Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32489012
PubMed Central
PMC7497174
DOI
10.1002/anie.202006814
Knihovny.cz E-zdroje
- Klíčová slova
- antitumor agents, glycoconjugates, metallohelices, nuclear delivery, self-assembly,
- MeSH
- glykokonjugáty chemie MeSH
- HCT116 buňky MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kovy chemie MeSH
- lidé MeSH
- nádory patologie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykokonjugáty MeSH
- kovy MeSH
Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.
Department of Chemistry University of Warwick Coventry CV4 7AL UK
School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Howson S. E., Bolhuis A., Brabec V., Clarkson G. J., Malina J., Rodger A., Scott P., Nat. Chem. 2012, 4, 31–36; PubMed
Faulkner A. D., Kaner R. A., Abdallah Q. M. A., Clarkson G., Fox D. J., Gurnani P., Howson S. E., Phillips R. M., Roper D. I., Simpson D. H., Scott P., Nat. Chem. 2014, 6, 797–803; PubMed
Kaner R. A., Allison S. J., Faulkner A. D., Phillips R. M., Roper D. I., Shepherd S. L., Simpson D. H., Waterfield N. R., Scott P., Chem. Sci. 2016, 7, 951–958; PubMed PMC
Song H., Rogers N. J., Allison S. J., Brabec V., Bridgewater H., Kostrhunova H., Markova L., Phillips R. M., Pinder E. C., Shepherd S. L., Young L. S., Zajac J., Scott P., Chem. Sci. 2019, 10, 8547–8557; PubMed PMC
Simpson D. H., Hapeshi A., Rogers N. J., Brabec V., Clarkson G. J., Fox D. J., Hrabina O., Kay G. L., King A. K., Malina J., Millard A. D., Moat J., Roper D. I., Song H., Waterfield N. R., Scott P., Chem. Sci. 2019, 10, 9708–9720; PubMed PMC
Song H., Rogers N. J., Brabec V., Clarkson G. J., Coverdale J. P. C., Kostrhunova H., Phillips R. M., Postings M., Shepherd S. L., Scott P., Chem. Commun. 2020, 10.1039/D0CC02429E. PubMed DOI
Lehn J.-M., Rigault A., Siegel J., Harrowfield J., Chevrier B., Moras D., Proc. Natl. Acad. Sci. USA 1987, 84, 2565–2569; PubMed PMC
Hotze A. C., Kariuki B. M., Hannon M. J., Angew. Chem. Int. Ed. 2006, 45, 4839–4842; PubMed
Angew. Chem. 2006, 118, 4957–4960;
Vellas S. K., Lewis J. E., Shankar M., Sagatova A., Tyndall J. D., Monk B. C., Fitchett C. M., Hanton L. R., Crowley J. D., Molecules 2013, 18, 6383–6407; PubMed PMC
Glasson C. R., Meehan G. V., Motti C. A., Clegg J. K., Turner P., Jensen P., Lindoy L. F., Dalton Trans. 2011, 40, 10481–10490; PubMed
Gamba I., Rama G., Ortega-Carrasco E., Maréchal J.-D., Martínez-Costas J., Eugenio Vázquez M., López M. V., Chem. Commun. 2014, 50, 11097–11100. PubMed
Howson S. E., Allan L. E., Chmel N. P., Clarkson G. J., van Gorkum R., Scott P., Chem. Commun. 2009, 1727–1729. PubMed
Brabec V., Howson S. E., Kaner R. A., Lord R. M., Malina J., Phillips R. M., Abdallah Q. M., McGowan P. C., Rodger A., Scott P., Chem. Sci. 2013, 4, 4407–4416;
Zhao C., Song H., Scott P., Zhao A., Tateishi-Karimata H., Sugimoto N., Ren J., Qu X., Angew. Chem. Int. Ed. 2018, 57, 15723–15727; PubMed
Angew. Chem. 2018, 130, 15949–15953;
Malina J., Scott P., Brabec V., Nucleic Acids Res. 2015, 43, 5297–5306. PubMed PMC
Mitchell D. E., Clarkson G., Fox D. J., Vipond R. A., Scott P., Gibson M. I., J. Am. Chem. Soc. 2017, 139, 9835–9838. PubMed PMC
Guan Y., Du Z., Gao N., Cao Y., Wang X., Scott P., Song H., Ren J., Qu X., Sci. Adv. 2018, 4, 0. PubMed PMC
Kalafatovic D., Giralt E., Molecules 2017, 22, 1929. PubMed PMC
Stewart K. M., Horton K. L., Kelley S. O., Org. Biomol. Chem. 2008, 6, 2242–2255. PubMed
Sakai N., Matile S., J. Am. Chem. Soc. 2003, 125, 14348–14356; PubMed
Takeuchi T., Kosuge M., Tadokoro A., Sugiura Y., Nishi M., Kawata M., Sakai N., Matile S., Futaki S., ACS Chem. Biol. 2006, 1, 299–303. PubMed
Utsugi T., Schroit A. J., Connor J., Bucana C. D., Fidler I. J., Cancer Res. 1991, 51, 3062–3066; PubMed
Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M., Biochemistry 1996, 35, 12612–12622; PubMed
Riedl S., Zweytick D., Lohner K., Chem. Phys. Lipids 2011, 164, 766–781. PubMed PMC
Fischer P. M., Med. Res. Rev. 2007, 27, 755–795; PubMed
Guidotti G., Brambilla L., Rossi D., Trends Pharmacol. Sci. 2017, 38, 406–424; PubMed
Kauffman W. B., Fuselier T., He J., Wimley W. C., Trends Biochem. Sci. 2015, 40, 749–764. PubMed PMC
Johannssen T., Lepenies B., Trends Biotechnol. 2017, 35, 334–346. PubMed
Derivery E., Bartolami E., Matile S., Gonzalez-Gaitan M., J. Am. Chem. Soc. 2017, 139, 10172–10175; PubMed PMC
Kong L., Almond A., Bayley H., Davis B. G., Nat. Chem. 2016, 8, 461–469; PubMed
Cai L., Gu Z., Zhong J., Wen D., Chen G., He L., Wu J., Gu Z., Drug Discovery Today 2018, 23, 1126–1138; PubMed
Ardá A., Jiménez-Barbero J., Chem. Commun. 2018, 54, 4761–4769. PubMed
Taylor C. M., Tetrahedron 1998, 54, 11317–11362.
Bond M. R., Hanover J. A., J. Cell Biol. 2015, 208, 869–880; PubMed PMC
Yang X., Qian K., Nat. Rev. Mol. Cell Biol. 2017, 18, 452–465. PubMed PMC
Rudd P. M., Elliott T., Cresswell P., Wilson I. A., Dwek R. A., Science 2001, 291, 2370–2376. PubMed
Doores K. J., Gamblin D. P., Davis B. G., Chem. Eur. J. 2006, 12, 656–665; PubMed
Calvaresi E. C., Hergenrother P. J., Chem. Sci. 2013, 4, 2319–2333. PubMed PMC
Jones E., Polt R., Front. Chem. 2015, 3, 40; PubMed PMC
Mulder G. J., Trends Pharmacol. Sci. 1992, 13, 302–304. PubMed
Warburg O., Science 1956, 123, 309–314; PubMed
Warburg O., Wind F., Negelein E., J. Gen. Physiol. 1927, 8, 519. PubMed PMC
Nomoto M., Yamada K., Haga M., Hayashi M., J. Pharm. Sci. 1998, 87, 326–332; PubMed
Poduslo J. F., Curran G. L., Mol. Brain Res. 1994, 23, 157–162; PubMed
Muthu D., Robin P., Curr. Drug Delivery 2005, 2, 59–73. PubMed
Gallego I., Rioboo A., Reina J. J., Díaz B., Canales Á., Cañada F. J., Guerra-Varela J., Sánchez L., Montenegro J., ChemBioChem 2019, 20, 1400–1409. PubMed
Percec V., Leowanawat P., Sun H.-J., Kulikov O., Nusbaum C. D., Tran T. M., Bertin A., Wilson D. A., Peterca M., Zhang S., J. Am. Chem. Soc. 2013, 135, 9055–9077; PubMed
Tanaka J., Gleinich A. S., Zhang Q., Whitfield R., Kempe K., Haddleton D. M., Davis T. P., Perrier S., Mitchell D. A., Wilson P., Biomacromolecules 2017, 18, 1624–1633; PubMed
Adesoye O. G., Mills I. N., Temelkoff D. P., Jackson J. A., Norris P., J. Chem. Educ. 2012, 89, 943–945.
Lipshutz B. H., Taft B. R., Angew. Chem. Int. Ed. 2006, 45, 8235–8238; PubMed
Angew. Chem. 2006, 118, 8415–8418.
Jewett J. C., Bertozzi C. R., Chem. Soc. Rev. 2010, 39, 1272–1279. PubMed PMC
Liu P., Lu Y., Gao X., Liu R., Zhang-Negrerie D., Shi Y., Wang Y., Wang S., Gao Q., Chem. Commun. 2013, 49, 2421–2423. PubMed
Moradi S. V., Hussein W. M., Varamini P., Simerska P., Toth I., Chem. Sci. 2016, 7, 2492–2500. PubMed PMC
Polt R., Dhanasekaran M., Keyari C. M., Med. Res. Rev. 2005, 25, 557–585. PubMed
Varamini P., Mansfeld F. M., Blanchfield J. T., Wyse B. D., Smith M. T., Toth I., J. Med. Chem. 2012, 55, 5859–5867. PubMed
Bapst J.-P., Calame M., Tanner H., Eberle A. N., Bioconjugate Chem. 2009, 20, 984–993. PubMed
Duverger E., Carpentier V., Roche A.-C., Monsigny M., Exp. Cell Res. 1993, 207, 197–201; PubMed
Lefebvre T., Ferreira S., Dupont-Wallois L., Bussière T., Dupire M.-J., Delacourte A., Michalski J.-C., Caillet-Boudin M.-L., Biochim. Biophys. Acta Gen. Subj. 2003, 1619, 167–176; PubMed
Monsigny M., Rondanino C., Duverger E., Fajac I., Roche A.-C., Biochim. Biophys. Acta Gen. Subj. 2004, 1673, 94–103. PubMed
Jamieson E. R., Lippard S. J., Chem. Rev. 1999, 99, 2467–2498. PubMed
Hall H., Gurský J., Nicodemou A., Rybanská I., Kimlíčková E., Piršel M., Mutat. Res. 2006, 593, 177–186. PubMed
Malina J., Hannon M. J., Brabec V., Nucleic Acids Res. 2008, 36, 3630–3638. PubMed PMC
Wolfe S. A., Nekludova L., Pabo C. O., Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 183–212. PubMed
Pavletich N. P., Pabo C. O., Science 1991, 252, 809–817. PubMed