Successful Immobilization of Lanthanides Doped TiO2 on Inert Foam for Repeatable Hydrogen Generation from Aqueous Ammonia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-20737S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000853
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098
Ministerstvo Školství, Mládeže a Tělovýchovy
1/0026/18
Scientific Grant Agency of the Slovak Republic
POIG.02.01.00-12-023/08
Polish Innovation Economy Operational Program
PubMed
32164261
PubMed Central
PMC7085088
DOI
10.3390/ma13051254
PII: ma13051254
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2, ammonia, hydrogen production, immobilized and powder photocatalyst, lanthanides,
- Publikační typ
- časopisecké články MeSH
We describe the successful possibility of the immobilization of a photocatalyst on foam, which is beneficial from a practical point of view. An immobilized photocatalyst is possible for use in a continuous experiment and can be easily separated from the reactor after the reaction concludes. Parent TiO2, La/TiO2, and Nd/TiO2 photocatalysts (containing 0.1 wt.% of lanthanide) were prepared by the sol-gel method and immobilized on Al2O3/SiO2 foam (VUKOPOR A) by the dip-coating method. The photocatalysts were investigated for the photocatalytic hydrogen generation from an aqueous ammonia solution under UVA light (365 nm). The evolution of hydrogen was compared with photolysis, which was limited to zero. The higher hydrogen generation was observed in the presence of 0.1 wt.% La/TiO2 than in 0.1 wt.% Nd/TiO2. This is, besides other things, related to the higher level of the conduction band, which was observed for 0.1 wt.% La/TiO2. The higher conduction band's position is more effective for hydrogen production from ammonia decomposition.
Faculty of Chemical Technology University of Pardubice 573 Studentská Pardubice Czech Republic
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Kraków Poland
Zobrazit více v PubMed
Green L. An ammonia energy vector for the hydrogen economy. Int. J. Hydrogen Energy. 1982;7:355–359. doi: 10.1016/0360-3199(82)90128-8. DOI
Altomare M., Chiarello G.L., Costa A., Guarino M., Selli E. Photocatalytic abatement of ammonia in nitrogen-containing effluents. Chem. Eng. J. 2012;191:394–401. doi: 10.1016/j.cej.2012.03.037. DOI
Kominami H., Nishimune H., Ohta Y., Arakawa Y., Inaba T. Photocatalytic hydrogen formation from ammonia and methyl amine in an aqueous suspension of metal-loaded titanium(IV) oxide particles. Appl. Catal. B. 2012;111:297–302. doi: 10.1016/j.apcatb.2011.10.011. DOI
Shavisi Y., Sharifnia S., Hosseini S.N., Khadivi M.A. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J. Ind. Eng. Chem. 2014;20:278–283. doi: 10.1016/j.jiec.2013.03.037. DOI
Obata K., Kishishita K., Okemoto A., Taniya K., Ichihashi Y., Nishiyama S. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Appl. Catal. B. 2014;160:200–203. doi: 10.1016/j.apcatb.2014.05.033. DOI
Malato S., Fernández-Ibáñez P., Maldonado M.I., Blanco J., Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today. 2009;147:1–59. doi: 10.1016/j.cattod.2009.06.018. DOI
Reli M., Edelmannova M., Sihor M., Praus P., Svoboda L., Mamulova Kutlakova K., Otoupalikova H., Capek L., Hospodkova A., Obalova L. Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. Int. J. Hydrogen Energy. 2015;40:8530–8538. doi: 10.1016/j.ijhydene.2015.05.004. DOI
Low J., Cheng B., Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 2017;392:658–686. doi: 10.1016/j.apsusc.2016.09.093. DOI
Al-Mamun M.R., Kader S., Islam M.S., Khan M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019;7:103248. doi: 10.1016/j.jece.2019.103248. DOI
Yadav H.M., Kim J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd. 2016;688:123–129. doi: 10.1016/j.jallcom.2016.07.133. DOI
Mazierski P., Mikolajczyk A., Bajorowicz B., Malankowska A., Zaleska-Medynska A., Nadolna J. The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B. 2018;233:301–317. doi: 10.1016/j.apcatb.2018.04.019. DOI
Li X., Zhang F., Zhao D. Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today. 2013;8:643–676. doi: 10.1016/j.nantod.2013.11.003. DOI
Alenzi N., Liao W.S., Cremer P.S., Sanchez-Torres V., Wood T.K., Ehlig-Economides C., Cheng Z. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. Int. J. Hydrogen Energy. 2010;35:11768–11775. doi: 10.1016/j.ijhydene.2010.08.020. DOI
Wood D., Shaw S., Cawte T., Shanen E., Van Heyst B. An overview of photocatalyst immobilization methods for air pollution remediation. Chem. Eng. J. 2019:123490. doi: 10.1016/j.cej.2019.123490. DOI
Rao K.V.S., Subrahmanyam M., Boule P. Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl. Catal. B. 2004;49:239–249. doi: 10.1016/j.apcatb.2003.12.017. DOI
Hegedűs P., Szabó-Bárdos E., Horváth O., Szabó P., Horváth K. Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol) Catal. Today. 2017;284:179–186. doi: 10.1016/j.cattod.2016.11.050. DOI
Matějová L., Cajthaml T., Matěj Z., Benada O., Klusoň P., Šolcová O. Super/subcritical fluid extractions for preparation of the crystalline titania. J. Supercrit. Fluids. 2010;52:215–221. doi: 10.1016/j.supflu.2009.12.008. DOI
Kočí K., Troppová I., Edelmannová M., Starostka J., Matějová L., Lang J., Reli M., Drobná H., Rokicińska A., Kuśtrowski P. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. Int. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI
Kočí K., Reli M., Edelmannová M., Troppová I., Drobná H., Rokicińska A., Kuśtrowski P., Dvoranová D., Čapek L. Photocatalytic hydrogen production from methanol over Nd/TiO2. J. Photochem. Photobiol. A. 2018;366:55–64. doi: 10.1016/j.jphotochem.2018.03.007. DOI
Koci K., Troppova I., Reli M., Matejova L., Edelmannova M., Drobna H., Dubnova L., Rokicinska A., Kustrowski P., Capek L. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Front. Chem. 2018;6:1–11. doi: 10.3389/fchem.2018.00044. PubMed DOI PMC
Reli M., Ambrozova N., Sihor M., Matejova L., Capek L., Obalova L., Matej Z., Kotarba A., Koci K. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B. 2015;178:108–116. doi: 10.1016/j.apcatb.2014.10.021. DOI
Dubnová L., Zvolská M., Edelmannová M., Matějová L., Reli M., Drobná H., Kuśtrowski P., Kočí K., Čapek L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019;469:879–886. doi: 10.1016/j.apsusc.2018.11.098. DOI
Tahir B., Tahir M., Amin N.A.S. Tailoring performance of La-modified TiO2 nanocatalyst for continuous photocatalytic CO2 reforming of CH4 to fuels in the presence of H2O. Energy Convers. Manage. 2018;159:284–298. doi: 10.1016/j.enconman.2017.12.089. DOI
Liu Y., Zhou S., Li J., Wang Y., Jiang G., Zhao Z., Liu B., Gong X., Duan A., Liu J., et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B. 2015;168:125–131. doi: 10.1016/j.apcatb.2014.12.011. DOI
Choudhury B., Borah B., Choudhury A. Ce–Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Mater. Sci. Eng. B. 2013;178:239–247. doi: 10.1016/j.mseb.2012.11.017. DOI
Ali A., Yassitepe E., Ruzybayev I., Ismat Shah S., Bhatti A.S. Improvement of (004) texturing by slow growth of Nd doped TiO2 films. J. Appl. Phys. 2012;112:113505. doi: 10.1063/1.4767361. DOI
Yuzawa H., Mori T., Itoh H., Yoshida H. Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst. J. Phys. Chem. C. 2012;116:4126–4136. doi: 10.1021/jp209795t. DOI
Dvoranova D., Barbierikova Z., Brezova V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study) Molecules. 2014;19:17279–17304. doi: 10.3390/molecules191117279. PubMed DOI PMC
Csányi L.J., Nagy L., Galbács Z.M., Horváth I. Alkali-Induced Generation of Superoxide and Hydroxyl Radicals from Aqueous Hydrogen Peroxide Solution. Z. Phys. Chem. 1983;138:107. doi: 10.1524/zpch.1983.138.1.107. DOI
Mack J., Bolton J.R. Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. A. 1999;128:1–13. doi: 10.1016/S1010-6030(99)00155-0. DOI
Tahir M., Amin N.S. Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renew. Sust. Energ. Rev. 2013;25:560–579. doi: 10.1016/j.rser.2013.05.027. DOI