139:9835–9838. doi: 10.1021/jacs.7b05822. PubMed DOI PMC

Song H. Postings M. Scott P. Rogers N. J. Chem. Sci. 2021;12:1620–1631. doi: 10.1039/D0SC06412B. PubMed DOI PMC

Symmers P. Burke M. August D. Thomson P. Nichol G. Warren M. Campbell C. Lusby P. Chem. Sci. 2015;6:756–760. doi: 10.1039/C4SC03036B. PubMed DOI PMC

Burke M. J. Nichol G. Lusby P. J. J. Am. Chem. Soc. 2016;138 29:9308–9315. doi: 10.1021/jacs.6b05364. PubMed DOI

Vasdev R. A. Preston D. Scottwell S. Ø. Brooks H. J. Crowley J. D. Schramm M. P. Molecules. 2016;21:1548. doi: 10.3390/molecules21111548. PubMed DOI PMC

Crlikova H. Malina J. Novohradsky V. Kostrhunova H. Vasdev R. A. S. Crowley J. D. Kasparkova J. Brabec V. Organometallics. 2020;39:1448–1455. doi: 10.1021/acs.organomet.0c00146. DOI

Werner A. Anorg Z. Chem. 1893;3:267–330.

Evans D. F. J. Am. Chem. Soc. 1959:2003–2005. doi: 10.1039/JR9590002003. DOI

Barefield E. K. Busch D. Nelson S. Q. Rev., Chem. Soc. 1968;22:457–498. doi: 10.1039/QR9682200457. DOI

Popov I. A. Mehio N. Chu T. Davis B. L. Mukundan R. Yang P. Batista E. R. ACS Omega. 2018;3:14766–14778. doi: 10.1021/acsomega.8b01921. PubMed DOI PMC

Cameron P. J. Peter L. M. Zakeeruddin S. M. Grätzel M. Coord. Chem. Rev. 2004;248:1447–1453. doi: 10.1016/j.ccr.2004.02.010. DOI

Go Y.-M. Jones D. P. Biochim. Biophys. Acta, Gen. Subj. 2008;1780:1273–1290. doi: 10.1016/j.bbagen.2008.01.011. PubMed DOI PMC

Go Y.-M. Jones D. P. Free Radical Biol. Med. 2011;50:495–509. doi: 10.1016/j.freeradbiomed.2010.11.029. PubMed DOI PMC

Bertoli C. Skotheim J. M. de Bruin R. A. M. Nat. Rev. Mol. Cell Biol. 2013;14:518–528. doi: 10.1038/nrm3629. PubMed DOI PMC

Abassi Y. A. Xi B. Zhang W. Ye P. Kirstein S. L. Gaylord M. R. Feinstein S. C. Wang X. Xu X. Chem. Biol. 2009;16:712–723. doi: 10.1016/j.chembiol.2009.05.011. PubMed DOI PMC

Luckel F. Kubo K. Tsumoto K. Yoshikawa K. FEBS Lett. 2005;579:5119–5122. doi: 10.1016/j.febslet.2005.07.095. PubMed DOI

Jackson S. P. Bartek J. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC

Kinner A. Wu W. Staudt C. Iliakis G. Nucleic Acids Res. 2008;36:5678–5694. doi: 10.1093/nar/gkn550. PubMed DOI PMC

Desplancq D. Freund G. Conic S. Sibler A.-P. Didier P. Stoessel A. Oulad-Abdelghani M. Vigneron M. Wagner J. Mély Y. Chatton B. Tora L. Weiss E. Exp. Cell Res. 2016;342:145–158. doi: 10.1016/j.yexcr.2016.03.003. PubMed DOI

Ewald B. Sampath D. Plunkett W. Mol. Cancer Ther. 2007;6:1239–1248. doi: 10.1158/1535-7163.MCT-06-0633. PubMed DOI

Olive P. L. Banáth J. P. Cytometry, Part B. 2009;76:79–90. doi: 10.1002/cyto.b.20450. PubMed DOI

Nikolova T. Dvorak M. Jung F. Adam I. Krämer E. Gerhold-Ay A. Kaina B. Toxicol. Sci. 2014;140:103–117. doi: 10.1093/toxsci/kfu066. PubMed DOI

Novohradsky V. Zajac J. Vrana O. Kasparkova J. Brabec V. Oncotarget. 2018;9:28456–28473. doi: 10.18632/oncotarget.25466. PubMed DOI PMC

Dhyani P. Quispe C. Sharma E. Bahukhandi A. Sati P. Attri D. C. Szopa A. Sharifi-Rad J. Docea A. O. Mardare I. Calina D. Cho W. C. Cancer Cell Int. 2022;22:206. doi: 10.1186/s12935-022-02624-9. PubMed DOI PMC

Simoens C. Vermorken J. B. Korst A. E. C. Pauwels B. De Pooter C. M. J. Pattyn G. G. O. Lambrechts H. A. J. Breillout F. Lardon F. Cancer Chemother. Pharmacol. 2006;58:210–218. doi: 10.1007/s00280-005-0147-8. PubMed DOI

Khing T. M. Choi W. S. Kim D. M. Po W. W. Thein W. Shin C. Y. Sohn U. D. Sci. Rep. 2021;11:23490. doi: 10.1038/s41598-021-02503-9. PubMed DOI PMC

Denisov I. G. Makris T. M. Sligar S. G. Schlichting I. Chem. Rev. 2005;105:2253–2278. doi: 10.1021/cr0307143. PubMed DOI

Alcalde-Ordóñez A. Barreiro-Piñeiro N. McGorman B. Gómez-González J. Bouzada D. Rivadulla F. Vázquez M. E. Kellett A. Martínez-Costas J. López M. V. Chem. Sci. 2023;14:14082–14091. doi: 10.1039/D3SC03303A. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...