Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29552558
PubMed Central
PMC5840192
DOI
10.3389/fchem.2018.00044
Knihovny.cz E-zdroje
- Klíčová slova
- CH3OH photocatalytic decomposition, TiO2 anatase-brookite, electron-hole separation, hydrogen production, neodymium, photocatalysis,
- Publikační typ
- časopisecké články MeSH
Neodymium enriched TiO2 anatase-brookite powders were prepared by unconventional method via using pressurized hot fluids for TiO2 crystallization and purification. The photocatalysts were tested in the CH3OH photocatalytic decomposition and they were characterized with respect to the textural (nitrogen adsorption), structural (XRD, XPS, and Raman spectroscopies), chemical (XRF), and optical (DR UV-Vis spectroscopy) and photoelectrochemical measurement. All prepared materials were nanocrystalline, had biphasic (anatase- brookite) structure and relatively large specific surface area (125 m2.g-1). The research work indicates that the doping of neodymium on TiO2 photocatalysts significantly enhances the efficiency of photocatalytic reaction. The photocatalytic activity increased with increasing portion of hydroxyl oxygen to the total amount of oxygen species. It was ascertained that the optimal amount of 1 wt% Nd in TiO2 accomplished the increasing of hydrogen production by 70% in comparison with pure TiO2. The neodymium doped on the titanium dioxide act as sites with accumulation of electrons. The higher efficiency of photocatalytic process was achieved due to improved electron-hole separation on the modified TiO2 photocatalysts. This result was confirmed by electrochemical measurements, the most active photocatalysts proved the highest photocurrent responses.
Faculty of Chemical Technology University of Pardubice Pardubice Czechia
Faculty of Chemistry Jagiellonian University Kraków Poland
Institute of Environmental Technology VŠB Technical University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Bai S., Jiang J., Zhang Q., Xiong Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893–2939. 10.1039/C5CS00064E PubMed DOI
Bai S., Yin W., Wang L., Li Z., Xiong Y. (2016). Surface and interface design in cocatalysts for photocatalytic water splitting and CO DOI
Barrett E. P., Joyner L. G., Halenda P. P. (1951). The determination of pore volume and area distributions in porous substances .1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380.
Bokare A., Sanap A., Pai M., Sabharwal S., Athawale A. A. (2013). Antibacterial activities of Nd doped and Ag coated TiO PubMed DOI
Buckeridge J., Butler K. T., Catlow C. R. A., Logsdail A. J., Scanlon D. O., Shevlin S. A., et al. (2015). Polymorph engineering of TiO DOI
de Boer J. H., Lippens B. C., Linsen B. G., Broekhof J. C. P., van den Heuvel A., Osinga T. J. (1966). T-curve of multimolecular N
Dozzi M. V., Chiarello G. L., Pedroni M., Livraghi S., Giamello E., Selli E. (2017). High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO DOI
Du J., Chen H., Yang H., Sang R., Qian Y., Li Y., et al. (2013). A facile sol–gel method for synthesis of porous Nd-doped TiO DOI
Fujishima A., Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38. 10.1038/238037a0 PubMed DOI
Gotić M., Ivanda M., Sekulić A., Musić S., Popović S., Turković A., et al. (1996). Microstructure of nanosized TiO
Gregg S. J., Sing K. S. W. (1982). Adsorption, Surface Area and Porosity. London, NY: Academic Press.
Grela M. A., Colussi A. J. (1996). Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. Relevance to photocatalysis efficiency. J. Phys. Chem. 100, 18214–18221. 10.1021/jp961936q DOI
Jalajakumari N., Padmakumar N., Fujio M., Yoshinao O., Tatsuya O. (1999). Microstructure and phase transformation behavior of doped nanostructured titania. Mater. Res. Bull. 34, 1275–1290. 10.1016/S0025-5408(99)00113-0 DOI
Khalid N. R., Ahmed E., Hong Z. L., Zhang Y. W., Ullah M., Ahmed M. (2013). Graphene modified Nd/TiO DOI
Kočí K., Obalová L., Matějová L., Plachá D., Lacný Z., Jirkovský J., et al. (2009). Effect of TiO DOI
Kocí K., Troppová I., Edelmannová M., Starostka J., Matejová L., Lang J., et al. (2017). Photocatalytic decomposition of methanol over La/TiO PubMed DOI
Lin H., Huang C. P., Li W., Ni C., Shah S. I., Tseng Y. H. (2006). Size dependency of nanocrystalline TiO DOI
Lu Z. Y., Jiang H. Q., Yan P. P., Li J. S., Wang Q. Y. (2011). Influences of Tm and N doping on surface properties and photoactivities of anatase-TiO DOI
Ma Y., Wang X., Jia Y., Chen X., Han H., Li C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043. 10.1021/cr500008u PubMed DOI
Maeda K. (2011). Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C 12, 237–268. 10.1016/j.jphotochemrev.2011.07.001 DOI
Maira A. J., Yeung K. L., Lee C. Y., Yue P. L., Chan C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO DOI
Matejova L., Brunatova T., Danis S. (2015). TiO2-CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties. Res. Chem. Intermed. 41, 9243–9257. 10.1007/s11164-015-1990-9 DOI
Matějová L., Cajthaml T., Matej Z., Benada O., Kluson P., Solcova O. (2010). Super/subcritical fluid extractions for preparation of the crystalline titania. J. Supercrit. Fluids 52, 215–221. 10.1016/j.supflu.2009.12.008 DOI
Matějová L., Matěj Z., Fajgar R., Cajthaml T., Šolcová O. (2012). TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: effect of water and methanol on structural properties and purity. Mater. Res. Bull. 47, 3573–3579. 10.1016/j.materresbull.2012.06.062 DOI
Meksi M., Turki A., Kochkar H., Bousselmi L., Guillard C., Berhault G. (2016). The role of lanthanum in the enhancement of photocatalytic properties of TiO DOI
Musić S., Gotic M., Ivanda S., Popovic A., Turkovic R., Trojko A., et al. (1997). Chemical and microstructural properties of TiO
Nie J., Mo Y., Zheng B., Yuan H., Xiao D. (2013). Electrochemical fabrication of lanthanum-doped TiO DOI
Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., et al. (2015). Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B Environ. 178, 108–116. 10.1016/j.apcatb.2014.10.021 DOI
Reli M., Huo P., Sihor M., Ambrozova N., Troppova I., Matejova L., et al. (2016). Novel TiO PubMed DOI
Reli M., Kobielusz M., Matějová L., Daniš S., Macyk W., Obalová L., et al. (2017). TiO DOI
Rengaraj S., Venkataraj S., Yeon J.-W., Kim Y., Li X. Z., Pang G. K. H. (2007). Preparation, characterization and application of Nd–TiO DOI
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986. 10.1021/cr5001892 PubMed DOI
Schneider P. (1995). Adsorption-isotherms of microporous mesoporous solids revisited. Appl. Catal. A 129, 157–165. 10.1016/0926-860X(95)00110-7 DOI
Siah W. R., Lintang H. O., Yuliati L. (2017). Role of lanthanum species in improving the photocatalytic activity of titanium dioxide. Catal. Sci. Technol. 7, 159–167. 10.1039/C6CY01991A DOI
Troppová I., Lang J., Matějová L. (2017). Optimization of pressurized water and pressurized/supercritical methanol processing of Zr
Wojcieszak D., Mazur M., Kurnatowska M., Kaczmarek D., Domaradzki J., Kepinski L., et al. (2014). Influence of Nd-doping on photocatalytic properties of TiO DOI
Xu X., Song W. (2016). Enhanced H DOI
Zhang Z. B., Wang C. C., Zakaria R., Ying J. Y. (1998). Role of particle size in nanocrystalline TiO DOI