The Role of Fluorine in F-La/TiO2 Photocatalysts on Photocatalytic Decomposition of Methanol-Water Solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-20737S
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000853 "IET-ER"
EU structural funding in Operational Programme Research, Development and Education
PubMed
31491947
PubMed Central
PMC6765986
DOI
10.3390/ma12182867
PII: ma12182867
Knihovny.cz E-zdroje
- Klíčová slova
- fluorine, hydrogen production, lanthanum, titanium dioxide,
- Publikační typ
- časopisecké články MeSH
F-La/TiO2 photocatalysts were studied in photocatalytic decomposition water-methanol solution. The structural, textural, optical, and electronic properties of F-La/TiO2 photocatalysts were studied by combination of X-ray powder diffraction (XRD), nitrogen physisorption, Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), Electrochemical impedance spectroscopy (EIS), and X-ray fluorescence (XPS). The production of hydrogen in the presence of 2.8F-La/TiO2 was nearly up to 3 times higher than in the presence of pure TiO2. The photocatalytic performance of F-La/TiO2 increased with increasing photocurrent response and conductivity originating from the higher amount of fluorine presented in the lattice of TiO2.
Faculty of Chemical Technology University of Pardubice Studentská 573 53210 Pardubice Czech Republic
Zobrazit více v PubMed
Fajrina N., Tahir M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy. 2019;44:540–577. doi: 10.1016/j.ijhydene.2018.10.200. DOI
Kumaravel V., Mathew S., Bartlett J., Pillai S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B. 2019;244:1021–1064. doi: 10.1016/j.apcatb.2018.11.080. DOI
Wang Z., Li C., Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019;48:2109–2125. doi: 10.1039/C8CS00542G. PubMed DOI
Fang W., Xing M., Zhang J. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobiol. C. 2017;32:21–39. doi: 10.1016/j.jphotochemrev.2017.05.003. DOI
Ma Y., Wang X., Jia Y., Chen X., Han H., Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014;114:9987–10043. doi: 10.1021/cr500008u. PubMed DOI
Low J., Cheng B., Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017;392:658–686. doi: 10.1016/j.apsusc.2016.09.093. DOI
Gomes J., Lincho J., Domingues E., Quinta-Ferreira M.R., Martins C.R. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water. 2019;11:373. doi: 10.3390/w11020373. DOI
Devaiah D., Jampaiah D., Saikia P., Reddy B.M. Structure dependent catalytic activity of Ce0.8Tb0.2O2−δ and TiO2 supported Ce0.8Tb0.2O2−δ solid solutions for CO oxidation. J. Ind. Eng. Chem. 2014;20:444–453. doi: 10.1016/j.jiec.2013.05.001. DOI
Smirniotis P.G., Boningari T., Damma D., Inturi S.N.R. Single-step rapid aerosol synthesis of N-doped TiO2 for enhanced visible light photocatalytic activity. Catal. Commun. 2018;113:1–5. doi: 10.1016/j.catcom.2018.04.019. DOI
Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A.A. Heterojunction Photocatalysts. Adv. Mater. 2017;29:1601694. doi: 10.1002/adma.201601694. PubMed DOI
Wei L., Yu C., Zhang Q., Liu H., Wang Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A. 2018;6:22411–22436. doi: 10.1039/C8TA08879A. DOI
Kubacka A., Fernández-García M., Colón G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012;112:1555–1614. doi: 10.1021/cr100454n. PubMed DOI
Yu X., Jeon B., Kim Y.K. Dominant Influence of the Surface on the Photoactivity of Shape-Controlled Anatase TiO2 Nanocrystals. ACS Catal. 2015;5:3316–3322. doi: 10.1021/cs5020942. DOI
Pan X., Yang M.-Q., Fu X., Zhang N., Xu Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale. 2013;5:3601–3614. doi: 10.1039/c3nr00476g. PubMed DOI
Bellardita M., Garlisi C., Venezia A.M., Palmisano G., Palmisano L. Influence of fluorine on the synthesis of anatase TiO2 for photocatalytic partial oxidation: Are exposed facets the main actors? Catal. Sci. Technol. 2018;8:1606–1620. doi: 10.1039/C7CY02382K. DOI
Du M., Qiu B., Zhu Q., Xing M., Zhang J. Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal. Today. 2019;327:340–346. doi: 10.1016/j.cattod.2018.03.066. DOI
Pan J., Liu G., Lu G.Q., Cheng H.-M. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed. 2011;50:2133–2137. doi: 10.1002/anie.201006057. PubMed DOI
Li C., Sun Z., Ma R., Xue Y., Zheng S. Fluorine doped anatase TiO2 with exposed reactive (001) facets supported on porous diatomite for enhanced visible-light photocatalytic activity. Microporous Mesoporous Mater. 2017;243:281–290. doi: 10.1016/j.micromeso.2017.02.053. DOI
Kočí K., Troppová I., Edelmannová M., Starostka J., Matějová L., Lang J., Reli M., Drobná H., Rokicińska A., Kuśtrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. Int. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI
Dubnová L., Zvolská M., Edelmannová M., Matějová L., Reli M., Drobná H., Kuśtrowski P., Kočí K., Čapek L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019;469:879–886. doi: 10.1016/j.apsusc.2018.11.098. DOI
Wu Y., Zhou Z., Wang W., Huang Y., Shen S. A novel and facile method to synthesize crystalline-disordered core–shell anatase (La, F)–TiO2. Mater. Lett. 2013;98:261–264. doi: 10.1016/j.matlet.2013.01.133. DOI
Koci K., Troppova I., Reli M., Matejova L., Edelmannova M., Drobna H., Dubnova L., Rokicinska A., Kustrowski P., Capek L. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Front. Chem. 2018;6:44. doi: 10.3389/fchem.2018.00044. PubMed DOI PMC
Kočí K., Reli M., Edelmannová M., Troppová I., Drobná H., Rokicińska A., Kuśtrowski P., Dvoranová D., Čapek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A. 2018 doi: 10.1016/j.jphotochem.2018.03.007. DOI
Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., Matej Z., Kotarba A., Koci K. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B. 2015;178:108–116. doi: 10.1016/j.apcatb.2014.10.021. DOI
Wang H., Wu D., Liu C., Guan J., Li J., Huo P., Liu X., Wang Q., Yan Y. Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity. J. Ind. Eng. Chem. 2018;67:164–174. doi: 10.1016/j.jiec.2018.06.027. DOI
Gao Q., Si F., Zhang S., Fang Y., Chen X., Yang S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrogen Energy. 2019;44:8011–8019. doi: 10.1016/j.ijhydene.2019.01.233. DOI
Tang J., Quan H., Ye J. Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chem. Mater. 2007;19:116–122. doi: 10.1021/cm061855z. DOI
Li H., Gao Y., Wu X., Lee P.-H., Shih K. Fabrication of Heterostructured g-C3N4/Ag-TiO2 Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO2 Under Simulated Sunlight Irradiation. Appl. Surf. Sci. 2017;402:198–207. doi: 10.1016/j.apsusc.2017.01.041. DOI
Huo Y., Zhu J., Li J., Li G., Li H. An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions. J. Mol. Catal. A Chem. 2007;278:237–243. doi: 10.1016/j.molcata.2007.07.054. DOI
Fu W., Ding S., Wang Y., Wu L., Zhang D., Pan Z., Wang R., Zhang Z., Qiu S. F, Ca co-doped TiO2 nanocrystals with enhanced photocatalytic activity. Dalton Trans. 2014;43:16160–16163. doi: 10.1039/C4DT01908C. PubMed DOI
Czoska A.M., Livraghi S., Chiesa M., Giamello E., Agnoli S., Granozzi G., Finazzi E., Valentin C.D., Pacchioni G. The Nature of Defects in Fluorine-Doped TiO2. J. Phys. Chem. C. 2008;112:8951–8956. doi: 10.1021/jp8004184. DOI
Li X., Liu C., Wu D., Li J., Huo P., Wang H. Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chin. J. Catal. 2019;40:928–939. doi: 10.1016/S1872-2067(19)63347-4. DOI
Zhou Y., Li J., Liu C., Huo P., Wang H. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl. Surf. Sci. 2018;458:586–596. doi: 10.1016/j.apsusc.2018.07.121. DOI
Liu C., Li J., Sun L., Zhou Y., Liu C., Wang H., Huo P., Ma C., Yan Y. Visible-light driven photocatalyst of CdTe/CdS homologous heterojunction on N-rGO photocatalyst for efficient degradation of 2,4-dichlorophenol. J. Taiwan Inst. Chem. Eng. 2018;93:603–615. doi: 10.1016/j.jtice.2018.09.005. DOI
Yu W., Liu X., Pan L., Li J., Liu J., Zhang J., Li P., Chen C., Sun Z. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl. Surf. Sci. 2014;319:107–112. doi: 10.1016/j.apsusc.2014.07.038. DOI
Xu J., Ao Y., Fu D., Yuan C. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl. Surf. Sci. 2008;254:3033–3038. doi: 10.1016/j.apsusc.2007.10.065. DOI
Yu C., Fan Q., Xie Y., Chen J., Shu Q., Jimmy C.Y. Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol. J. Hazard. Mater. 2012;237–238:38–45. doi: 10.1016/j.jhazmat.2012.07.072. PubMed DOI
Yu J.C., Yu J., Ho W., Jiang Z., Zhang L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002;14:3808–3816. doi: 10.1021/cm020027c. DOI
Li X., Zhu J., Li H. Influence of crystal facets and F-modification on the photocatalytic performance of anatase TiO2. Catal. Commun. 2012;24:20–24. doi: 10.1016/j.catcom.2012.03.009. DOI
Li X., Zhang H., Zheng X., Yin Z., Wei L. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol. J. Environ. Sci. 2011;23:1919–1924. doi: 10.1016/S1001-0742(10)60656-0. PubMed DOI
Bao R., Chen C., Xia J., Chen H., Li H. Controlled synthesis and enhanced photoelectro-catalytic activity of a 3D TiO2 nanotube array/TiO2 nanoparticle heterojunction using a combined dielectrophoresis/sol–gel method. J. Mater. Chem. C. 2019;7:4981–4987. doi: 10.1039/C9TC00568D. DOI
Negi S.S. Enhanced light harvesting and charge separation over wormhole mesoporous TiO2−X nanocrystallites towards efficient hydrogen generation. Sustain. Energy Fuels. 2019;3:1191–1200. doi: 10.1039/C8SE00580J. DOI
Wei N., Liu Y., Feng M., Li Z., Chen S., Zheng Y., Wang D. Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Appl. Catal. B. 2019;244:519–528. doi: 10.1016/j.apcatb.2018.11.078. DOI
Zhou J.K., Lv L., Yu J., Li H.L., Guo P.-Z., Sun H., Zhao X.S. Synthesis of Self-Organized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light. J. Phys. Chem. C. 2008;112:5316–5321. doi: 10.1021/jp709615x. DOI