Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POWR.03.02.00-00-I023/17
European Social Fund
CZ.02.1.01/0.0/0.0/16_019/0000853
European Regional Development Fund
LM2018098
LARGE RESEARCH INFRASTRUCTURE ENREGAT
PubMed
32560554
PubMed Central
PMC7344968
DOI
10.3390/ma13122756
PII: ma13122756
Knihovny.cz E-zdroje
- Klíčová slova
- graphitic carbon nitride, hydrogen generation, melon, photocatalysis, synthesis conditions,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (g-C3N4) was obtained by thermal polymerization of dicyandiamide, thiourea or melamine at high temperatures (550 and 600 °C), using different heating rates (2 or 10 °C min-1) and synthesis times (0 or 4 h). The effects of the synthesis conditions and type of the precursor on the efficiency of g-C3N4 were studied. The most efficient was the synthesis from dicyandiamide, 53%, while the efficiency in the process of synthesis from melamine and thiourea were much smaller, 26% and 11%, respectively. On the basis of the results provided by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), thermogravimetric analysis (TGA), elemental analysis (EA), the best precursor and the optimum conditions of synthesis of g-C3N4 were identified to get the product of the most stable structure, the highest degree of ordering and condensation of structure and finally the highest photocatalytic activity. It was found that as the proton concentration decreased and the degree of condensation increased, the hydrogen yields during the photocatalytic decomposition of water-methanol solution were significantly enhanced. The generation of hydrogen was 1200 µmol g-1 and the selectivity towards hydrogen of more than 98%.
Zobrazit více v PubMed
Wang X.C., Blechert S., Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;2:1596–1606. doi: 10.1021/cs300240x. DOI
Wang Y., Wang X.C., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI
Chen Y.L., Bai X. A Review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts. 2020;10:30. doi: 10.3390/catal10010030. DOI
Dong G.P., Zhang Y.H., Pan Q.W., Qiu J.R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI
Wen J.Q., Xie J., Chen X.B., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI
Wang X.C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Jorge A.B., Martin D.J., Dhanoa M.T.S., Rahman A.S., Makwana N., Tang J.W., Sella A., Cora F., Firth S., Darr J.A., et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C. 2013;117:7178–7185. doi: 10.1021/jp4009338. DOI
Chen Z.P., Vorobyeva E., Mitchell S., Fako E., Lopez N., Collins S.M., Leary R.K., Midgley P.A., Hauert R., Perez-Ramirez J. Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. Natl. Sci. Rev. 2018;5:642–652. doi: 10.1093/nsr/nwy048. DOI
Su Q., Sun J., Wang J.Q., Yang Z.F., Cheng W.G., Zhang S.J. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 2014;4:1556–1562. doi: 10.1039/c3cy00921a. DOI
Shi Y., Yu B., Duan L., Gui Z., Wang B., Hu Y., Yuen R.K.K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 2017;332:87–96. doi: 10.1016/j.jhazmat.2017.03.006. PubMed DOI
Shi Y., Wang L., Fu L., Liu C., Yu B., Yang F., Hu Y. Sodium alginate-templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application. J. Colloid Interface Sci. 2019;539:1–10. doi: 10.1016/j.jcis.2018.12.051. PubMed DOI
Shi Y.Q., Fu L.B., Chen X.L., Guo J., Yang F.Q., Wang J.G., Zheng Y.Y., Hu Y. Hypophosphite/graphitic carbon nitride hybrids: Preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials. 2017;7:259. doi: 10.3390/nano7090259. PubMed DOI PMC
Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012;5:6717–6731. doi: 10.1039/c2ee03479d. DOI
Zhang G.G., Zhang J.S., Zhang M.W., Wang X.C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012;22:8083–8091. doi: 10.1039/c2jm00097k. DOI
Cao S.W., Yu J.G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014;5:2101–2107. doi: 10.1021/jz500546b. PubMed DOI
Goettmann F., Fischer A., Antonietti M., Thomas A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem. Int. Ed. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI
Talapaneni S.N., Mane G.P., Mano A., Anand C., Dhawale D.S., Mori T., Vinu A. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSusChem. 2012;5:700–708. doi: 10.1002/cssc.201100626. PubMed DOI
Thomas A., Goettmann F., Antonietti M. Hard templates for soft materials: Creating nanostructured organic materials. Chem. Mater. 2008;20:738–755. doi: 10.1021/cm702126j. DOI
Wang J.H., Zhang C., Shen Y.F., Zhou Z.X., Yu J.C., Li Y., Wei W., Liu S.Q., Zhang Y.J. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A. 2015;3:5126–5131. doi: 10.1039/C4TA06778A. DOI
Chen X.F., Jun Y.S., Takanabe K., Maeda K., Domen K., Fu X.Z., Antonietti M., Wang X.C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009;21:4093–4095. doi: 10.1021/cm902130z. DOI
Li X.J., Li Y.W., Sun G., Luo N., Zhang B., Zhang Z.Y. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials. 2019;9:724. doi: 10.3390/nano9050724. PubMed DOI PMC
Jiang L.B., Yuan X.Z., Pan Y., Liang J., Zeng G.M., Wu Z.B., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI
Zhou L., Zhang H.Y., Sun H.Q., Liu S.M., Tade M.O., Wang S.B., Jin W.Q. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 2016;6:7002–7023. doi: 10.1039/C6CY01195K. DOI
Xu M.Q., Chai B., Yan J.T., Wang H.B., Ren Z.D., Paik K.W. Facile synthesis of fluorine doped graphitic carbon nitride with enhanced visible light photocatalytic activity. Nano. 2016;11:11. doi: 10.1142/S179329201650137X. DOI
Zhang Y.J., Mori T., Ye J.H., Antonietti M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010;132:6294–6295. doi: 10.1021/ja101749y. PubMed DOI
Wang K., Li Q., Liu B.S., Cheng B., Ho W.K., Yu J.G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015;176:44–52. doi: 10.1016/j.apcatb.2015.03.045. DOI
Wang Y., Li H.R., Yao J., Wang X.C., Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011;2:446–450. doi: 10.1039/C0SC00475H. DOI
Liu G., Niu P., Sun C.H., Smith S.C., Chen Z.G., Lu G.Q., Cheng H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010;132:11642–11648. doi: 10.1021/ja103798k. PubMed DOI
Xu J., Zhang L.W., Shi R., Zhu Y.F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 2013;1:14766–14772. doi: 10.1039/c3ta13188b. DOI
Maslana K., Kalenczuk R.J., Zielinska B., Mijowska E. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials. 2020;13:1349. doi: 10.3390/ma13061349. PubMed DOI PMC
Zheng Y., Zhang Z.S., Li C.H. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. J. Photochem. Photobiol. A: Chem. 2017;332:32–44. doi: 10.1016/j.jphotochem.2016.08.005. DOI
Zhang W.D., Zhang Q., Dong F., Zhao Z.W. The multiple effects of precursors on the properties of polymeric carbon nitride. Int. J. Photoenergy. 2013;2013 doi: 10.1155/2013/685038. DOI
Zhao Z.H., Ma Y., Fan J.M., Xue Y.Q., Chang H.H., Masubuchi Y., Yin S. Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities. J. Alloys Compd. 2018;735:1297–1305. doi: 10.1016/j.jallcom.2017.11.033. DOI
Devthade V., Kulhari D., Umare S.S. Role of precursors on photocatalytic behavior of graphitic carbon nitride. Mater. Today: Proc. 2018;5:9203–9210. doi: 10.1016/j.matpr.2017.10.045. DOI
Dozzi M.V., Chiarello G.L., Pedroni M., Livraghi S., Giamello E., Selli E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B Environ. 2017;209:417–428. doi: 10.1016/j.apcatb.2017.03.007. DOI
Koci K., Troppova I., Edelmannova M., Starostka J., Matejova L., Lang J., Reli M., Drobna H., Rokicinska A., Kustrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI
Edelmannova M., Dubnova L., Reli M., Meinhardova V., Huo P.W., Stangar U.L., Capek L., Koci K. The role of fluorine in F-La/TiO2 photocatalysts on photocatalytic decomposition of methanol-water solution. Materials. 2019;12:2867. doi: 10.3390/ma12182867. PubMed DOI PMC
Papailias I., Todorova N., Giannakopoulou T., Ioannidis N., Boukos N., Athanasekou C.P., Dimotikali D., Trapalis C. Chemical vs. thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Appl. Catal. B Environ. 2018;239:16–26. doi: 10.1016/j.apcatb.2018.07.078. DOI
Lau V.W.H., Moudrakovski I., Botari T., Weinberger S., Mesch M.B., Duppel V., Senker J., Blum V., Lotsch B.V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016;7:10. doi: 10.1038/ncomms12165. PubMed DOI PMC
Lotsch B.V., Doblinger M., Sehnert J., Seyfarth L., Senker J., Oeckler O., Schnick W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem. Eur. J. 2007;13:4969–4980. doi: 10.1002/chem.200601759. PubMed DOI
Lotsch B.V., Schnick W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J. 2007;13:4956–4968. doi: 10.1002/chem.200601291. PubMed DOI
Akaike K., Aoyama K., Dekubo S., Onishi A., Kanai K. Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis. Chem. Mater. 2018;30:2341–2352. doi: 10.1021/acs.chemmater.7b05316. DOI
Niu P., Zhang L.L., Liu G., Cheng H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012;22:4763–4770. doi: 10.1002/adfm.201200922. DOI
Groenewolt M., Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005;17:1789–1792. doi: 10.1002/adma.200401756. DOI
Miller T.S., Jorge A.B., Suter T.M., Sella A., Cora F., McMillan P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017;19:15613–15638. doi: 10.1039/C7CP02711G. PubMed DOI
Fina F., Callear S.K., Carins G.M., Irvine J.T.S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015;27:2612–2618. doi: 10.1021/acs.chemmater.5b00411. DOI
Xu H., Wu Z., Wang Y.T., Lin C.S. Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J. Mater. Sci. 2017;52:9477–9490. doi: 10.1007/s10853-017-1167-6. DOI
Wang Y.O., Bayazit M.K., Moniz S.J.A., Ruan Q.S., Lau C.C., Martsinovich N., Tang J.W. Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy Environ. Sci. 2017;10:1643–1651. doi: 10.1039/C7EE01109A. DOI
Cai J., Han Y., Chen S.Y., Crumlin E.J., Yang B., Li Y.M., Liu Z. CO2 activation on Ni(111) and Ni(100) surfaces in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. J. Phys. Chem. C. 2019;123:12176–12182. doi: 10.1021/acs.jpcc.8b11698. DOI
Tao F., Wang Z.H., Qiao M.H., Liu Q., Sim W.S., Xu G.Q. Covalent attachment of acetonitrile on Si(100) through Si-C and Si-N linkages. J. Chem. Phys. 2001;115:8563–8569. doi: 10.1063/1.1410388. DOI
Brant P., Enemark J.H., Balch A.L. X-ray photoelectron-spectra of palladium and platinum complexes of carbenoid and related ligands. J. Organomet. Chem. 1976;114:99–106. doi: 10.1016/S0022-328X(00)87353-2. DOI
Lalitha S., Manoharan P.T. X-ray photoelectron spectroscopic studies on some dithiolate complexes. J. Electron Spectrosc. Relat. Phenom. 1989;49:61–75. doi: 10.1016/0368-2048(89)80037-4. DOI
Wu C.R., Salaneck W.R., Ritsko J.J., Bredas J.L. X-ray photoelectron-spectroscopy of polyacrylonitrile. Synth. Met. 1986;16:147–159. doi: 10.1016/0379-6779(86)90107-4. DOI
Wu G.P., Lu C.X., Wu X.P., Zhang S.C., Fu H., Ling L.C. X-ray photoelectron spectroscopy investigation into thermal degradation and stabilization of polyacrylonitrile fibers. J. Appl. Polym. Sci. 2004;94:1705–1709. doi: 10.1002/app.21081. DOI
Dante R.C., Martin-Ramos P., Correa-Guimaraes A., Martin-Gil J. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Mater. Chem. Phys. 2011;130:1094–1102. doi: 10.1016/j.matchemphys.2011.08.041. DOI
Lau V.W.H., Mesch M.B., Duppel V., Blum V., Senker J., Lotsch B.V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 2015;137:1064–1072. doi: 10.1021/ja511802c. PubMed DOI
Lotsch B.V., Schnick W. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 2006;18:1891–1900. doi: 10.1021/cm052342f. DOI
Miller D.R., Wang J.J., Gillan E.G. Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem. 2002;12:2463–2469. doi: 10.1039/b109700h. DOI
Wei X.Q., Qiu Y., Duan W.Y., Liu Z.X. Cathodic and anodic photocurrents generation from melem and its derivatives. RSC Adv. 2015;5:26675–26679. doi: 10.1039/C5RA02816G. DOI
Wang J., Li M.S., Qian M., Zhou S.Y., Xue A.L., Zhang L.L., Zhao Y.J., Xing W.H. Simple synthesis of high specific surface carbon nitride for adsorption-enhanced photocatalytic performance. Nanoscale Res. Lett. 2018;13:7. doi: 10.1186/s11671-018-2654-7. PubMed DOI PMC
Zhu Y.L., Shi Y.Q., Huang Z.Q., Duan L.J., Tai Q.L., Hu Y. Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos. Part A Appl. Sci. Manuf. 2017;99:149–156. doi: 10.1016/j.compositesa.2017.03.023. DOI
Sano T., Sato H., Hori T., Hirakawa T., Teramoto Y., Koike K. Effects of polymeric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis. Mol. Catal. 2019;474:8. doi: 10.1016/j.mcat.2019.110451. DOI
Zuluaga S., Liu L.H., Shafiq N., Rupich S.M., Veyan J.F., Chabal Y.J., Thonhauser T. Structural band-gap tuning in g-C3N4. Phys. Chem. Chem. Phys. 2015;17:957–962. doi: 10.1039/C4CP05164E. PubMed DOI
Tyborski T., Merschjann C., Orthmann S., Yang F., Lux-Steiner M.C., Schedel-Niedrig T. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation. J. Phys. Condens. Matter. 2012;24:4. doi: 10.1088/0953-8984/24/16/162201. PubMed DOI
Koci K., Reli M., Edelmannova M., Troppova I., Drobna H., Rokicinska A., Kustrowski P., Dvoranova D., Capek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A Chem. 2018;366:55–64. doi: 10.1016/j.jphotochem.2018.03.007. DOI
Wu X.Y., Yin S., Dong Q., Guo C.S., Kimura T., Matsushita J., Sato T. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J. Phys. Chem. C. 2013;117:8345–8352. doi: 10.1021/jp402063n. DOI
Azam M.U., Tahir M., Umer M., Jaffar M.M., Nawawi M.G.M. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci. 2019;484:1089–1101. doi: 10.1016/j.apsusc.2019.04.030. DOI
Cao J.W., Zhang J.Y., Dong X.A., Fu H.L., Zhang X.M., Lv X.S., Li Y.H., Jiang G.M. Defective borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl. Catal. B Environ. 2019;249:266–274. doi: 10.1016/j.apcatb.2019.03.012. DOI
Yu Q.B., Xu Q.X., Li H.Q., Yang K., Li X.H. Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. J. Mater. Sci. 2019;54:14599–14608. doi: 10.1007/s10853-019-03895-w. DOI
Martin D.J., Qiu K.P., Shevlin S.A., Handoko A.D., Chen X.W., Guo Z.X., Tang J.W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 2014;53:9240–9245. doi: 10.1002/anie.201403375. PubMed DOI PMC