Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol

. 2018 ; 6 () : 44. [epub] 20180302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29552558

Neodymium enriched TiO2 anatase-brookite powders were prepared by unconventional method via using pressurized hot fluids for TiO2 crystallization and purification. The photocatalysts were tested in the CH3OH photocatalytic decomposition and they were characterized with respect to the textural (nitrogen adsorption), structural (XRD, XPS, and Raman spectroscopies), chemical (XRF), and optical (DR UV-Vis spectroscopy) and photoelectrochemical measurement. All prepared materials were nanocrystalline, had biphasic (anatase- brookite) structure and relatively large specific surface area (125 m2.g-1). The research work indicates that the doping of neodymium on TiO2 photocatalysts significantly enhances the efficiency of photocatalytic reaction. The photocatalytic activity increased with increasing portion of hydroxyl oxygen to the total amount of oxygen species. It was ascertained that the optimal amount of 1 wt% Nd in TiO2 accomplished the increasing of hydrogen production by 70% in comparison with pure TiO2. The neodymium doped on the titanium dioxide act as sites with accumulation of electrons. The higher efficiency of photocatalytic process was achieved due to improved electron-hole separation on the modified TiO2 photocatalysts. This result was confirmed by electrochemical measurements, the most active photocatalysts proved the highest photocurrent responses.

Zobrazit více v PubMed

Bai S., Jiang J., Zhang Q., Xiong Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893–2939. 10.1039/C5CS00064E PubMed DOI

Bai S., Yin W., Wang L., Li Z., Xiong Y. (2016). Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463. 10.1039/C6RA10539D DOI

Barrett E. P., Joyner L. G., Halenda P. P. (1951). The determination of pore volume and area distributions in porous substances .1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380.

Bokare A., Sanap A., Pai M., Sabharwal S., Athawale A. A. (2013). Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surf. B Biointerfaces 102, 273–280. 10.1016/j.colsurfb.2012.08.030 PubMed DOI

Buckeridge J., Butler K. T., Catlow C. R. A., Logsdail A. J., Scanlon D. O., Shevlin S. A., et al. (2015). Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chem. Mater. 27, 3844–3851. 10.1021/acs.chemmater.5b00230 DOI

de Boer J. H., Lippens B. C., Linsen B. G., Broekhof J. C. P., van den Heuvel A., Osinga T. J. (1966). T-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 21, 405–414.

Dozzi M. V., Chiarello G. L., Pedroni M., Livraghi S., Giamello E., Selli E. (2017). High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B 209, 417–428. 10.1016/j.apcatb.2017.03.007 DOI

Du J., Chen H., Yang H., Sang R., Qian Y., Li Y., et al. (2013). A facile sol–gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV–Vis irradiation. Microporous Mesoporous Mater. 182, 87–94. 10.1016/j.micromeso.2013.08.023 DOI

Fujishima A., Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38. 10.1038/238037a0 PubMed DOI

Gotić M., Ivanda M., Sekulić A., Musić S., Popović S., Turković A., et al. (1996). Microstructure of nanosized TiO2 obtained by sol-gel synthesis. Mater. Lett. 28, 225–229.

Gregg S. J., Sing K. S. W. (1982). Adsorption, Surface Area and Porosity. London, NY: Academic Press.

Grela M. A., Colussi A. J. (1996). Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. Relevance to photocatalysis efficiency. J. Phys. Chem. 100, 18214–18221. 10.1021/jp961936q DOI

Jalajakumari N., Padmakumar N., Fujio M., Yoshinao O., Tatsuya O. (1999). Microstructure and phase transformation behavior of doped nanostructured titania. Mater. Res. Bull. 34, 1275–1290. 10.1016/S0025-5408(99)00113-0 DOI

Khalid N. R., Ahmed E., Hong Z. L., Zhang Y. W., Ullah M., Ahmed M. (2013). Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation. Ceram. Int. 39, 3569–3575. 10.1016/j.ceramint.2012.10.183 DOI

Kočí K., Obalová L., Matějová L., Plachá D., Lacný Z., Jirkovský J., et al. (2009). Effect of TiO2 particle siz on the photocatalytic reduction of CO2. Appl. Catal. B 89, 494–502. 10.1016/j.apcatb.2009.01.010 DOI

Kocí K., Troppová I., Edelmannová M., Starostka J., Matejová L., Lang J., et al. . (2017). Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. [Epub ahead of print]. 10.1007/s11356-017-0460-x PubMed DOI

Lin H., Huang C. P., Li W., Ni C., Shah S. I., Tseng Y. H. (2006). Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11. 10.1016/j.apcatb.2006.07.018 DOI

Lu Z. Y., Jiang H. Q., Yan P. P., Li J. S., Wang Q. Y. (2011). Influences of Tm and N doping on surface properties and photoactivities of anatase-TiO2 nanoparticles. Adv. Mat. Res. 399–401, 519–526. 10.4028/www.scientific.net/AMR.399-401.519 DOI

Ma Y., Wang X., Jia Y., Chen X., Han H., Li C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043. 10.1021/cr500008u PubMed DOI

Maeda K. (2011). Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C 12, 237–268. 10.1016/j.jphotochemrev.2011.07.001 DOI

Maira A. J., Yeung K. L., Lee C. Y., Yue P. L., Chan C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal. 192, 185–196. 10.1006/jcat.2000.2838 DOI

Matejova L., Brunatova T., Danis S. (2015). TiO2-CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties. Res. Chem. Intermed. 41, 9243–9257. 10.1007/s11164-015-1990-9 DOI

Matějová L., Cajthaml T., Matej Z., Benada O., Kluson P., Solcova O. (2010). Super/subcritical fluid extractions for preparation of the crystalline titania. J. Supercrit. Fluids 52, 215–221. 10.1016/j.supflu.2009.12.008 DOI

Matějová L., Matěj Z., Fajgar R., Cajthaml T., Šolcová O. (2012). TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: effect of water and methanol on structural properties and purity. Mater. Res. Bull. 47, 3573–3579. 10.1016/j.materresbull.2012.06.062 DOI

Meksi M., Turki A., Kochkar H., Bousselmi L., Guillard C., Berhault G. (2016). The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B 181, 651–660. 10.1016/j.apcatb.2015.08.037 DOI

Musić S., Gotic M., Ivanda S., Popovic A., Turkovic R., Trojko A., et al. (1997). Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure. Mater. Sci. Eng. B 47, 33–40.

Nie J., Mo Y., Zheng B., Yuan H., Xiao D. (2013). Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Electrochim. Acta 90, 589–596. 10.1016/j.electacta.2012.12.049 DOI

Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., et al. (2015). Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B Environ. 178, 108–116. 10.1016/j.apcatb.2014.10.021 DOI

Reli M., Huo P., Sihor M., Ambrozova N., Troppova I., Matejova L., et al. . (2016). Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120, 8564–8573. 10.1021/acs.jpca.6b07236 PubMed DOI

Reli M., Kobielusz M., Matějová L., Daniš S., Macyk W., Obalová L., et al. (2017). TiO2 processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide. Appl. Surf. Sci. 391, 282–287. 10.1016/j.apsusc.2016.06.061 DOI

Rengaraj S., Venkataraj S., Yeon J.-W., Kim Y., Li X. Z., Pang G. K. H. (2007). Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B 77, 157–165. 10.1016/j.apcatb.2007.07.016 DOI

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. . (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986. 10.1021/cr5001892 PubMed DOI

Schneider P. (1995). Adsorption-isotherms of microporous mesoporous solids revisited. Appl. Catal. A 129, 157–165. 10.1016/0926-860X(95)00110-7 DOI

Siah W. R., Lintang H. O., Yuliati L. (2017). Role of lanthanum species in improving the photocatalytic activity of titanium dioxide. Catal. Sci. Technol. 7, 159–167. 10.1039/C6CY01991A DOI

Troppová I., Lang J., Matějová L. (2017). Optimization of pressurized water and pressurized/supercritical methanol processing of Zr0.1Ti0.9On mixed oxide designed for mitigation of model dye Acid orange 7-polluted water Waste Forum 2, 64–76.

Wojcieszak D., Mazur M., Kurnatowska M., Kaczmarek D., Domaradzki J., Kepinski L., et al. (2014). Influence of Nd-doping on photocatalytic properties of TiO2 nanoparticles and thin film coatings. Int. J. Photoenergy 2014:463034 10.1155/2014/463034 DOI

Xu X., Song W. (2016). Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as a precursor: a typical sample of N-doped TiO2 series. Mater. Technol. 32, 52–63. 10.1080/10667857.2015.1118587 DOI

Zhang Z. B., Wang C. C., Zakaria R., Ying J. Y. (1998). Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871–10878. 10.1021/jp982948 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...