The Role of Fluorine in F-La/TiO2 Photocatalysts on Photocatalytic Decomposition of Methanol-Water Solution

. 2019 Sep 05 ; 12 (18) : . [epub] 20190905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31491947

Grantová podpora
17-20737S Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000853 "IET-ER" EU structural funding in Operational Programme Research, Development and Education

F-La/TiO2 photocatalysts were studied in photocatalytic decomposition water-methanol solution. The structural, textural, optical, and electronic properties of F-La/TiO2 photocatalysts were studied by combination of X-ray powder diffraction (XRD), nitrogen physisorption, Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), Electrochemical impedance spectroscopy (EIS), and X-ray fluorescence (XPS). The production of hydrogen in the presence of 2.8F-La/TiO2 was nearly up to 3 times higher than in the presence of pure TiO2. The photocatalytic performance of F-La/TiO2 increased with increasing photocurrent response and conductivity originating from the higher amount of fluorine presented in the lattice of TiO2.

Zobrazit více v PubMed

Fajrina N., Tahir M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy. 2019;44:540–577. doi: 10.1016/j.ijhydene.2018.10.200. DOI

Kumaravel V., Mathew S., Bartlett J., Pillai S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B. 2019;244:1021–1064. doi: 10.1016/j.apcatb.2018.11.080. DOI

Wang Z., Li C., Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019;48:2109–2125. doi: 10.1039/C8CS00542G. PubMed DOI

Fang W., Xing M., Zhang J. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobiol. C. 2017;32:21–39. doi: 10.1016/j.jphotochemrev.2017.05.003. DOI

Ma Y., Wang X., Jia Y., Chen X., Han H., Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014;114:9987–10043. doi: 10.1021/cr500008u. PubMed DOI

Low J., Cheng B., Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017;392:658–686. doi: 10.1016/j.apsusc.2016.09.093. DOI

Gomes J., Lincho J., Domingues E., Quinta-Ferreira M.R., Martins C.R. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water. 2019;11:373. doi: 10.3390/w11020373. DOI

Devaiah D., Jampaiah D., Saikia P., Reddy B.M. Structure dependent catalytic activity of Ce0.8Tb0.2O2−δ and TiO2 supported Ce0.8Tb0.2O2−δ solid solutions for CO oxidation. J. Ind. Eng. Chem. 2014;20:444–453. doi: 10.1016/j.jiec.2013.05.001. DOI

Smirniotis P.G., Boningari T., Damma D., Inturi S.N.R. Single-step rapid aerosol synthesis of N-doped TiO2 for enhanced visible light photocatalytic activity. Catal. Commun. 2018;113:1–5. doi: 10.1016/j.catcom.2018.04.019. DOI

Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A.A. Heterojunction Photocatalysts. Adv. Mater. 2017;29:1601694. doi: 10.1002/adma.201601694. PubMed DOI

Wei L., Yu C., Zhang Q., Liu H., Wang Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A. 2018;6:22411–22436. doi: 10.1039/C8TA08879A. DOI

Kubacka A., Fernández-García M., Colón G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012;112:1555–1614. doi: 10.1021/cr100454n. PubMed DOI

Yu X., Jeon B., Kim Y.K. Dominant Influence of the Surface on the Photoactivity of Shape-Controlled Anatase TiO2 Nanocrystals. ACS Catal. 2015;5:3316–3322. doi: 10.1021/cs5020942. DOI

Pan X., Yang M.-Q., Fu X., Zhang N., Xu Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale. 2013;5:3601–3614. doi: 10.1039/c3nr00476g. PubMed DOI

Bellardita M., Garlisi C., Venezia A.M., Palmisano G., Palmisano L. Influence of fluorine on the synthesis of anatase TiO2 for photocatalytic partial oxidation: Are exposed facets the main actors? Catal. Sci. Technol. 2018;8:1606–1620. doi: 10.1039/C7CY02382K. DOI

Du M., Qiu B., Zhu Q., Xing M., Zhang J. Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal. Today. 2019;327:340–346. doi: 10.1016/j.cattod.2018.03.066. DOI

Pan J., Liu G., Lu G.Q., Cheng H.-M. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed. 2011;50:2133–2137. doi: 10.1002/anie.201006057. PubMed DOI

Li C., Sun Z., Ma R., Xue Y., Zheng S. Fluorine doped anatase TiO2 with exposed reactive (001) facets supported on porous diatomite for enhanced visible-light photocatalytic activity. Microporous Mesoporous Mater. 2017;243:281–290. doi: 10.1016/j.micromeso.2017.02.053. DOI

Kočí K., Troppová I., Edelmannová M., Starostka J., Matějová L., Lang J., Reli M., Drobná H., Rokicińska A., Kuśtrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. Int. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI

Dubnová L., Zvolská M., Edelmannová M., Matějová L., Reli M., Drobná H., Kuśtrowski P., Kočí K., Čapek L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019;469:879–886. doi: 10.1016/j.apsusc.2018.11.098. DOI

Wu Y., Zhou Z., Wang W., Huang Y., Shen S. A novel and facile method to synthesize crystalline-disordered core–shell anatase (La, F)–TiO2. Mater. Lett. 2013;98:261–264. doi: 10.1016/j.matlet.2013.01.133. DOI

Koci K., Troppova I., Reli M., Matejova L., Edelmannova M., Drobna H., Dubnova L., Rokicinska A., Kustrowski P., Capek L. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Front. Chem. 2018;6:44. doi: 10.3389/fchem.2018.00044. PubMed DOI PMC

Kočí K., Reli M., Edelmannová M., Troppová I., Drobná H., Rokicińska A., Kuśtrowski P., Dvoranová D., Čapek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A. 2018 doi: 10.1016/j.jphotochem.2018.03.007. DOI

Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., Matej Z., Kotarba A., Koci K. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B. 2015;178:108–116. doi: 10.1016/j.apcatb.2014.10.021. DOI

Wang H., Wu D., Liu C., Guan J., Li J., Huo P., Liu X., Wang Q., Yan Y. Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity. J. Ind. Eng. Chem. 2018;67:164–174. doi: 10.1016/j.jiec.2018.06.027. DOI

Gao Q., Si F., Zhang S., Fang Y., Chen X., Yang S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrogen Energy. 2019;44:8011–8019. doi: 10.1016/j.ijhydene.2019.01.233. DOI

Tang J., Quan H., Ye J. Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chem. Mater. 2007;19:116–122. doi: 10.1021/cm061855z. DOI

Li H., Gao Y., Wu X., Lee P.-H., Shih K. Fabrication of Heterostructured g-C3N4/Ag-TiO2 Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO2 Under Simulated Sunlight Irradiation. Appl. Surf. Sci. 2017;402:198–207. doi: 10.1016/j.apsusc.2017.01.041. DOI

Huo Y., Zhu J., Li J., Li G., Li H. An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions. J. Mol. Catal. A Chem. 2007;278:237–243. doi: 10.1016/j.molcata.2007.07.054. DOI

Fu W., Ding S., Wang Y., Wu L., Zhang D., Pan Z., Wang R., Zhang Z., Qiu S. F, Ca co-doped TiO2 nanocrystals with enhanced photocatalytic activity. Dalton Trans. 2014;43:16160–16163. doi: 10.1039/C4DT01908C. PubMed DOI

Czoska A.M., Livraghi S., Chiesa M., Giamello E., Agnoli S., Granozzi G., Finazzi E., Valentin C.D., Pacchioni G. The Nature of Defects in Fluorine-Doped TiO2. J. Phys. Chem. C. 2008;112:8951–8956. doi: 10.1021/jp8004184. DOI

Li X., Liu C., Wu D., Li J., Huo P., Wang H. Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chin. J. Catal. 2019;40:928–939. doi: 10.1016/S1872-2067(19)63347-4. DOI

Zhou Y., Li J., Liu C., Huo P., Wang H. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl. Surf. Sci. 2018;458:586–596. doi: 10.1016/j.apsusc.2018.07.121. DOI

Liu C., Li J., Sun L., Zhou Y., Liu C., Wang H., Huo P., Ma C., Yan Y. Visible-light driven photocatalyst of CdTe/CdS homologous heterojunction on N-rGO photocatalyst for efficient degradation of 2,4-dichlorophenol. J. Taiwan Inst. Chem. Eng. 2018;93:603–615. doi: 10.1016/j.jtice.2018.09.005. DOI

Yu W., Liu X., Pan L., Li J., Liu J., Zhang J., Li P., Chen C., Sun Z. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl. Surf. Sci. 2014;319:107–112. doi: 10.1016/j.apsusc.2014.07.038. DOI

Xu J., Ao Y., Fu D., Yuan C. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl. Surf. Sci. 2008;254:3033–3038. doi: 10.1016/j.apsusc.2007.10.065. DOI

Yu C., Fan Q., Xie Y., Chen J., Shu Q., Jimmy C.Y. Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol. J. Hazard. Mater. 2012;237–238:38–45. doi: 10.1016/j.jhazmat.2012.07.072. PubMed DOI

Yu J.C., Yu J., Ho W., Jiang Z., Zhang L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002;14:3808–3816. doi: 10.1021/cm020027c. DOI

Li X., Zhu J., Li H. Influence of crystal facets and F-modification on the photocatalytic performance of anatase TiO2. Catal. Commun. 2012;24:20–24. doi: 10.1016/j.catcom.2012.03.009. DOI

Li X., Zhang H., Zheng X., Yin Z., Wei L. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol. J. Environ. Sci. 2011;23:1919–1924. doi: 10.1016/S1001-0742(10)60656-0. PubMed DOI

Bao R., Chen C., Xia J., Chen H., Li H. Controlled synthesis and enhanced photoelectro-catalytic activity of a 3D TiO2 nanotube array/TiO2 nanoparticle heterojunction using a combined dielectrophoresis/sol–gel method. J. Mater. Chem. C. 2019;7:4981–4987. doi: 10.1039/C9TC00568D. DOI

Negi S.S. Enhanced light harvesting and charge separation over wormhole mesoporous TiO2−X nanocrystallites towards efficient hydrogen generation. Sustain. Energy Fuels. 2019;3:1191–1200. doi: 10.1039/C8SE00580J. DOI

Wei N., Liu Y., Feng M., Li Z., Chen S., Zheng Y., Wang D. Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Appl. Catal. B. 2019;244:519–528. doi: 10.1016/j.apcatb.2018.11.078. DOI

Zhou J.K., Lv L., Yu J., Li H.L., Guo P.-Z., Sun H., Zhao X.S. Synthesis of Self-Organized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light. J. Phys. Chem. C. 2008;112:5316–5321. doi: 10.1021/jp709615x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...