Successful Immobilization of Lanthanides Doped TiO2 on Inert Foam for Repeatable Hydrogen Generation from Aqueous Ammonia

. 2020 Mar 10 ; 13 (5) : . [epub] 20200310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32164261

Grantová podpora
17-20737S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000853 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098 Ministerstvo Školství, Mládeže a Tělovýchovy
1/0026/18 Scientific Grant Agency of the Slovak Republic
POIG.02.01.00-12-023/08 Polish Innovation Economy Operational Program

We describe the successful possibility of the immobilization of a photocatalyst on foam, which is beneficial from a practical point of view. An immobilized photocatalyst is possible for use in a continuous experiment and can be easily separated from the reactor after the reaction concludes. Parent TiO2, La/TiO2, and Nd/TiO2 photocatalysts (containing 0.1 wt.% of lanthanide) were prepared by the sol-gel method and immobilized on Al2O3/SiO2 foam (VUKOPOR A) by the dip-coating method. The photocatalysts were investigated for the photocatalytic hydrogen generation from an aqueous ammonia solution under UVA light (365 nm). The evolution of hydrogen was compared with photolysis, which was limited to zero. The higher hydrogen generation was observed in the presence of 0.1 wt.% La/TiO2 than in 0.1 wt.% Nd/TiO2. This is, besides other things, related to the higher level of the conduction band, which was observed for 0.1 wt.% La/TiO2. The higher conduction band's position is more effective for hydrogen production from ammonia decomposition.

Zobrazit více v PubMed

Green L. An ammonia energy vector for the hydrogen economy. Int. J. Hydrogen Energy. 1982;7:355–359. doi: 10.1016/0360-3199(82)90128-8. DOI

Altomare M., Chiarello G.L., Costa A., Guarino M., Selli E. Photocatalytic abatement of ammonia in nitrogen-containing effluents. Chem. Eng. J. 2012;191:394–401. doi: 10.1016/j.cej.2012.03.037. DOI

Kominami H., Nishimune H., Ohta Y., Arakawa Y., Inaba T. Photocatalytic hydrogen formation from ammonia and methyl amine in an aqueous suspension of metal-loaded titanium(IV) oxide particles. Appl. Catal. B. 2012;111:297–302. doi: 10.1016/j.apcatb.2011.10.011. DOI

Shavisi Y., Sharifnia S., Hosseini S.N., Khadivi M.A. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J. Ind. Eng. Chem. 2014;20:278–283. doi: 10.1016/j.jiec.2013.03.037. DOI

Obata K., Kishishita K., Okemoto A., Taniya K., Ichihashi Y., Nishiyama S. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Appl. Catal. B. 2014;160:200–203. doi: 10.1016/j.apcatb.2014.05.033. DOI

Malato S., Fernández-Ibáñez P., Maldonado M.I., Blanco J., Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today. 2009;147:1–59. doi: 10.1016/j.cattod.2009.06.018. DOI

Reli M., Edelmannova M., Sihor M., Praus P., Svoboda L., Mamulova Kutlakova K., Otoupalikova H., Capek L., Hospodkova A., Obalova L. Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. Int. J. Hydrogen Energy. 2015;40:8530–8538. doi: 10.1016/j.ijhydene.2015.05.004. DOI

Low J., Cheng B., Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 2017;392:658–686. doi: 10.1016/j.apsusc.2016.09.093. DOI

Al-Mamun M.R., Kader S., Islam M.S., Khan M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019;7:103248. doi: 10.1016/j.jece.2019.103248. DOI

Yadav H.M., Kim J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd. 2016;688:123–129. doi: 10.1016/j.jallcom.2016.07.133. DOI

Mazierski P., Mikolajczyk A., Bajorowicz B., Malankowska A., Zaleska-Medynska A., Nadolna J. The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B. 2018;233:301–317. doi: 10.1016/j.apcatb.2018.04.019. DOI

Li X., Zhang F., Zhao D. Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today. 2013;8:643–676. doi: 10.1016/j.nantod.2013.11.003. DOI

Alenzi N., Liao W.S., Cremer P.S., Sanchez-Torres V., Wood T.K., Ehlig-Economides C., Cheng Z. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. Int. J. Hydrogen Energy. 2010;35:11768–11775. doi: 10.1016/j.ijhydene.2010.08.020. DOI

Wood D., Shaw S., Cawte T., Shanen E., Van Heyst B. An overview of photocatalyst immobilization methods for air pollution remediation. Chem. Eng. J. 2019:123490. doi: 10.1016/j.cej.2019.123490. DOI

Rao K.V.S., Subrahmanyam M., Boule P. Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl. Catal. B. 2004;49:239–249. doi: 10.1016/j.apcatb.2003.12.017. DOI

Hegedűs P., Szabó-Bárdos E., Horváth O., Szabó P., Horváth K. Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol) Catal. Today. 2017;284:179–186. doi: 10.1016/j.cattod.2016.11.050. DOI

Matějová L., Cajthaml T., Matěj Z., Benada O., Klusoň P., Šolcová O. Super/subcritical fluid extractions for preparation of the crystalline titania. J. Supercrit. Fluids. 2010;52:215–221. doi: 10.1016/j.supflu.2009.12.008. DOI

Kočí K., Troppová I., Edelmannová M., Starostka J., Matějová L., Lang J., Reli M., Drobná H., Rokicińska A., Kuśtrowski P. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. Int. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI

Kočí K., Reli M., Edelmannová M., Troppová I., Drobná H., Rokicińska A., Kuśtrowski P., Dvoranová D., Čapek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A. 2018;366:55–64. doi: 10.1016/j.jphotochem.2018.03.007. DOI

Koci K., Troppova I., Reli M., Matejova L., Edelmannova M., Drobna H., Dubnova L., Rokicinska A., Kustrowski P., Capek L. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Front. Chem. 2018;6:1–11. doi: 10.3389/fchem.2018.00044. PubMed DOI PMC

Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., Matej Z., Kotarba A., Koci K. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B. 2015;178:108–116. doi: 10.1016/j.apcatb.2014.10.021. DOI

Dubnová L., Zvolská M., Edelmannová M., Matějová L., Reli M., Drobná H., Kuśtrowski P., Kočí K., Čapek L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019;469:879–886. doi: 10.1016/j.apsusc.2018.11.098. DOI

Tahir B., Tahir M., Amin N.A.S. Tailoring performance of La-modified TiO2 nanocatalyst for continuous photocatalytic CO2 reforming of CH4 to fuels in the presence of H2O. Energy Convers. Manage. 2018;159:284–298. doi: 10.1016/j.enconman.2017.12.089. DOI

Liu Y., Zhou S., Li J., Wang Y., Jiang G., Zhao Z., Liu B., Gong X., Duan A., Liu J., et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B. 2015;168:125–131. doi: 10.1016/j.apcatb.2014.12.011. DOI

Choudhury B., Borah B., Choudhury A. Ce–Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Mater. Sci. Eng. B. 2013;178:239–247. doi: 10.1016/j.mseb.2012.11.017. DOI

Ali A., Yassitepe E., Ruzybayev I., Ismat Shah S., Bhatti A.S. Improvement of (004) texturing by slow growth of Nd doped TiO2 films. J. Appl. Phys. 2012;112:113505. doi: 10.1063/1.4767361. DOI

Yuzawa H., Mori T., Itoh H., Yoshida H. Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst. J. Phys. Chem. C. 2012;116:4126–4136. doi: 10.1021/jp209795t. DOI

Dvoranova D., Barbierikova Z., Brezova V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study) Molecules. 2014;19:17279–17304. doi: 10.3390/molecules191117279. PubMed DOI PMC

Csányi L.J., Nagy L., Galbács Z.M., Horváth I. Alkali-Induced Generation of Superoxide and Hydroxyl Radicals from Aqueous Hydrogen Peroxide Solution. Z. Phys. Chem. 1983;138:107. doi: 10.1524/zpch.1983.138.1.107. DOI

Mack J., Bolton J.R. Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. A. 1999;128:1–13. doi: 10.1016/S1010-6030(99)00155-0. DOI

Tahir M., Amin N.S. Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renew. Sust. Energ. Rev. 2013;25:560–579. doi: 10.1016/j.rser.2013.05.027. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace