Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol

. 2018 ; 6 () : 44. [epub] 20180302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29552558

Neodymium enriched TiO2 anatase-brookite powders were prepared by unconventional method via using pressurized hot fluids for TiO2 crystallization and purification. The photocatalysts were tested in the CH3OH photocatalytic decomposition and they were characterized with respect to the textural (nitrogen adsorption), structural (XRD, XPS, and Raman spectroscopies), chemical (XRF), and optical (DR UV-Vis spectroscopy) and photoelectrochemical measurement. All prepared materials were nanocrystalline, had biphasic (anatase- brookite) structure and relatively large specific surface area (125 m2.g-1). The research work indicates that the doping of neodymium on TiO2 photocatalysts significantly enhances the efficiency of photocatalytic reaction. The photocatalytic activity increased with increasing portion of hydroxyl oxygen to the total amount of oxygen species. It was ascertained that the optimal amount of 1 wt% Nd in TiO2 accomplished the increasing of hydrogen production by 70% in comparison with pure TiO2. The neodymium doped on the titanium dioxide act as sites with accumulation of electrons. The higher efficiency of photocatalytic process was achieved due to improved electron-hole separation on the modified TiO2 photocatalysts. This result was confirmed by electrochemical measurements, the most active photocatalysts proved the highest photocurrent responses.

Zobrazit více v PubMed

Bai S., Jiang J., Zhang Q., Xiong Y. (2015). Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893–2939. 10.1039/C5CS00064E PubMed DOI

Bai S., Yin W., Wang L., Li Z., Xiong Y. (2016). Surface and interface design in cocatalysts for photocatalytic water splitting and CO DOI

Barrett E. P., Joyner L. G., Halenda P. P. (1951). The determination of pore volume and area distributions in porous substances .1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380.

Bokare A., Sanap A., Pai M., Sabharwal S., Athawale A. A. (2013). Antibacterial activities of Nd doped and Ag coated TiO PubMed DOI

Buckeridge J., Butler K. T., Catlow C. R. A., Logsdail A. J., Scanlon D. O., Shevlin S. A., et al. (2015). Polymorph engineering of TiO DOI

de Boer J. H., Lippens B. C., Linsen B. G., Broekhof J. C. P., van den Heuvel A., Osinga T. J. (1966). T-curve of multimolecular N

Dozzi M. V., Chiarello G. L., Pedroni M., Livraghi S., Giamello E., Selli E. (2017). High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO DOI

Du J., Chen H., Yang H., Sang R., Qian Y., Li Y., et al. (2013). A facile sol–gel method for synthesis of porous Nd-doped TiO DOI

Fujishima A., Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38. 10.1038/238037a0 PubMed DOI

Gotić M., Ivanda M., Sekulić A., Musić S., Popović S., Turković A., et al. (1996). Microstructure of nanosized TiO

Gregg S. J., Sing K. S. W. (1982). Adsorption, Surface Area and Porosity. London, NY: Academic Press.

Grela M. A., Colussi A. J. (1996). Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. Relevance to photocatalysis efficiency. J. Phys. Chem. 100, 18214–18221. 10.1021/jp961936q DOI

Jalajakumari N., Padmakumar N., Fujio M., Yoshinao O., Tatsuya O. (1999). Microstructure and phase transformation behavior of doped nanostructured titania. Mater. Res. Bull. 34, 1275–1290. 10.1016/S0025-5408(99)00113-0 DOI

Khalid N. R., Ahmed E., Hong Z. L., Zhang Y. W., Ullah M., Ahmed M. (2013). Graphene modified Nd/TiO DOI

Kočí K., Obalová L., Matějová L., Plachá D., Lacný Z., Jirkovský J., et al. (2009). Effect of TiO DOI

Kocí K., Troppová I., Edelmannová M., Starostka J., Matejová L., Lang J., et al. (2017). Photocatalytic decomposition of methanol over La/TiO PubMed DOI

Lin H., Huang C. P., Li W., Ni C., Shah S. I., Tseng Y. H. (2006). Size dependency of nanocrystalline TiO DOI

Lu Z. Y., Jiang H. Q., Yan P. P., Li J. S., Wang Q. Y. (2011). Influences of Tm and N doping on surface properties and photoactivities of anatase-TiO DOI

Ma Y., Wang X., Jia Y., Chen X., Han H., Li C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043. 10.1021/cr500008u PubMed DOI

Maeda K. (2011). Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C 12, 237–268. 10.1016/j.jphotochemrev.2011.07.001 DOI

Maira A. J., Yeung K. L., Lee C. Y., Yue P. L., Chan C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO DOI

Matejova L., Brunatova T., Danis S. (2015). TiO2-CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties. Res. Chem. Intermed. 41, 9243–9257. 10.1007/s11164-015-1990-9 DOI

Matějová L., Cajthaml T., Matej Z., Benada O., Kluson P., Solcova O. (2010). Super/subcritical fluid extractions for preparation of the crystalline titania. J. Supercrit. Fluids 52, 215–221. 10.1016/j.supflu.2009.12.008 DOI

Matějová L., Matěj Z., Fajgar R., Cajthaml T., Šolcová O. (2012). TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: effect of water and methanol on structural properties and purity. Mater. Res. Bull. 47, 3573–3579. 10.1016/j.materresbull.2012.06.062 DOI

Meksi M., Turki A., Kochkar H., Bousselmi L., Guillard C., Berhault G. (2016). The role of lanthanum in the enhancement of photocatalytic properties of TiO DOI

Musić S., Gotic M., Ivanda S., Popovic A., Turkovic R., Trojko A., et al. (1997). Chemical and microstructural properties of TiO

Nie J., Mo Y., Zheng B., Yuan H., Xiao D. (2013). Electrochemical fabrication of lanthanum-doped TiO DOI

Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., et al. (2015). Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B Environ. 178, 108–116. 10.1016/j.apcatb.2014.10.021 DOI

Reli M., Huo P., Sihor M., Ambrozova N., Troppova I., Matejova L., et al. (2016). Novel TiO PubMed DOI

Reli M., Kobielusz M., Matějová L., Daniš S., Macyk W., Obalová L., et al. (2017). TiO DOI

Rengaraj S., Venkataraj S., Yeon J.-W., Kim Y., Li X. Z., Pang G. K. H. (2007). Preparation, characterization and application of Nd–TiO DOI

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986. 10.1021/cr5001892 PubMed DOI

Schneider P. (1995). Adsorption-isotherms of microporous mesoporous solids revisited. Appl. Catal. A 129, 157–165. 10.1016/0926-860X(95)00110-7 DOI

Siah W. R., Lintang H. O., Yuliati L. (2017). Role of lanthanum species in improving the photocatalytic activity of titanium dioxide. Catal. Sci. Technol. 7, 159–167. 10.1039/C6CY01991A DOI

Troppová I., Lang J., Matějová L. (2017). Optimization of pressurized water and pressurized/supercritical methanol processing of Zr

Wojcieszak D., Mazur M., Kurnatowska M., Kaczmarek D., Domaradzki J., Kepinski L., et al. (2014). Influence of Nd-doping on photocatalytic properties of TiO DOI

Xu X., Song W. (2016). Enhanced H DOI

Zhang Z. B., Wang C. C., Zakaria R., Ying J. Y. (1998). Role of particle size in nanocrystalline TiO DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...