Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways

. 2019 Nov 14 ; 10 (42) : 9708-9720. [epub] 20190905

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32015803

A range of new water-compatible optically pure metallohelices - made by self-assembly of simple non-peptidic organic components around Fe ions - exhibit similar architecture to some natural cationic antimicrobial peptides (CAMPs) and are found to have high, structure-dependent activity against bacteria, including clinically problematic Gram-negative pathogens. A key compound is shown to freely enter rapidly dividing E. coli cells without significant membrane disruption, and localise in distinct foci near the poles. Several related observations of CAMP-like mechanisms are made via biophysical measurements, whole genome sequencing of tolerance mutants and transcriptomic analysis. These include: high selectivity for binding of G-quadruplex DNA over double stranded DNA; inhibition of both DNA gyrase and topoisomerase I in vitro; curing of a plasmid that contributes to the very high virulence of the E. coli strain used; activation of various two-component sensor/regulator and acid response pathways; and subsequent attempts by the cell to lower the net negative charge of the surface. This impact of the compound on multiple structures and pathways corresponds with our inability to isolate fully resistant mutant strains, and supports the idea that CAMP-inspired chemical scaffolds are a realistic approach for antimicrobial drug discovery, without the practical barriers to development that are associated with natural CAMPS.

Zobrazit více v PubMed

OECD, Stemming the Superbug Tide, 2018.

World Health Organisation, No Time to Wait: securing the future from drug-resistant infections, UN Interagency Coordination Group on Antimicrobial Resistance, 2019, https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/.

Hancock R. E. W., Diamond G. Trends Microbiol. 2000;8(9):402. PubMed

Zasloff M. Nature. 2002;415(6870):389. PubMed

Epand R. M., Walker C., Epand R. F., Magarvey N. A. Biochim. Biophys. Acta, Biomembr. 2016;1858(5):980. PubMed

Sohlenkamp C., Geiger O. FEMS Microbiol. Rev. 2015;40(1):133. PubMed

Wu M., Maier E., Benz R., Hancock R. E. W. Biochemistry. 1999;38(22):7235. PubMed

Huang H. W., Charron N. E. Q. Rev. Biophys. 2017;50:e10. PubMed

Le C.-F., Fang C.-M., Sekaran S. D. Antimicrob. Agents Chemother. 2017;61(4):e02340. PubMed PMC

Shah P., Hsiao F. S.-H., Ho Y.-H., Chen C.-S. Proteomics. 2016;16(8):1225. PubMed

Marco S., Mario M., Giulia R., Monica B. Curr. Top. Med. Chem. 2016;16(1):76. PubMed

Brogden K. A. Nat. Rev. Microbiol. 2005;3:238. PubMed

Mohamed M. F., Abdelkhalek A., Seleem M. N. Sci. Rep. 2016;6:29707. PubMed PMC

Beaudoin T., Stone T. A., Glibowicka M., Adams C., Yau Y., Ahmadi S., Bear C. E., Grasemann H., Waters V., Deber C. M. Sci. Rep. 2018;8(1):14728. PubMed PMC

Lázár V., Martins A., Spohn R., Daruka L., Grézal G., Fekete G., Számel M., Jangir P. K., Kintses B., Csörgő B. Nat. Microbiol. 2018;3(6):718. PubMed PMC

Hancock R. E. W., Sahl H.-G. Nat. Biotechnol. 2006;24(12):1551. PubMed

Walensky L. D., Kung A. L., Escher I., Malia T. J., Barbuto S., Wright R. D., Wagner G., Verdine G. L., Korsmeyer S. J. Science. 2004;305(5689):1466. PubMed PMC

Faulkner A. D., Kaner R. A., Abdallah Q. M. A., Clarkson G., Fox D. J., Gurnani P., Howson S. E., Phillips R. M., Roper D. I., Simpson D. H. Nat. Chem. 2014;6(9):797. PubMed

Song H., Rogers N. J., Allison S. J., Brabec V., Bridgewater H., Kostrhunova H., Markova L., Phillips R. M., Pinder E. C., Shepherd S. L. Chem. Sci. 2019 doi: 10.1039/C9SC02651G. PubMed DOI PMC

Mitchell D. E., Clarkson G., Fox D. J., Vipond R. A., Scott P., Gibson M. I. J. Am. Chem. Soc. 2017;139(29):9835. PubMed PMC

Guan Y., Du Z., Gao N., Cao Y., Wang X., Scott P., Song H., Ren J., Qu X. Sci. Adv. 2018;4(1):eaao6718. PubMed PMC

Kaner R. A., Allison S. J., Faulkner A. D., Phillips R. M., Roper D. I., Shepherd S. L., Simpson D. H., Waterfield N. R., Scott P. Chem. Sci. 2016;7:951. PubMed PMC

Howson S. E., Bolhuis A., Brabec V., Clarkson G. J., Malina J., Rodger A., Scott P. Nat. Chem. 2012;4(1):31. PubMed

Aspinall H. C., Greeves N., Lee W. M., McIver E. G., Smith P. M. Tetrahedron Lett. 1997;38(26):4679.

Howson S. E., Allan L. E. N., Chmel N. P., Clarkson G. J., van Gorkum R., Scott P. Chem. Commun. 2009;(13):1727. PubMed

Howson S. E., Allan L. E. N., Chmel N. P., Clarkson G. J., Deeth R. J., Faulkner A. D., Simpson D. H., Scott P. Dalton Trans. 2011;40(40):10416. PubMed

Howson S. E., Clarkson G. J., Faulkner A. D., Kaner R. A., Whitmore M. J., Scott P. Dalton Trans. 2013;42(42):14967. PubMed

O'Neill A. J., Chopra I. Expert Opin. Invest. Drugs. 2004;13(8):1045. PubMed

Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y. Science. 2011;334(6058):982. PubMed PMC

Meylan S., Andrews I. W., Collins J. J. Cell. 2018;172(6):1228. PubMed

Rasheed J. K., Anderson G. J., Yigit H., Queenan A. M., Doménech-Sánchez A., Swenson J. M., Biddle J. W., Ferraro M. J., Jacoby G. A., Tenover F. C. Antimicrob. Agents Chemother. 2000;44(9):2382. PubMed PMC

Dimou V., Dhanji H., Pike R., Livermore D. M., Woodford N. J. Antimicrob. Chemother. 2012;67(7):1660. PubMed

Turton J. F., Kaufmann M. E., Warner M., Coelho J., Dijkshoorn L., van der Reijden T., Pitt T. L. J. Hosp. Infect. 2004;58(3):170. PubMed

Coelho J. M., Turton J. F., Kaufmann M. E., Glover J., Woodford N., Warner M., Palepou M.-F., Pike R., Pitt T. L., Patel B. C. J. Clin. Microbiol. 2006;44(10):3623. PubMed PMC

Yang Y., Livermore D. M., Williams R. J. J. Med. Microbiol. 1988;25(3):227. PubMed

Singh S., Sivakumar R. J. Infect. Chemother. 2004;10(6):307. PubMed

Ebbensgaard A., Mordhorst H., Aarestrup F. M., Hansen E. B. Front. Microbiol. 2018;9:2153. PubMed PMC

Liebau J., Pettersson P., Szpryngiel S., Mäler L. Biophys. J. 2015;109(3):552. PubMed PMC

Yethon J. A., Vinogradov E., Perry M. B., Whitfield C. J. Bacteriol. 2000;182(19):5620. PubMed PMC

Weissborn A. C., Liu Q., Rumley M. K., Kennedy E. P. J. Bacteriol. 1994;176(9):2611. PubMed PMC

Perry M. B., MacLean L., Griffith D. W. Biochem. Cell Biol. 1986;64(1):21. PubMed

Genevaux P., Bauda P., DuBow M. S., Oudega B. Arch. Microbiol. 1999;172(1):1. PubMed

Mills A., Le H.-T., Duong F. Biochim. Biophys. Acta, Biomembr. 2016;1858(12):3105. PubMed

Calcuttawala F., Hariharan C., Pazhani G. P., Ghosh S., Ramamurthy T. Antimicrob. Agents Chemother. 2015;59(1):152. PubMed PMC

Cao Z., Klebba P. E. Biochimie. 2002;84(5):399. PubMed

Makino K., Ishii K., Yasunaga T., Hattori M., Yokoyama K., Yutsudo C. H., Kubota Y., Yamaichi Y., Iida T., Yamamoto K. DNA Res. 1998;5(1):1. PubMed

Lim J. Y., Hong J. B., Sheng H., Shringi S., Kaul R., Besser T. E., Hovde C. J. J. Microbiol. 2010;48(3):347. PubMed PMC

Sanders C., Gillespie K., Scott P. Tetrahedron: Asymmetry. 2001;12(7):1055.

Yoon J. W., Lim J.J. Y.Y., Park Y. H., Hovde C. J. Infect. Immun. 2005;73(4):2367. PubMed PMC

Richards S., Strandberg K., Conroy M., Gunn J. Front. Cell. Infect. Microbiol. 2012;2:102. PubMed PMC

Salazar M. E., Podgornaia A. I., Laub M. T. Mol. Microbiol. 2016;102(3):430. PubMed

Choi E., Groisman E. A., Shin D. J. Bacteriol. 2009;191(23):7174. PubMed PMC

Breazeale S. D., Ribeiro A. A., Raetz C. R. H. J. Biol. Chem. 2003;278(27):24731. PubMed

Hong H., Patel D. R., Tamm L. K., van den Berg B. J. Biol. Chem. 2006;281(11):7568. PubMed

Pilsl H., Smajs D., Braun V. J. Bacteriol. 1999;181(11):3578. PubMed PMC

Bernard R., El Ghachi M., Mengin-Lecreulx D., Chippaux M., Denizot F. J. Biol. Chem. 2005;280(32):28852. PubMed

Feng Y., Cronan J. E. J. Biol. Chem. 2009;284(43):29526. PubMed PMC

Xu Y., Wei W., Lei S., Lin J., Srinivas S., Feng Y. mBio. 2018;9(2):e02317. PubMed PMC

Leyer G. J., Johnson E. A. Appl. Environ. Microbiol. 1993;59(6):1842. PubMed PMC

Ramos P. I. P., Custódio M. G. F., Quispe Saji G. d. R., Cardoso T., da Silva G. L., Braun G., Martins W. M. B. S., Girardello R., de Vasconcelos A. T. R., Fernández E. BMC Genomics. 2016;17(8):737. PubMed PMC

Herrera C. M., Hankins J. V., Trent M. S. Mol. Microbiol. 2010;76(6):1444. PubMed PMC

Garren D. M., Harrison M. A., Russell S. M. J. Food Prot. 1998;61(2):158. PubMed

Seputiene V., Motiejunas D., Suziedelis K., Tomenius H., Normark S., Melefors O., Suziedeliene E. J. Bacteriol. 2003;185(8):2475. PubMed PMC

Hotze A. C. G., Hodges N. J., Hayden R. E., Sanchez-Cano C., Paines C., Male N., Tse M.-K., Bunce C. M., Chipman J. K., Hannon M. J. Chem. Biol. 2008;15(12):1258. PubMed

Renner L. D., Weibel D. B. Proc. Natl. Acad. Sci. 2011;108(15):6264. PubMed PMC

Ben-Yehuda S., Rudner D. Z., Losick R. Science. 2003;299(5606):532. PubMed

Ptacin J. L., Gahlmann A., Bowman G. R., Perez A. M., von Diezmann A. R. S., Eckart M. R., Moerner W. E., Shapiro L. Proc. Natl. Acad. Sci. 2014;111(19):E2046. PubMed PMC

Niki H., Hiraga S. Genes Dev. 1998;12(7):1036. PubMed PMC

Postow L., Crisona N. J., Peter B. J., Hardy C. D., Cozzarelli N. R. Proc. Natl. Acad. Sci. 2001;98(15):8219. PubMed PMC

Li F., Harry E. J., Bottomley A. L., Edstein M. D., Birrell G. W., Woodward C. E., Keene F. R., Collins J. G. Chem. Sci. 2014;5(2):685.

Boer D. R., Kerckhoffs J. M. C. A., Parajo Y., Pascu M., Usón I., Lincoln P., Hannon M. J., Coll M. Angew. Chem., Int. Ed. 2010;49(13):2336. PubMed

Parajo Y., Malina J., Meistermann I., Clarkson G. J., Pascu M., Rodger A., Hannon M. J., Lincoln P. Dalton Trans. 2009;(25):4868. PubMed

Holder I. T., Hartig J. S. Chem. Biol. 2014;21(11):1511. PubMed

Rawal P., Kummarasetti V. B. R., Ravindran J., Kumar N., Halder K., Sharma R., Mukerji M., Das S. K., Chowdhury S. Genome Res. 2006;16(5):644. PubMed PMC

Perrone R., Lavezzo E., Riello E., Manganelli R., Palù G., Toppo S., Provvedi R., Richter S. N. Sci. Rep. 2017;7(1):5743. PubMed PMC

Oliver P. M., Crooks J. A., Leidl M., Yoon E. J., Saghatelian A., Weibel D. B. J. Bacteriol. 2014;196(19):3386. PubMed PMC

Zhao C., Song H., Scott P., Zhao A., Tateishi-Karimata H., Sugimoto N., Ren J., Qu X. Angew. Chem., Int. Ed. 2018;57(48):15723. PubMed

Coles S. J., Gale P. A. Chem. Sci. 2012;3(3):683.

Andersson D. I. and Hughes D., in Microbial Transmission, American Society of Microbiology, 2019, 10.1128/microbiolspec.MTBP-0013-2016. DOI

Ghai I., Ghai S. Infect. Drug Resist. 2018;11:523. PubMed PMC

Dwyer F. P., Gyarfas E. C., Rogers W. P., Koch J. H. Nature. 1952;170(4318):190. PubMed

Simpson D. H. and Scott P., in Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells, K. K.-W. Lo, ed. Academic Press, 2017, 10.1016/B978-0-12-803814-7.00007-1. DOI

Bolhuis A., Hand L., Marshall J. E., Richards A. D., Rodger A., Aldrich-Wright J. Eur. J. Pharm. Sci. 2011;42(4):313. PubMed

Li F. F., Collins J. G., Keene F. R. Chem. Soc. Rev. 2015;44(8):2529. PubMed

Li F. F., Harry E. J., Bottomley A. L., Edstein M. D., Birrell G. W., Woodward C. E., Keene F. R., Collins J. G. Chem. Sci. 2014;5(2):685.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...