Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32015803
PubMed Central
PMC6977464
DOI
10.1039/c9sc03532j
PII: c9sc03532j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A range of new water-compatible optically pure metallohelices - made by self-assembly of simple non-peptidic organic components around Fe ions - exhibit similar architecture to some natural cationic antimicrobial peptides (CAMPs) and are found to have high, structure-dependent activity against bacteria, including clinically problematic Gram-negative pathogens. A key compound is shown to freely enter rapidly dividing E. coli cells without significant membrane disruption, and localise in distinct foci near the poles. Several related observations of CAMP-like mechanisms are made via biophysical measurements, whole genome sequencing of tolerance mutants and transcriptomic analysis. These include: high selectivity for binding of G-quadruplex DNA over double stranded DNA; inhibition of both DNA gyrase and topoisomerase I in vitro; curing of a plasmid that contributes to the very high virulence of the E. coli strain used; activation of various two-component sensor/regulator and acid response pathways; and subsequent attempts by the cell to lower the net negative charge of the surface. This impact of the compound on multiple structures and pathways corresponds with our inability to isolate fully resistant mutant strains, and supports the idea that CAMP-inspired chemical scaffolds are a realistic approach for antimicrobial drug discovery, without the practical barriers to development that are associated with natural CAMPS.
Department of Biophysics Palacky University Slechtitelu 27 783 71 Olomouc Czech Republic
Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK Email
School of Life Sciences University of Warwick Gibbet Hill Campus Coventry CV4 7AL UK
The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 CZ 61265 Brno Czech Republic
Warwick Medical School University of Warwick Coventry CV4 7AL UK
Zobrazit více v PubMed
OECD, Stemming the Superbug Tide, 2018.
World Health Organisation, No Time to Wait: securing the future from drug-resistant infections, UN Interagency Coordination Group on Antimicrobial Resistance, 2019, https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/.
Hancock R. E. W., Diamond G. Trends Microbiol. 2000;8(9):402. PubMed
Zasloff M. Nature. 2002;415(6870):389. PubMed
Epand R. M., Walker C., Epand R. F., Magarvey N. A. Biochim. Biophys. Acta, Biomembr. 2016;1858(5):980. PubMed
Sohlenkamp C., Geiger O. FEMS Microbiol. Rev. 2015;40(1):133. PubMed
Wu M., Maier E., Benz R., Hancock R. E. W. Biochemistry. 1999;38(22):7235. PubMed
Huang H. W., Charron N. E. Q. Rev. Biophys. 2017;50:e10. PubMed
Le C.-F., Fang C.-M., Sekaran S. D. Antimicrob. Agents Chemother. 2017;61(4):e02340. PubMed PMC
Shah P., Hsiao F. S.-H., Ho Y.-H., Chen C.-S. Proteomics. 2016;16(8):1225. PubMed
Marco S., Mario M., Giulia R., Monica B. Curr. Top. Med. Chem. 2016;16(1):76. PubMed
Brogden K. A. Nat. Rev. Microbiol. 2005;3:238. PubMed
Mohamed M. F., Abdelkhalek A., Seleem M. N. Sci. Rep. 2016;6:29707. PubMed PMC
Beaudoin T., Stone T. A., Glibowicka M., Adams C., Yau Y., Ahmadi S., Bear C. E., Grasemann H., Waters V., Deber C. M. Sci. Rep. 2018;8(1):14728. PubMed PMC
Lázár V., Martins A., Spohn R., Daruka L., Grézal G., Fekete G., Számel M., Jangir P. K., Kintses B., Csörgő B. Nat. Microbiol. 2018;3(6):718. PubMed PMC
Hancock R. E. W., Sahl H.-G. Nat. Biotechnol. 2006;24(12):1551. PubMed
Walensky L. D., Kung A. L., Escher I., Malia T. J., Barbuto S., Wright R. D., Wagner G., Verdine G. L., Korsmeyer S. J. Science. 2004;305(5689):1466. PubMed PMC
Faulkner A. D., Kaner R. A., Abdallah Q. M. A., Clarkson G., Fox D. J., Gurnani P., Howson S. E., Phillips R. M., Roper D. I., Simpson D. H. Nat. Chem. 2014;6(9):797. PubMed
Song H., Rogers N. J., Allison S. J., Brabec V., Bridgewater H., Kostrhunova H., Markova L., Phillips R. M., Pinder E. C., Shepherd S. L. Chem. Sci. 2019 doi: 10.1039/C9SC02651G. PubMed DOI PMC
Mitchell D. E., Clarkson G., Fox D. J., Vipond R. A., Scott P., Gibson M. I. J. Am. Chem. Soc. 2017;139(29):9835. PubMed PMC
Guan Y., Du Z., Gao N., Cao Y., Wang X., Scott P., Song H., Ren J., Qu X. Sci. Adv. 2018;4(1):eaao6718. PubMed PMC
Kaner R. A., Allison S. J., Faulkner A. D., Phillips R. M., Roper D. I., Shepherd S. L., Simpson D. H., Waterfield N. R., Scott P. Chem. Sci. 2016;7:951. PubMed PMC
Howson S. E., Bolhuis A., Brabec V., Clarkson G. J., Malina J., Rodger A., Scott P. Nat. Chem. 2012;4(1):31. PubMed
Aspinall H. C., Greeves N., Lee W. M., McIver E. G., Smith P. M. Tetrahedron Lett. 1997;38(26):4679.
Howson S. E., Allan L. E. N., Chmel N. P., Clarkson G. J., van Gorkum R., Scott P. Chem. Commun. 2009;(13):1727. PubMed
Howson S. E., Allan L. E. N., Chmel N. P., Clarkson G. J., Deeth R. J., Faulkner A. D., Simpson D. H., Scott P. Dalton Trans. 2011;40(40):10416. PubMed
Howson S. E., Clarkson G. J., Faulkner A. D., Kaner R. A., Whitmore M. J., Scott P. Dalton Trans. 2013;42(42):14967. PubMed
O'Neill A. J., Chopra I. Expert Opin. Invest. Drugs. 2004;13(8):1045. PubMed
Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y. Science. 2011;334(6058):982. PubMed PMC
Meylan S., Andrews I. W., Collins J. J. Cell. 2018;172(6):1228. PubMed
Rasheed J. K., Anderson G. J., Yigit H., Queenan A. M., Doménech-Sánchez A., Swenson J. M., Biddle J. W., Ferraro M. J., Jacoby G. A., Tenover F. C. Antimicrob. Agents Chemother. 2000;44(9):2382. PubMed PMC
Dimou V., Dhanji H., Pike R., Livermore D. M., Woodford N. J. Antimicrob. Chemother. 2012;67(7):1660. PubMed
Turton J. F., Kaufmann M. E., Warner M., Coelho J., Dijkshoorn L., van der Reijden T., Pitt T. L. J. Hosp. Infect. 2004;58(3):170. PubMed
Coelho J. M., Turton J. F., Kaufmann M. E., Glover J., Woodford N., Warner M., Palepou M.-F., Pike R., Pitt T. L., Patel B. C. J. Clin. Microbiol. 2006;44(10):3623. PubMed PMC
Yang Y., Livermore D. M., Williams R. J. J. Med. Microbiol. 1988;25(3):227. PubMed
Singh S., Sivakumar R. J. Infect. Chemother. 2004;10(6):307. PubMed
Ebbensgaard A., Mordhorst H., Aarestrup F. M., Hansen E. B. Front. Microbiol. 2018;9:2153. PubMed PMC
Liebau J., Pettersson P., Szpryngiel S., Mäler L. Biophys. J. 2015;109(3):552. PubMed PMC
Yethon J. A., Vinogradov E., Perry M. B., Whitfield C. J. Bacteriol. 2000;182(19):5620. PubMed PMC
Weissborn A. C., Liu Q., Rumley M. K., Kennedy E. P. J. Bacteriol. 1994;176(9):2611. PubMed PMC
Perry M. B., MacLean L., Griffith D. W. Biochem. Cell Biol. 1986;64(1):21. PubMed
Genevaux P., Bauda P., DuBow M. S., Oudega B. Arch. Microbiol. 1999;172(1):1. PubMed
Mills A., Le H.-T., Duong F. Biochim. Biophys. Acta, Biomembr. 2016;1858(12):3105. PubMed
Calcuttawala F., Hariharan C., Pazhani G. P., Ghosh S., Ramamurthy T. Antimicrob. Agents Chemother. 2015;59(1):152. PubMed PMC
Cao Z., Klebba P. E. Biochimie. 2002;84(5):399. PubMed
Makino K., Ishii K., Yasunaga T., Hattori M., Yokoyama K., Yutsudo C. H., Kubota Y., Yamaichi Y., Iida T., Yamamoto K. DNA Res. 1998;5(1):1. PubMed
Lim J. Y., Hong J. B., Sheng H., Shringi S., Kaul R., Besser T. E., Hovde C. J. J. Microbiol. 2010;48(3):347. PubMed PMC
Sanders C., Gillespie K., Scott P. Tetrahedron: Asymmetry. 2001;12(7):1055.
Yoon J. W., Lim J.J. Y.Y., Park Y. H., Hovde C. J. Infect. Immun. 2005;73(4):2367. PubMed PMC
Richards S., Strandberg K., Conroy M., Gunn J. Front. Cell. Infect. Microbiol. 2012;2:102. PubMed PMC
Salazar M. E., Podgornaia A. I., Laub M. T. Mol. Microbiol. 2016;102(3):430. PubMed
Choi E., Groisman E. A., Shin D. J. Bacteriol. 2009;191(23):7174. PubMed PMC
Breazeale S. D., Ribeiro A. A., Raetz C. R. H. J. Biol. Chem. 2003;278(27):24731. PubMed
Hong H., Patel D. R., Tamm L. K., van den Berg B. J. Biol. Chem. 2006;281(11):7568. PubMed
Pilsl H., Smajs D., Braun V. J. Bacteriol. 1999;181(11):3578. PubMed PMC
Bernard R., El Ghachi M., Mengin-Lecreulx D., Chippaux M., Denizot F. J. Biol. Chem. 2005;280(32):28852. PubMed
Feng Y., Cronan J. E. J. Biol. Chem. 2009;284(43):29526. PubMed PMC
Xu Y., Wei W., Lei S., Lin J., Srinivas S., Feng Y. mBio. 2018;9(2):e02317. PubMed PMC
Leyer G. J., Johnson E. A. Appl. Environ. Microbiol. 1993;59(6):1842. PubMed PMC
Ramos P. I. P., Custódio M. G. F., Quispe Saji G. d. R., Cardoso T., da Silva G. L., Braun G., Martins W. M. B. S., Girardello R., de Vasconcelos A. T. R., Fernández E. BMC Genomics. 2016;17(8):737. PubMed PMC
Herrera C. M., Hankins J. V., Trent M. S. Mol. Microbiol. 2010;76(6):1444. PubMed PMC
Garren D. M., Harrison M. A., Russell S. M. J. Food Prot. 1998;61(2):158. PubMed
Seputiene V., Motiejunas D., Suziedelis K., Tomenius H., Normark S., Melefors O., Suziedeliene E. J. Bacteriol. 2003;185(8):2475. PubMed PMC
Hotze A. C. G., Hodges N. J., Hayden R. E., Sanchez-Cano C., Paines C., Male N., Tse M.-K., Bunce C. M., Chipman J. K., Hannon M. J. Chem. Biol. 2008;15(12):1258. PubMed
Renner L. D., Weibel D. B. Proc. Natl. Acad. Sci. 2011;108(15):6264. PubMed PMC
Ben-Yehuda S., Rudner D. Z., Losick R. Science. 2003;299(5606):532. PubMed
Ptacin J. L., Gahlmann A., Bowman G. R., Perez A. M., von Diezmann A. R. S., Eckart M. R., Moerner W. E., Shapiro L. Proc. Natl. Acad. Sci. 2014;111(19):E2046. PubMed PMC
Niki H., Hiraga S. Genes Dev. 1998;12(7):1036. PubMed PMC
Postow L., Crisona N. J., Peter B. J., Hardy C. D., Cozzarelli N. R. Proc. Natl. Acad. Sci. 2001;98(15):8219. PubMed PMC
Li F., Harry E. J., Bottomley A. L., Edstein M. D., Birrell G. W., Woodward C. E., Keene F. R., Collins J. G. Chem. Sci. 2014;5(2):685.
Boer D. R., Kerckhoffs J. M. C. A., Parajo Y., Pascu M., Usón I., Lincoln P., Hannon M. J., Coll M. Angew. Chem., Int. Ed. 2010;49(13):2336. PubMed
Parajo Y., Malina J., Meistermann I., Clarkson G. J., Pascu M., Rodger A., Hannon M. J., Lincoln P. Dalton Trans. 2009;(25):4868. PubMed
Holder I. T., Hartig J. S. Chem. Biol. 2014;21(11):1511. PubMed
Rawal P., Kummarasetti V. B. R., Ravindran J., Kumar N., Halder K., Sharma R., Mukerji M., Das S. K., Chowdhury S. Genome Res. 2006;16(5):644. PubMed PMC
Perrone R., Lavezzo E., Riello E., Manganelli R., Palù G., Toppo S., Provvedi R., Richter S. N. Sci. Rep. 2017;7(1):5743. PubMed PMC
Oliver P. M., Crooks J. A., Leidl M., Yoon E. J., Saghatelian A., Weibel D. B. J. Bacteriol. 2014;196(19):3386. PubMed PMC
Zhao C., Song H., Scott P., Zhao A., Tateishi-Karimata H., Sugimoto N., Ren J., Qu X. Angew. Chem., Int. Ed. 2018;57(48):15723. PubMed
Coles S. J., Gale P. A. Chem. Sci. 2012;3(3):683.
Andersson D. I. and Hughes D., in Microbial Transmission, American Society of Microbiology, 2019, 10.1128/microbiolspec.MTBP-0013-2016. DOI
Ghai I., Ghai S. Infect. Drug Resist. 2018;11:523. PubMed PMC
Dwyer F. P., Gyarfas E. C., Rogers W. P., Koch J. H. Nature. 1952;170(4318):190. PubMed
Simpson D. H. and Scott P., in Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells, K. K.-W. Lo, ed. Academic Press, 2017, 10.1016/B978-0-12-803814-7.00007-1. DOI
Bolhuis A., Hand L., Marshall J. E., Richards A. D., Rodger A., Aldrich-Wright J. Eur. J. Pharm. Sci. 2011;42(4):313. PubMed
Li F. F., Collins J. G., Keene F. R. Chem. Soc. Rev. 2015;44(8):2529. PubMed
Li F. F., Harry E. J., Bottomley A. L., Edstein M. D., Birrell G. W., Woodward C. E., Keene F. R., Collins J. G. Chem. Sci. 2014;5(2):685.
Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells
Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles
Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo