Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability

. 2020 Jun 17 ; 13 (12) : . [epub] 20200617

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32560554

Grantová podpora
POWR.03.02.00-00-I023/17 European Social Fund
CZ.02.1.01/0.0/0.0/16_019/0000853 European Regional Development Fund
LM2018098 LARGE RESEARCH INFRASTRUCTURE ENREGAT

Graphitic carbon nitride (g-C3N4) was obtained by thermal polymerization of dicyandiamide, thiourea or melamine at high temperatures (550 and 600 °C), using different heating rates (2 or 10 °C min-1) and synthesis times (0 or 4 h). The effects of the synthesis conditions and type of the precursor on the efficiency of g-C3N4 were studied. The most efficient was the synthesis from dicyandiamide, 53%, while the efficiency in the process of synthesis from melamine and thiourea were much smaller, 26% and 11%, respectively. On the basis of the results provided by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), thermogravimetric analysis (TGA), elemental analysis (EA), the best precursor and the optimum conditions of synthesis of g-C3N4 were identified to get the product of the most stable structure, the highest degree of ordering and condensation of structure and finally the highest photocatalytic activity. It was found that as the proton concentration decreased and the degree of condensation increased, the hydrogen yields during the photocatalytic decomposition of water-methanol solution were significantly enhanced. The generation of hydrogen was 1200 µmol g-1 and the selectivity towards hydrogen of more than 98%.

Zobrazit více v PubMed

Wang X.C., Blechert S., Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;2:1596–1606. doi: 10.1021/cs300240x. DOI

Wang Y., Wang X.C., Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI

Chen Y.L., Bai X. A Review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts. 2020;10:30. doi: 10.3390/catal10010030. DOI

Dong G.P., Zhang Y.H., Pan Q.W., Qiu J.R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI

Wen J.Q., Xie J., Chen X.B., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI

Wang X.C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI

Jorge A.B., Martin D.J., Dhanoa M.T.S., Rahman A.S., Makwana N., Tang J.W., Sella A., Cora F., Firth S., Darr J.A., et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C. 2013;117:7178–7185. doi: 10.1021/jp4009338. DOI

Chen Z.P., Vorobyeva E., Mitchell S., Fako E., Lopez N., Collins S.M., Leary R.K., Midgley P.A., Hauert R., Perez-Ramirez J. Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. Natl. Sci. Rev. 2018;5:642–652. doi: 10.1093/nsr/nwy048. DOI

Su Q., Sun J., Wang J.Q., Yang Z.F., Cheng W.G., Zhang S.J. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 2014;4:1556–1562. doi: 10.1039/c3cy00921a. DOI

Shi Y., Yu B., Duan L., Gui Z., Wang B., Hu Y., Yuen R.K.K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 2017;332:87–96. doi: 10.1016/j.jhazmat.2017.03.006. PubMed DOI

Shi Y., Wang L., Fu L., Liu C., Yu B., Yang F., Hu Y. Sodium alginate-templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application. J. Colloid Interface Sci. 2019;539:1–10. doi: 10.1016/j.jcis.2018.12.051. PubMed DOI

Shi Y.Q., Fu L.B., Chen X.L., Guo J., Yang F.Q., Wang J.G., Zheng Y.Y., Hu Y. Hypophosphite/graphitic carbon nitride hybrids: Preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials. 2017;7:259. doi: 10.3390/nano7090259. PubMed DOI PMC

Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012;5:6717–6731. doi: 10.1039/c2ee03479d. DOI

Zhang G.G., Zhang J.S., Zhang M.W., Wang X.C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012;22:8083–8091. doi: 10.1039/c2jm00097k. DOI

Cao S.W., Yu J.G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014;5:2101–2107. doi: 10.1021/jz500546b. PubMed DOI

Goettmann F., Fischer A., Antonietti M., Thomas A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem. Int. Ed. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI

Talapaneni S.N., Mane G.P., Mano A., Anand C., Dhawale D.S., Mori T., Vinu A. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSusChem. 2012;5:700–708. doi: 10.1002/cssc.201100626. PubMed DOI

Thomas A., Goettmann F., Antonietti M. Hard templates for soft materials: Creating nanostructured organic materials. Chem. Mater. 2008;20:738–755. doi: 10.1021/cm702126j. DOI

Wang J.H., Zhang C., Shen Y.F., Zhou Z.X., Yu J.C., Li Y., Wei W., Liu S.Q., Zhang Y.J. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A. 2015;3:5126–5131. doi: 10.1039/C4TA06778A. DOI

Chen X.F., Jun Y.S., Takanabe K., Maeda K., Domen K., Fu X.Z., Antonietti M., Wang X.C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009;21:4093–4095. doi: 10.1021/cm902130z. DOI

Li X.J., Li Y.W., Sun G., Luo N., Zhang B., Zhang Z.Y. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials. 2019;9:724. doi: 10.3390/nano9050724. PubMed DOI PMC

Jiang L.B., Yuan X.Z., Pan Y., Liang J., Zeng G.M., Wu Z.B., Wang H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI

Zhou L., Zhang H.Y., Sun H.Q., Liu S.M., Tade M.O., Wang S.B., Jin W.Q. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 2016;6:7002–7023. doi: 10.1039/C6CY01195K. DOI

Xu M.Q., Chai B., Yan J.T., Wang H.B., Ren Z.D., Paik K.W. Facile synthesis of fluorine doped graphitic carbon nitride with enhanced visible light photocatalytic activity. Nano. 2016;11:11. doi: 10.1142/S179329201650137X. DOI

Zhang Y.J., Mori T., Ye J.H., Antonietti M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010;132:6294–6295. doi: 10.1021/ja101749y. PubMed DOI

Wang K., Li Q., Liu B.S., Cheng B., Ho W.K., Yu J.G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015;176:44–52. doi: 10.1016/j.apcatb.2015.03.045. DOI

Wang Y., Li H.R., Yao J., Wang X.C., Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011;2:446–450. doi: 10.1039/C0SC00475H. DOI

Liu G., Niu P., Sun C.H., Smith S.C., Chen Z.G., Lu G.Q., Cheng H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010;132:11642–11648. doi: 10.1021/ja103798k. PubMed DOI

Xu J., Zhang L.W., Shi R., Zhu Y.F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 2013;1:14766–14772. doi: 10.1039/c3ta13188b. DOI

Maslana K., Kalenczuk R.J., Zielinska B., Mijowska E. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials. 2020;13:1349. doi: 10.3390/ma13061349. PubMed DOI PMC

Zheng Y., Zhang Z.S., Li C.H. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. J. Photochem. Photobiol. A: Chem. 2017;332:32–44. doi: 10.1016/j.jphotochem.2016.08.005. DOI

Zhang W.D., Zhang Q., Dong F., Zhao Z.W. The multiple effects of precursors on the properties of polymeric carbon nitride. Int. J. Photoenergy. 2013;2013 doi: 10.1155/2013/685038. DOI

Zhao Z.H., Ma Y., Fan J.M., Xue Y.Q., Chang H.H., Masubuchi Y., Yin S. Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities. J. Alloys Compd. 2018;735:1297–1305. doi: 10.1016/j.jallcom.2017.11.033. DOI

Devthade V., Kulhari D., Umare S.S. Role of precursors on photocatalytic behavior of graphitic carbon nitride. Mater. Today: Proc. 2018;5:9203–9210. doi: 10.1016/j.matpr.2017.10.045. DOI

Dozzi M.V., Chiarello G.L., Pedroni M., Livraghi S., Giamello E., Selli E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B Environ. 2017;209:417–428. doi: 10.1016/j.apcatb.2017.03.007. DOI

Koci K., Troppova I., Edelmannova M., Starostka J., Matejova L., Lang J., Reli M., Drobna H., Rokicinska A., Kustrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI

Edelmannova M., Dubnova L., Reli M., Meinhardova V., Huo P.W., Stangar U.L., Capek L., Koci K. The role of fluorine in F-La/TiO2 photocatalysts on photocatalytic decomposition of methanol-water solution. Materials. 2019;12:2867. doi: 10.3390/ma12182867. PubMed DOI PMC

Papailias I., Todorova N., Giannakopoulou T., Ioannidis N., Boukos N., Athanasekou C.P., Dimotikali D., Trapalis C. Chemical vs. thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Appl. Catal. B Environ. 2018;239:16–26. doi: 10.1016/j.apcatb.2018.07.078. DOI

Lau V.W.H., Moudrakovski I., Botari T., Weinberger S., Mesch M.B., Duppel V., Senker J., Blum V., Lotsch B.V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016;7:10. doi: 10.1038/ncomms12165. PubMed DOI PMC

Lotsch B.V., Doblinger M., Sehnert J., Seyfarth L., Senker J., Oeckler O., Schnick W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem. Eur. J. 2007;13:4969–4980. doi: 10.1002/chem.200601759. PubMed DOI

Lotsch B.V., Schnick W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J. 2007;13:4956–4968. doi: 10.1002/chem.200601291. PubMed DOI

Akaike K., Aoyama K., Dekubo S., Onishi A., Kanai K. Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis. Chem. Mater. 2018;30:2341–2352. doi: 10.1021/acs.chemmater.7b05316. DOI

Niu P., Zhang L.L., Liu G., Cheng H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012;22:4763–4770. doi: 10.1002/adfm.201200922. DOI

Groenewolt M., Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005;17:1789–1792. doi: 10.1002/adma.200401756. DOI

Miller T.S., Jorge A.B., Suter T.M., Sella A., Cora F., McMillan P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017;19:15613–15638. doi: 10.1039/C7CP02711G. PubMed DOI

Fina F., Callear S.K., Carins G.M., Irvine J.T.S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015;27:2612–2618. doi: 10.1021/acs.chemmater.5b00411. DOI

Xu H., Wu Z., Wang Y.T., Lin C.S. Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J. Mater. Sci. 2017;52:9477–9490. doi: 10.1007/s10853-017-1167-6. DOI

Wang Y.O., Bayazit M.K., Moniz S.J.A., Ruan Q.S., Lau C.C., Martsinovich N., Tang J.W. Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy Environ. Sci. 2017;10:1643–1651. doi: 10.1039/C7EE01109A. DOI

Cai J., Han Y., Chen S.Y., Crumlin E.J., Yang B., Li Y.M., Liu Z. CO2 activation on Ni(111) and Ni(100) surfaces in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. J. Phys. Chem. C. 2019;123:12176–12182. doi: 10.1021/acs.jpcc.8b11698. DOI

Tao F., Wang Z.H., Qiao M.H., Liu Q., Sim W.S., Xu G.Q. Covalent attachment of acetonitrile on Si(100) through Si-C and Si-N linkages. J. Chem. Phys. 2001;115:8563–8569. doi: 10.1063/1.1410388. DOI

Brant P., Enemark J.H., Balch A.L. X-ray photoelectron-spectra of palladium and platinum complexes of carbenoid and related ligands. J. Organomet. Chem. 1976;114:99–106. doi: 10.1016/S0022-328X(00)87353-2. DOI

Lalitha S., Manoharan P.T. X-ray photoelectron spectroscopic studies on some dithiolate complexes. J. Electron Spectrosc. Relat. Phenom. 1989;49:61–75. doi: 10.1016/0368-2048(89)80037-4. DOI

Wu C.R., Salaneck W.R., Ritsko J.J., Bredas J.L. X-ray photoelectron-spectroscopy of polyacrylonitrile. Synth. Met. 1986;16:147–159. doi: 10.1016/0379-6779(86)90107-4. DOI

Wu G.P., Lu C.X., Wu X.P., Zhang S.C., Fu H., Ling L.C. X-ray photoelectron spectroscopy investigation into thermal degradation and stabilization of polyacrylonitrile fibers. J. Appl. Polym. Sci. 2004;94:1705–1709. doi: 10.1002/app.21081. DOI

Dante R.C., Martin-Ramos P., Correa-Guimaraes A., Martin-Gil J. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Mater. Chem. Phys. 2011;130:1094–1102. doi: 10.1016/j.matchemphys.2011.08.041. DOI

Lau V.W.H., Mesch M.B., Duppel V., Blum V., Senker J., Lotsch B.V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 2015;137:1064–1072. doi: 10.1021/ja511802c. PubMed DOI

Lotsch B.V., Schnick W. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 2006;18:1891–1900. doi: 10.1021/cm052342f. DOI

Miller D.R., Wang J.J., Gillan E.G. Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem. 2002;12:2463–2469. doi: 10.1039/b109700h. DOI

Wei X.Q., Qiu Y., Duan W.Y., Liu Z.X. Cathodic and anodic photocurrents generation from melem and its derivatives. RSC Adv. 2015;5:26675–26679. doi: 10.1039/C5RA02816G. DOI

Wang J., Li M.S., Qian M., Zhou S.Y., Xue A.L., Zhang L.L., Zhao Y.J., Xing W.H. Simple synthesis of high specific surface carbon nitride for adsorption-enhanced photocatalytic performance. Nanoscale Res. Lett. 2018;13:7. doi: 10.1186/s11671-018-2654-7. PubMed DOI PMC

Zhu Y.L., Shi Y.Q., Huang Z.Q., Duan L.J., Tai Q.L., Hu Y. Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos. Part A Appl. Sci. Manuf. 2017;99:149–156. doi: 10.1016/j.compositesa.2017.03.023. DOI

Sano T., Sato H., Hori T., Hirakawa T., Teramoto Y., Koike K. Effects of polymeric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis. Mol. Catal. 2019;474:8. doi: 10.1016/j.mcat.2019.110451. DOI

Zuluaga S., Liu L.H., Shafiq N., Rupich S.M., Veyan J.F., Chabal Y.J., Thonhauser T. Structural band-gap tuning in g-C3N4. Phys. Chem. Chem. Phys. 2015;17:957–962. doi: 10.1039/C4CP05164E. PubMed DOI

Tyborski T., Merschjann C., Orthmann S., Yang F., Lux-Steiner M.C., Schedel-Niedrig T. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation. J. Phys. Condens. Matter. 2012;24:4. doi: 10.1088/0953-8984/24/16/162201. PubMed DOI

Koci K., Reli M., Edelmannova M., Troppova I., Drobna H., Rokicinska A., Kustrowski P., Dvoranova D., Capek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A Chem. 2018;366:55–64. doi: 10.1016/j.jphotochem.2018.03.007. DOI

Wu X.Y., Yin S., Dong Q., Guo C.S., Kimura T., Matsushita J., Sato T. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J. Phys. Chem. C. 2013;117:8345–8352. doi: 10.1021/jp402063n. DOI

Azam M.U., Tahir M., Umer M., Jaffar M.M., Nawawi M.G.M. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci. 2019;484:1089–1101. doi: 10.1016/j.apsusc.2019.04.030. DOI

Cao J.W., Zhang J.Y., Dong X.A., Fu H.L., Zhang X.M., Lv X.S., Li Y.H., Jiang G.M. Defective borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl. Catal. B Environ. 2019;249:266–274. doi: 10.1016/j.apcatb.2019.03.012. DOI

Yu Q.B., Xu Q.X., Li H.Q., Yang K., Li X.H. Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. J. Mater. Sci. 2019;54:14599–14608. doi: 10.1007/s10853-019-03895-w. DOI

Martin D.J., Qiu K.P., Shevlin S.A., Handoko A.D., Chen X.W., Guo Z.X., Tang J.W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 2014;53:9240–9245. doi: 10.1002/anie.201403375. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace