Dicobalt(ii) helices kill colon cancer cells via enantiomer-specific mechanisms; DNA damage or microtubule disruption
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39027295
PubMed Central
PMC11253168
DOI
10.1039/d4sc02541e
PII: d4sc02541e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Highly diastereoselective self-assembly reactions give both enantiomers (Λ and Δ) of anti-parallel triple-stranded bimetallic Co(ii) and Co(iii) cationic helices, without the need for resolution; the first such reaction for Co. The complexes are water soluble and stable, even in the case of Co(ii). Studies in a range of cancer and healthy cell lines indicate high activity and selectivity, and substantial differences between enantiomers. The oxidation state has little effect, and correspondingly, Co(iii) compounds are reduced to Co(ii) e.g. by glutathione. In HCT116 colon cancer cells the Λ enantiomer induces dose-dependent G2-M arrest in the cell cycle and disrupts microtubule architectures. This Co(ii) Λ enantiomer is ca. five times more potent than the isostructural Fe(ii) compound. Since the measured cellular uptakes are similar this implies a higher affinity of the Co system for the intracellular target(s); while the two systems are isostructural they have substantially different charge distributions as shown by calculated hydrophobicity maps. In contrast to the Λ enantiomer, Δ-Co(ii) induces G1 arrest in HCT116 cells, efficiently inhibits the topoisomerase I-catalyzed relaxation of supercoiled plasmid DNA, and, unlike the isostructural Fe(ii) system, causes DNA damage. It thus seems very likely that redox chemistry plays a role in the latter.
Czech Academy of Sciences Institute of Biophysics Brno Czech Republic
Department of Biophysics Palacky University Olomouc Czech Republic
Department of Chemistry Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
Department of Chemistry University of Warwick Coventry CV4 7AL UK
Department of Pharmacy University of Huddersfield Huddersfield HD1 3DH UK
Faculty of Science Department of Biochemistry Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Howson S. E. Bolhuis A. Brabec V. Clarkson G. J. Malina J. Rodger A. Scott P. Nat. Chem. 2012;4:31–36. doi: 10.1038/nchem.1206. PubMed DOI
Brabec V. Howson S. E. Kaner R. A. Lord R. M. Malina J. Phillips R. M. Abdallah Q. M. A. McGowan P. C. Rodger A. Scott P. Chem. Sci. 2013;4:4407–4416. doi: 10.1039/C3SC51731D. DOI
Howson S. E. Clarkson G. J. Faulkner A. D. Kaner R. A. Whitmore M. J. Scott P. Dalton Trans. 2013;42:14967–14981. doi: 10.1039/C3DT51725J. PubMed DOI
Faulkner A. D. Kaner R. A. Abdallah Q. M. A. Clarkson G. Fox D. J. Gurnani P. Howson S. E. Phillips R. M. Roper D. I. Simpson D. H. Scott P. Nat. Chem. 2014;6:797–803. doi: 10.1038/nchem.2024. PubMed DOI
Kaner R. A. Allison S. J. Faulkner A. D. Phillips R. M. Roper D. I. Shepherd S. L. Simpson D. H. Waterfield N. R. Scott P. Chem. Sci. 2016;7:951–958. doi: 10.1039/C5SC03677A. PubMed DOI PMC
Song H. Rogers N. J. Brabec V. Clarkson G. J. Coverdale J. P. C. Kostrhunova H. Phillips R. M. Postings M. Shepherd S. L. Scott P. Chem. Commun. 2020;56:6392–6395. doi: 10.1039/D0CC02429E. PubMed DOI
Simpson D. H. Hapeshi A. Rogers N. J. Brabec V. Clarkson G. J. Fox D. J. Hrabina O. Kay G. L. King A. K. Malina J. Millard A. D. Moat J. Roper D. I. Song H. Waterfield N. R. Scott P. Chem. Sci. 2019;10:9708–9720. doi: 10.1039/C9SC03532J. PubMed DOI PMC
Lehn J.-M. Rigault A. Siegel J. Harrowfield J. Chevrier B. Moras D. Proc. Natl. Acad. Sci. U.S.A. 1987;84:2565–2569. doi: 10.1073/pnas.84.9.2565. PubMed DOI PMC
Hotze A. C. Kariuki B. M. Hannon M. J. Angew. Chem., Int. Ed. 2006;45:4839–4842. doi: 10.1002/anie.200601351. PubMed DOI
Vellas S. K. Lewis J. E. Shankar M. Sagatova A. Tyndall J. D. Monk B. C. Fitchett C. M. Hanton L. R. Crowley J. D. Molecules. 2013;18:6383–6407. doi: 10.3390/molecules18066383. PubMed DOI PMC
Glasson C. R. Meehan G. V. Motti C. A. Clegg J. K. Turner P. Jensen P. Lindoy L. F. Dalton Trans. 2011;40:10481–10490. doi: 10.1039/C1DT10667H. PubMed DOI
Gamba I. Rama G. Ortega-Carrasco E. Maréchal J.-D. Martínez-Costas J. Eugenio Vázquez M. López M. V. Chem. Commun. 2014;50:11097–11100. doi: 10.1039/C4CC03606A. PubMed DOI
Howson S. E. Allan L. E. N. Chmel N. P. Clarkson G. J. Deeth R. J. Faulkner A. D. Simpson D. H. Scott P. Dalton Trans. 2011;40:10416–10433. doi: 10.1039/C1DT10588D. PubMed DOI
Song H. Rogers N. J. Allison S. J. Brabec V. Bridgewater H. Kostrhunova H. Markova L. Phillips R. M. Pinder E. C. Shepherd S. L. Young L. S. Zajac J. Scott P. Chem. Sci. 2019;10:8547–8557. doi: 10.1039/C9SC02651G. PubMed DOI PMC
Song H. Allison S. J. Brabec V. Bridgewater H. E. Kasparkova J. Kostrhunova H. Novohradsky V. Phillips R. M. Pracharova J. Rogers N. J. Shepherd S. L. Scott P. Angew. Chem., Int. Ed. 2020;59:14677–14685. doi: 10.1002/anie.202006814. PubMed DOI PMC
Coverdale J. P. C. Kostrhunova H. Markova L. Song H. Postings M. Bridgewater H. E. Brabec V. Rogers N. J. Scott P. Dalton Trans. 2023;52:6656–6667. doi: 10.1039/D3DT00948C. PubMed DOI
Malina J. Scott P. Brabec V. Nucleic Acids Res. 2015;43:5297–5306. doi: 10.1093/nar/gkv438. PubMed DOI PMC
Zhao A. D. Howson S. E. Zhao C. Q. Ren J. S. Scott P. Wang C. Y. Qu X. G. Nucleic Acids Res. 2017;45:5026–5035. doi: 10.1093/nar/gkx244. PubMed DOI PMC
Zhao C. Song H. Scott P. Zhao A. Tateishi-Karimata H. Sugimoto N. Ren J. Qu X. Angew. Chem., Int. Ed. 2018;57:15723–15727. doi: 10.1002/anie.201809207. PubMed DOI
Malina J. Kostrhunova H. Song H. Scott P. Brabec V. J. Enzyme Inhib. Med. Chem. 2023;38:2198678. doi: 10.1080/14756366.2023.2198678. PubMed DOI PMC
Malina J. Kostrhunova H. Scott P. Brabec V. Nucleic Acids Res. 2023;51:7174–7183. doi: 10.1093/nar/gkad536. PubMed DOI PMC
Malina J. Kostrhunova H. Novohradsky V. Scott P. Brabec V. Nucleic Acids Res. 2022;50:674–683. doi: 10.1093/nar/gkab1277. PubMed DOI PMC
Hrabina O. Malina J. Scott P. Brabec V. Chem.–Eur. J. 2020;26:16554–16562. doi: 10.1002/chem.202004060. PubMed DOI
Malina J. Scott P. Brabec V. Sci. Rep. 2020;10:14543. doi: 10.1038/s41598-020-71429-5. PubMed DOI PMC
Malina J. Scott P. Brabec V. Chem.–Eur. J. 2020;26:8435–8442. doi: 10.1002/chem.202001107. PubMed DOI
Hrabina O. Malina J. Kostrhunova H. Novohradsky V. Pracharova J. Rogers N. Simpson D. H. Scott P. Brabec V. Inorg. Chem. 2020;59:3304–3311. doi: 10.1021/acs.inorgchem.0c00092. PubMed DOI
Malina J. Scott P. Brabec V. Dalton Trans. 2015;44:14656–14665. doi: 10.1039/C5DT02018B. PubMed DOI
Li M. Howson S. E. Dong K. Gao N. Ren J. Scott P. Qu X. J. Am. Chem. Soc. 2014;136:11655–11663. doi: 10.1021/ja502789e. PubMed DOI
Guan Y. Du Z. Gao N. Cao Y. Wang X. Scott P. Song H. Ren J. Qu X. Sci. Adv. 2018;4:eaao6718. doi: 10.1126/sciadv.aao6718. PubMed DOI PMC
Du Z. Liu C. Liu Z. Song H. Scott P. Du X. Ren J. Qu X. Chem. Sci. 2023;14:506–513. doi: 10.1039/D2SC05897A. PubMed DOI PMC
Liu Z. Yu D. Song H. Postings M. L. Scott P. Wang Z. Ren J. Qu X. ACS Nano. 2023;17:8141–8152. doi: 10.1021/acsnano.2c11476. PubMed DOI
Mitchell D. E. Clarkson G. Fox D. J. Vipond R. A. Scott P. Gibson M. I. J. Am. Chem. Soc. 2017;139:9835–9838. doi: 10.1021/jacs.7b05822. PubMed DOI PMC
Song H. Postings M. Scott P. Rogers N. J. Chem. Sci. 2021;12:1620–1631. doi: 10.1039/D0SC06412B. PubMed DOI PMC
Symmers P. Burke M. August D. Thomson P. Nichol G. Warren M. Campbell C. Lusby P. Chem. Sci. 2015;6:756–760. doi: 10.1039/C4SC03036B. PubMed DOI PMC
Burke M. J. Nichol G. Lusby P. J. J. Am. Chem. Soc. 2016;138 29:9308–9315. doi: 10.1021/jacs.6b05364. PubMed DOI
Vasdev R. A. Preston D. Scottwell S. Ø. Brooks H. J. Crowley J. D. Schramm M. P. Molecules. 2016;21:1548. doi: 10.3390/molecules21111548. PubMed DOI PMC
Crlikova H. Malina J. Novohradsky V. Kostrhunova H. Vasdev R. A. S. Crowley J. D. Kasparkova J. Brabec V. Organometallics. 2020;39:1448–1455. doi: 10.1021/acs.organomet.0c00146. DOI
Werner A. Anorg Z. Chem. 1893;3:267–330.
Evans D. F. J. Am. Chem. Soc. 1959:2003–2005. doi: 10.1039/JR9590002003. DOI
Barefield E. K. Busch D. Nelson S. Q. Rev., Chem. Soc. 1968;22:457–498. doi: 10.1039/QR9682200457. DOI
Popov I. A. Mehio N. Chu T. Davis B. L. Mukundan R. Yang P. Batista E. R. ACS Omega. 2018;3:14766–14778. doi: 10.1021/acsomega.8b01921. PubMed DOI PMC
Cameron P. J. Peter L. M. Zakeeruddin S. M. Grätzel M. Coord. Chem. Rev. 2004;248:1447–1453. doi: 10.1016/j.ccr.2004.02.010. DOI
Go Y.-M. Jones D. P. Biochim. Biophys. Acta, Gen. Subj. 2008;1780:1273–1290. doi: 10.1016/j.bbagen.2008.01.011. PubMed DOI PMC
Go Y.-M. Jones D. P. Free Radical Biol. Med. 2011;50:495–509. doi: 10.1016/j.freeradbiomed.2010.11.029. PubMed DOI PMC
Bertoli C. Skotheim J. M. de Bruin R. A. M. Nat. Rev. Mol. Cell Biol. 2013;14:518–528. doi: 10.1038/nrm3629. PubMed DOI PMC
Abassi Y. A. Xi B. Zhang W. Ye P. Kirstein S. L. Gaylord M. R. Feinstein S. C. Wang X. Xu X. Chem. Biol. 2009;16:712–723. doi: 10.1016/j.chembiol.2009.05.011. PubMed DOI PMC
Luckel F. Kubo K. Tsumoto K. Yoshikawa K. FEBS Lett. 2005;579:5119–5122. doi: 10.1016/j.febslet.2005.07.095. PubMed DOI
Jackson S. P. Bartek J. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC
Kinner A. Wu W. Staudt C. Iliakis G. Nucleic Acids Res. 2008;36:5678–5694. doi: 10.1093/nar/gkn550. PubMed DOI PMC
Desplancq D. Freund G. Conic S. Sibler A.-P. Didier P. Stoessel A. Oulad-Abdelghani M. Vigneron M. Wagner J. Mély Y. Chatton B. Tora L. Weiss E. Exp. Cell Res. 2016;342:145–158. doi: 10.1016/j.yexcr.2016.03.003. PubMed DOI
Ewald B. Sampath D. Plunkett W. Mol. Cancer Ther. 2007;6:1239–1248. doi: 10.1158/1535-7163.MCT-06-0633. PubMed DOI
Olive P. L. Banáth J. P. Cytometry, Part B. 2009;76:79–90. doi: 10.1002/cyto.b.20450. PubMed DOI
Nikolova T. Dvorak M. Jung F. Adam I. Krämer E. Gerhold-Ay A. Kaina B. Toxicol. Sci. 2014;140:103–117. doi: 10.1093/toxsci/kfu066. PubMed DOI
Novohradsky V. Zajac J. Vrana O. Kasparkova J. Brabec V. Oncotarget. 2018;9:28456–28473. doi: 10.18632/oncotarget.25466. PubMed DOI PMC
Dhyani P. Quispe C. Sharma E. Bahukhandi A. Sati P. Attri D. C. Szopa A. Sharifi-Rad J. Docea A. O. Mardare I. Calina D. Cho W. C. Cancer Cell Int. 2022;22:206. doi: 10.1186/s12935-022-02624-9. PubMed DOI PMC
Simoens C. Vermorken J. B. Korst A. E. C. Pauwels B. De Pooter C. M. J. Pattyn G. G. O. Lambrechts H. A. J. Breillout F. Lardon F. Cancer Chemother. Pharmacol. 2006;58:210–218. doi: 10.1007/s00280-005-0147-8. PubMed DOI
Khing T. M. Choi W. S. Kim D. M. Po W. W. Thein W. Shin C. Y. Sohn U. D. Sci. Rep. 2021;11:23490. doi: 10.1038/s41598-021-02503-9. PubMed DOI PMC
Denisov I. G. Makris T. M. Sligar S. G. Schlichting I. Chem. Rev. 2005;105:2253–2278. doi: 10.1021/cr0307143. PubMed DOI
Alcalde-Ordóñez A. Barreiro-Piñeiro N. McGorman B. Gómez-González J. Bouzada D. Rivadulla F. Vázquez M. E. Kellett A. Martínez-Costas J. López M. V. Chem. Sci. 2023;14:14082–14091. doi: 10.1039/D3SC03303A. PubMed DOI PMC