Enhancing Photocatalytic Properties of TiO2 Photocatalyst and Heterojunctions: A Comprehensive Review of the Impact of Biphasic Systems in Aerogels and Xerogels Synthesis, Methods, and Mechanisms for Environmental Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CA18125
COST Action
LTC20019
The Ministry of Education, Youth and Sports of the Czech Republic
MEYS CR (LM2018110)
European Commission and the CzechNanoLab Research Infrastructure
PubMed
38131962
PubMed Central
PMC10742597
DOI
10.3390/gels9120976
PII: gels9120976
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2, anatase, brookite, heterojunctions, photocatalysis, sol-gel synthesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review provides a detailed exploration of titanium dioxide (TiO2) photocatalysts, emphasizing structural phases, heterophase junctions, and their impact on efficiency. Key points include diverse synthesis methods, with a focus on the sol-gel route and variants like low-temperature hydrothermal synthesis (LTHT). The review delves into the influence of acid-base donors on gelation, dissects crucial drying techniques for TiO2 aerogel or xerogel catalysts, and meticulously examines mechanisms underlying photocatalytic activity. It highlights the role of physicochemical properties in charge diffusion, carrier recombination, and the impact of scavengers in photo-oxidation/reduction. Additionally, TiO2 doping techniques and heterostructures and their potential for enhancing efficiency are briefly discussed, all within the context of environmental applications.
Zobrazit více v PubMed
Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C., Giamello E. N-Doped TiO2: Theory and Experiment. Chem. Phys. 2007;339:44–56. doi: 10.1016/j.chemphys.2007.07.020. DOI
Fujishima A., Rao T.N., Tryk D.A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000;1:1–21. doi: 10.1016/S1389-5567(00)00002-2. DOI
Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic Degradation for Environmental Applications—A Review. J. Chem. Technol. Biotechnol. 2002;77:102–116. doi: 10.1002/jctb.532. DOI
Su C.Y., Wang L.C., Liu W.S., Wang C.C., Perng T.P. Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2Nanotubes Fabricated by Atomic Layer Deposition. ACS Appl. Mater. Interfaces. 2018;10:33287–33295. doi: 10.1021/acsami.8b12299. PubMed DOI
Nikkanen J. Synthesis of TiO2 by Various Methods Structural Characteristics, Photocatalytic Activity and Usability of Powders and Coatings. Tampere University of Technology; Tampere, Finland: 2016.
Foura G., Chouchou N., Soualah A., Kouachi K., Guidotti M., Robert D. Fe-Doped TiO2 Supported on HY Zeolite for Solar Photocatalytic Treatment of Dye Pollutants. Catalysts. 2017;7:344. doi: 10.3390/catal7110344. DOI
Cihlar J., Cihlar J., Bartonickova E. Low-Temperature Sol-Gel Synthesis of Anatase Nanoparticles Modified by Au, Pd and Pt and Activity of TiO2/Au, Pd, Pt Photocatalysts in Water Splitting. J. Sol-Gel Sci. Technol. 2013;65:430–442. doi: 10.1007/s10971-012-2955-8. DOI
Cihlar J., Kasparek V., Kralova M., Castkova K. Biphasic Anatase-Brookite Nanoparticles Prepared by Sol-Gel Complex Synthesis and Their Photocatalytic Activity in Hydrogen Production. Int. J. Hydrogen Energy. 2015;40:2950–2962. doi: 10.1016/j.ijhydene.2015.01.008. DOI
Ceballos-Chuc M.C., Ramos-Castillo C.M., Alvarado-Gil J.J., Oskam G., Rodríguez-Gattorno G. Influence of Brookite Impurities on the Raman Spectrum of TiO2 Anatase Nanocrystals. J. Phys. Chem. C. 2018;122:19921–19930. doi: 10.1021/acs.jpcc.8b04987. DOI
Yang M., Chen P., Tsai M., Chen T., Chang I., Chiu H., Lee C. Anatase and Brookite TiO2 with Various Morphologies and Their Proposed Building Block. CrystEngComm. 2014;16:441–447. doi: 10.1039/C3CE41750F. DOI
Drobná H., Dubnová L., Rokici A. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Front. Chem. 2018;6:44. doi: 10.3389/fchem.2018.00044. PubMed DOI PMC
Li J., Ishigaki T., Sun X. Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis and Physicochemical Properties. J. Phys. Chem. C. 2007;111:4969–4976. doi: 10.1021/jp0673258. DOI
Yan Z., Yin K., Xu M., Fang N., Yu W., Chu Y., Shu S. Photocatalysis for Synergistic Water Remediation and H2 Production: A Review. Chem. Eng. J. 2023;472:145066. doi: 10.1016/j.cej.2023.145066. DOI
Mandari K.K., Police A.K.R., Do J.Y., Kang M., Byon C. Rare Earth Metal Gd Influenced Defect Sites in N Doped TiO2: Defect Mediated Improved Charge Transfer for Enhanced Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy. 2018;43:2073–2082. doi: 10.1016/j.ijhydene.2017.12.050. DOI
D’Elia D., Beauger C., Hochepied J.F., Rigacci A., Berger M.H., Keller N., Keller-Spitzer V., Suzuki Y., Valmalette J.C., Benabdesselam M., et al. Impact of Three Different TiO2 Morphologies on Hydrogen Evolution by Methanol Assisted Water Splitting: Nanoparticles, Nanotubes and Aerogels. Int. J. Hydrogen Energy. 2011;36:14360–14373. doi: 10.1016/j.ijhydene.2011.08.007. DOI
Yasuda M., Matsumoto T., Yamashita T. Sacrificial Hydrogen Production over TiO2-Based Photocatalysts: Polyols, Carboxylic Acids, and Saccharides. Renew. Sustain. Energy Rev. 2018;81:1627–1635. doi: 10.1016/j.rser.2017.05.243. DOI
Do H.H., Nguyen D.L.T., Nguyen X.C., Le T.H., Nguyen T.P., Trinh Q.T., Ahn S.H., Vo D.V.N., Kim S.Y., Le Q. Van Recent Progress in TiO2-Based Photocatalysts for Hydrogen Evolution Reaction: A Review. Arab. J. Chem. 2020;13:3653–3671. doi: 10.1016/j.arabjc.2019.12.012. DOI
Afzal M.J., Pervaiz E., Farrukh S., Ahmed T., Bingxue Z., Yang M. Highly Integrated Nanocomposites of RGO/TiO2nanotubes for Enhanced Removal of Microbes from Water. Environ. Technol. 2018;40:2567–2576. doi: 10.1080/09593330.2018.1447021. PubMed DOI
Cihlar J., Navarro L.K.T., Cihlar J., Kasparek V., Michalicka J., Castkova K., Lazar I., Kastyl J., Celko L., Vesely M., et al. Influence of Substituted Acetic Acids on “Bridge” Synthesis of Highly Photocatalytic Active Heterophase TiO2 in Hydrogen Production. J. Sol-Gel Sci. Technol. 2022;105:471–488. doi: 10.1007/s10971-022-06011-8. DOI
Leyva-Porras C., Toxqui-Teran A., Vega-Becerra O., Miki-Yoshida M., Rojas-Villalobos M., García-Guaderrama M., Aguilar-Martínez J.A. Low-Temperature Synthesis and Characterization of Anatase TiO2 Nanoparticles by an Acid Assisted Sol-Gel Method. J. Alloys Compd. 2015;647:627–636. doi: 10.1016/j.jallcom.2015.06.041. DOI
Haggerty J.E.S., Schelhas L.T., Kitchaev D.A., Mangum J.S., Garten L.M., Sun W., Stone K.H., Perkins J.D., Toney M.F., Ceder G., et al. High-Fraction Brookite Films from Amorphous Precursors. Sci. Rep. 2017;7:15232. doi: 10.1038/s41598-017-15364-y. PubMed DOI PMC
Monai M., Montini T., Fornasiero P. Brookite: Nothing New under the Sun? Catalysts. 2017;7:304. doi: 10.3390/catal7100304. DOI
Bhave R. Ph.D. Thesis. Clemson University; Clemson, SC, USA: 2007. Synthesis and Photocatalysis Study of Brookite Phase Titanium Dioxide Nanoparticles; pp. 1–73.
Ma L., Zhang T., Song R., Guo L. In-Situ Raman Study of Relation between Microstructure and Photoactivity of CdS@TiO2 Core-Shell Nanostructures. Int. J. Hydrogen Energy. 2018;43:13778–13787. doi: 10.1016/j.ijhydene.2018.03.044. DOI
Chen Y., Dong X., Cao Y., Xiang J., Gao H. Enhanced Photocatalytic Activities of Low-Bandgap TiO2-Reduced Graphene Oxide Nanocomposites. J. Nanoparticle Res. 2017;19:200. doi: 10.1007/s11051-017-3871-1. DOI
Liu N., Chen X., Zhang J., Schwank J.W. A Review on TiO2-Based Nanotubes Synthesized via Hydrothermal Method: Formation Mechanism, Structure Modification, and Photocatalytic Applications. Catal. Today. 2014;225:34–51. doi: 10.1016/j.cattod.2013.10.090. DOI
Yu J., Yu H., Cheng B., Trapalis C. Effects of Calcination Temperature on the Microstructures and Photocatalytic Activity of Titanate Nanotubes. J. Mol. Catal. A Chem. 2006;249:135–142. doi: 10.1016/j.molcata.2006.01.003. DOI
Jbeli A., Ferraria A.M., Botelho do Rego A.M., Boufi S., Bouattour S. Hybrid Chitosan-TiO2/ZnS Prepared under Mild Conditions with Visible-Light Driven Photocatalytic Activity. Int. J. Biol. Macromol. 2018;116:1098–1104. doi: 10.1016/j.ijbiomac.2018.05.141. PubMed DOI
Huang J., Li G., Zhou Z., Jiang Y., Hu Q., Xue C., Guo W. Efficient Photocatalytic Hydrogen Production over Rh and Nb Codoped TiO2 Nanorods. Chem. Eng. J. 2018;337:282–289. doi: 10.1016/j.cej.2017.12.088. DOI
Chen Y., Xu Y., Jiao S., Wang X., Li L., Fang Z., Pang G., Feng S. Synthesis of Blue Anatase TiO2 Nanoplates with {001} Facets and in Situ Noble Metal Anchoring. Dye. Pigment. 2016;129:191–198. doi: 10.1016/j.dyepig.2016.02.017. DOI
Moussaoui R., Elghniji K., ben Mosbah M., Elaloui E., Moussaoui Y. Sol–Gel Synthesis of Highly TiO2 Aerogel Photocatalyst via High Temperature Supercritical Drying. J. Saudi Chem. Soc. 2017;21:751–760. doi: 10.1016/j.jscs.2017.04.001. DOI
Habibi S., Jamshidi M. Synthesis of TiO2 Nanoparticles Coated on Cellulose Nanofibers with Different Morphologies: Effect of the Template and Sol-Gel Parameters. Mater. Sci. Semicond. Process. 2020;109:104927. doi: 10.1016/j.mssp.2020.104927. DOI
Khan H., Berk D. Effect of a Chelating Agent on the Physicochemical Properties of TiO2: Characterization and Photocatalytic Activity. Catal. Lett. 2014;144:890–904. doi: 10.1007/s10562-014-1233-5. DOI
Piątkowska A., Janus M., Szymański K., Mozia S. C-,N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts. 2021;11:144. doi: 10.3390/catal11010144. DOI
Zaleska-Medynska A., Grabowska E., Marchelek M., Paszkiewicz-Gawron M., Zaleska-Medynska A. Metal Oxide Photocatalysts. Met. Oxide-Based Photocatal. 2018:51–209. doi: 10.1016/B978-0-12-811634-0.00003-2. DOI
Roy D., Yadav A.K. Green TiO2–ZnO Nanocomposite Stimulator for the Growth of Solanum Lycopersicum in Aquaculture. Appl. Nanosci. 2022;12:1403–1423. doi: 10.1007/s13204-021-02329-x. DOI
Mustapha S., Ndamitso M.M., Abdulkareem A.S., Tijani J.O., Shuaib D.T., Ajala A.O., Mohammed A.K. Application of TiO2 and ZnO Nanoparticles Immobilized on Clay in Wastewater Treatment: A Review. Appl. Water Sci. 2020;10:49. doi: 10.1007/s13201-019-1138-y. DOI
Chen Y.W., Hsu Y.H. Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts. Catalysts. 2021;11:966. doi: 10.3390/catal11080966. DOI
Yu Y., Zhu X., Wang L., Wu F., Liu S., Chang C., Luo X. A Simple Strategy to Design 3-Layered Au-TiO2 Dual Nanoparticles Immobilized Cellulose Membranes with Enhanced Photocatalytic Activity. Carbohydr. Polym. 2020;231:115694. doi: 10.1016/j.carbpol.2019.115694. PubMed DOI
Wang L., Zhang C., Gao F., Mailhot G., Pan G. Algae Decorated TiO2/Ag Hybrid Nanofiber Membrane with Enhanced Photocatalytic Activity for Cr(VI) Removal under Visible Light. Chem. Eng. J. 2017;314:622–630. doi: 10.1016/j.cej.2016.12.020. DOI
Dharma H.N.C., Jaafar J., Widiastuti N., Matsuyama H., Rajabsadeh S., Othman M.H.D., Rahman M.A., Jafri N.N.M., Suhaimin N.S., Nasir A.M., et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes. 2022;12:345. doi: 10.3390/membranes12030345. PubMed DOI PMC
Houas A., Taha K., Hamadi N.B. Preparation of novel X% Li/TiO2 (x = 1%, 2% and 4%) and their activities under visible light. Dig. J. Nanomater. Biostructures. 2020;15:579–585. doi: 10.15251/DJNB.2020.152.579. DOI
Cihlar J., Tinoco Navarro L.K., Kasparek V., Michalicka J., Kastyl J., Castkova K., Celko L. Influence of LA/Ti Molar Ratio on the Complex Synthesis of Anatase/Brookite Nanoparticles and Their Hydrogen Production. Int. J. Hydrogen Energy. 2021:46. doi: 10.1016/j.ijhydene.2020.12.080. DOI
Kumaravel V., Mathew S., Bartlett J., Pillai S.C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B Environ. 2019;244:1021–1064. doi: 10.1016/j.apcatb.2018.11.080. DOI
Sharma S.D., Saini K.K., Kant C., Sharma C.P., Jain S.C. PhotoDegradation of Dye Pollutant under UV Light by Nano-Catalyst Doped Titania Thin Films. Appl. Catal. B Environ. 2008;84:233–240. doi: 10.1016/j.apcatb.2008.04.017. DOI
Gupta S.M., Tripathi M. A Review of TiO2 Nanoparticles. Chin. Sci. Bull. 2011;56:1639–1657. doi: 10.1007/s11434-011-4476-1. DOI
El-Saeid M.H., Alotaibi M.O., Alshabanat M., Al-Anazy M.M., Alharbi K.R., Altowyan A.S. Impact of Photolysis and TiO2 on Pesticides Degradation in Wastewater. Water. 2021;13:655. doi: 10.3390/w13050655. DOI
Ziental D., Czarczynska-Goslinska B., Mlynarczyk D.T., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020;10:387. doi: 10.3390/nano10020387. PubMed DOI PMC
Mathew S., Ganguly P., Rhatigan S., Kumaravel V., Byrne C., Hinder S.J., Bartlett J., Nolan M., Pillai S.C. Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018;8:2067. doi: 10.3390/app8112067. DOI
Venz P., Frost R., Bartlett J., Woolfrey J., Kloprogge J. Thermal Transformations of Titania Hydrolysates Prepared from Tetraisopropoxytitanium(Iv) Thermochim. Acta. 2000;346:73–82. doi: 10.1016/S0040-6031(99)00367-6. DOI
Isley S.L., Penn R.L. Titanium Dioxide Nanoparticles: Effect of Sol-Gel PH on Phase Composition, Particle Size, and Particle Growth Mechanism. J. Phys. Chem. C. 2008;112:4469–4474. doi: 10.1021/jp710844d. DOI
Kandiel T.A., Feldhoff A., Robben L., Dillert R., Bahnemann D.W. Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chem. Mater. 2010;22:2050–2060. doi: 10.1021/cm903472p. DOI
Singh R., Dutta S. A Review on H2 Production through Photocatalytic Reactions Using TiO2/TiO2-Assisted Catalysts. Fuel. 2018;220:607–620. doi: 10.1016/j.fuel.2018.02.068. DOI
Kumar S.G., Rao K.S.R.K. Polymorphic Phase Transition among the Titania Crystal Structures Using a Solution-Based Approach: From Precursor Chemistry to Nucleation Process. Nanoscale. 2014;6:11574–11632. doi: 10.1039/C4NR01657B. PubMed DOI
Košević M., Šekularac G., Živković L., Panić V., Nikolić B. TiO2 From Colloidal Dispersion as Support in Pt/TiO2 Nanocomposite for Electrochemical Applications. Croat. Chem. Acta. 2017;90:251–258. doi: 10.5562/cca3175. DOI
Oh Y.-C., Li X., Cubbage J.W., Jenks W.S. Mechanisms of Catalyst Action in the TiO2-Mediated Photocatalytic Degradation and Cis–Trans Isomerization of Maleic and Fumaric Acid. Appl. Catal. B Environ. 2004;54:105–114. doi: 10.1016/j.apcatb.2004.05.024. DOI
Leblebici M.E., Stefanidis G.D., Van Gerven T. Comparison of Photocatalytic Space-Time Yields of 12 Reactor Designs for Wastewater Treatment. Chem. Eng. Process. Process Intensif. 2015;97:106–111. doi: 10.1016/j.cep.2015.09.009. DOI
Hao R., Jiang B., Li M., Xie Y., Fu H. Fabrication of Mixed-Crystalline-Phase Spindle-like TiO2 for Enhanced Photocatalytic Hydrogen Production. Sci. China Mater. 2015;58:363–369. doi: 10.1007/s40843-015-0052-3. DOI
Di Paola A., Bellardita M., Palmisano L., Group S.P., Energia D., Informazione I. Brookite, the Least Known TiO2 Photocatalyst. Catalysts. 2013;3:36–73. doi: 10.3390/catal3010036. DOI
Kandiel T.A., Robben L., Alkaim A., Bahnemann D. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013;12:602–609. doi: 10.1039/c2pp25217a. PubMed DOI
Hanaor D.A.H., Sorrell C.C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI
Thiruvenkatachari R., Vigneswaran S., Moon I.S. A Review on UV/TiO2 Photocatalytic Oxidation Process. Korean J. Chem. Eng. 2008;25:64–72. doi: 10.1007/s11814-008-0011-8. DOI
Zaleska A. Doped-TiO2: A Review Doped-TiO2: A Review. Recent Pat. Eng. 2014;2:157–164. doi: 10.2174/187221208786306289. DOI
Fan C., Xue P., Sun Y. Preparation of Nano-TiO2 Doped with Cerium and Its Photocatalytic Activity. J. Rare Earths. 2006;24:309–313. doi: 10.1016/S1002-0721(06)60115-4. DOI
Mahmoud H.A., Narasimharao K., Ali T.T., Khalil K.M.S. Acidic Peptizing Agent Effect on Anatase-Rutile Ration and Photocatalytic Performance of TiO2 Nanoparticles. Nanoscale Res. Lett. 2018;13:48. doi: 10.1186/s11671-018-2465-x. PubMed DOI PMC
Arenas L.T., Simm C.W., Gushikem Y., Dias S.L.P., Moro C.C., Costa T.M.H., Benvenutti E.V. Synthesis of Silica Xerogels with High Surface Area Using Acetic Acid as Catalyst. J. Braz. Chem. Soc. 2007;18:886–890. doi: 10.1590/S0103-50532007000500003. DOI
Wang X., Li C., Shi Z., Zhi M., Hong Z. The Investigation of an Organic Acid Assisted Sol-Gel Method for Preparing Monolithic Zirconia Aerogels. RSC Adv. 2018;8:8011–8020. doi: 10.1039/C7RA13041D. PubMed DOI PMC
Vorsina I., Grigorieva T., Barinova A., Lyakhov N. Mechanochemical Interaction of Silicon Dioxide with Organic Acids. Ariel.Ac.Il. 2011;19:236–247.
Banerjee B., Amoli V., Maurya A., Sinha A.K., Bhaumik A. Green Synthesis of Pt-Doped TiO2 Nanocrystals with Exposed (001) Facets and Mesoscopic Void Space for Photo-Splitting of Water under Solar Irradiation. Nanoscale. 2015;7:10504–10512. doi: 10.1039/C5NR02097B. PubMed DOI
Patra A.K., Dutta A., Bhaumik A. Synthesis of Cuboid-Shaped Single-Crystalline TiO2 Nanocrystals with High-Energy Facets {001} and Its Dye-Sensitized Solar Cell Application. J. Phys. Chem. C. 2014;118:16703–16709. doi: 10.1021/jp412674g. DOI
Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., De Coss R., Oskam G. Phase-Pure TiO2 Nanoparticles: Anatase, Brookite and Rutile. Nanotechnology. 2008;19:145605. doi: 10.1088/0957-4484/19/14/145605. PubMed DOI
Polte J. Fundamental Growth Principles of Colloidal Metal Nanoparticles—A New Perspective. CrystEngComm. 2015;17:6809–6830. doi: 10.1039/C5CE01014D. DOI
Kulkarni D., Wachs I.E. Isopropanol Oxidation by Pure Metal Oxide Catalysts: Number of Active Surface Sites and Turnover Frequencies. Appl. Catal. A Gen. 2002;237:121–137. doi: 10.1016/S0926-860X(02)00325-3. DOI
Campbell L.K., Na B.K., Ko E.I. Synthesis and Characterization of Titania Aerogels. Chem. Mater. 1992;4:1329–1333. doi: 10.1021/cm00024a037. DOI
Cho H.-W., Liao K.-L., Yang J.-S., Wu J.-J. Revelation of Rutile Phase by Raman Scattering for Enhanced Photoelectrochemical Performance of Hydrothermally-Grown Anatase TiO2 Film. Appl. Surf. Sci. 2018;440:125–132. doi: 10.1016/j.apsusc.2018.01.139. DOI
Finnegan M.P., Zhang H., Banfield J.F. Phase Stability and Transformation in Titania Nanoparticles in Aqueous Solutions Dominated by Surface Energy. J. Phys. Chem. C. 2007;111:1962–1968. doi: 10.1021/jp063822c. DOI
Tseng T.K., Lin Y.S., Chen Y.J., Chu H. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal. Int. J. Mol. Sci. 2010;11:2336–2361. doi: 10.3390/ijms11062336. PubMed DOI PMC
Cheng H., Ma J., Zhao Z., Qi L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 1995;7:663–671. doi: 10.1021/cm00052a010. DOI
Wang Y., Zhang L., Deng K., Chen X., Zou Z. Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructutes. J. Phys. Chem. C. 2007;111:2709–2714. doi: 10.1021/jp066519k. DOI
Tinoco Navarro L.K., Cihlar J., Michalicka J., Kastyl J., Castkova K. Effect of MCAA Synthesis and Calcination Temperature on Heterojunction Formation and Photocatalytic Activity of Biphasic TiO2 (B/A) Catal. Lett. 2023;1:1–21. doi: 10.1007/S10562-023-04489-7/FIGURES/6. DOI
Elmouwahidi A., Bailón-García E., Castelo-Quibén J., Pérez-Cadenas A.F., Maldonado-Hódar F.J., Carrasco-Marín F. Carbon–TiO2 Composites as High-Performance Supercapacitor Electrodes: Synergistic Effect between Carbon and Metal Oxide Phases. J. Mater. Chem. A. 2018;6:633–644. doi: 10.1039/C7TA08023A. DOI
Fischer K., Gawel A., Rosen D., Krause M., Latif A.A., Griebel J., Prager A., Schulze A. Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis. Catalysts. 2017;7:209. doi: 10.3390/catal7070209. DOI
Cihlar J., Vrba R., Castkova K., Cihlar J. Effect of Transition Metal on Stability and Activity of La-Ca-M-(Al)-O (M = Co, Cr, Fe and Mn) Perovskite Oxides during Partial Oxidation of Methane. Int. J. Hydrogen Energy. 2017;42:19920–19934. doi: 10.1016/j.ijhydene.2017.06.075. DOI
Li D., Kaner R.B. Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. J. Am. Chem. Soc. 2006;128:968–975. doi: 10.1021/ja056609n. PubMed DOI
Jana S. Advances in nanoscale alloys and intermetallics: Low temperature solution chemistry synthesis and application in catalysis. Dalton Trans. 2015;44:18692–18717. doi: 10.1039/C5DT03699B. PubMed DOI
Li W., Elzatahry A., Aldhayan D., Zhao D. Core-Shell Structured Titanium Dioxide Nanomaterials for Solar Energy Utilization. Chem. Soc. Rev. 2018;47:8203–8237. doi: 10.1039/C8CS00443A. PubMed DOI
Sanz-Moral L.M., Romero A., Holz F., Rueda M., Navarrete A., Martín A. Tuned Pd/SiO2 Aerogel Catalyst Prepared by Different Synthesis Techniques. J. Taiwan Inst. Chem. Eng. 2016;65:515–521. doi: 10.1016/j.jtice.2016.05.030. DOI
Justh N., Mikula G.J., Bakos L.P., Nagy B., László K., Parditka B., Erdélyi Z., Takáts V., Mizsei J., Szilágyi I.M. Photocatalytic Properties of TiO2 @polymer and TiO2 @carbon Aerogel Composites Prepared by Atomic Layer Deposition. Carbon N. Y. 2019;147:476–482. doi: 10.1016/j.carbon.2019.02.076. DOI
Linhares T., Pessoa De Amorim M.T., Durães L. Silica Aerogel Composites with Embedded Fibres: A Review on Their Preparation, Properties and Applications. J. Mater. Chem. A. 2019;7:22768–22802. doi: 10.1039/C9TA04811A. DOI
Alwin S., Shajan X.S. Aerogels: Promising Nanostructured Materials for Energy Conversion and Storage Applications. Mater. Renew. Sustain. Energy. 2020;4:7. doi: 10.1007/s40243-020-00168-4. DOI
Koparde V.N., Cummings P.T. Phase Transformations during Sintering of Titania Nanoparticles. ACS Nano. 2008;2:1620–1624. doi: 10.1021/nn800092m. PubMed DOI
RSC TiO2: Manufacture of Titanium Dioxide. R. Soc. Chem. 2016;5
Mao Q., Ren Y., Luo K.H., Li S. Sintering-Induced Phase Transformation of Nanoparticles: A Molecular Dynamics Study. J. Phys. Chem. C. 2015;119:28631–28639. doi: 10.1021/acs.jpcc.5b08625. DOI
Ren L., Cui S., Cao F., Guo Q. An Easy Way to Prepare Monolithic Inorganic Oxide Aerogels. Angew. Chem. Int. Ed. 2014;53:10147–10149. doi: 10.1002/anie.201406387. PubMed DOI
Puskelova J., Baia L., Vulpoi A., Baia M., Antoniadou M., Dracopoulos V., Stathatos E., Gabor K., Pap Z., Danciu V., et al. Photocatalytic Hydrogen Production Using TiO2-Pt Aerogels. Chem. Eng. J. 2014;242:96–101. doi: 10.1016/j.cej.2013.12.018. DOI
Woignier T., Phalippou J., Despetis F., Aerogel S.C., Lisa P. Aerogel Processing. 2018. [(accessed on 2 December 2023)]. Available online: https://amu.hal.science/hal-01930044/document.
Serpone N., Artemev Y.M., Ryabchuk V.K., Emeline A.V., Horikoshi S. Light-Driven Advanced Oxidation Processes in the Disposal of Emerging Pharmaceutical Contaminants in Aqueous Media: A Brief Review. Curr. Opin. Green Sustain. Chem. 2017;6:18–33. doi: 10.1016/j.cogsc.2017.05.003. DOI
Reza Gholipour M., Dinh C.T., Béland F., Do T.O. Nanocomposite Heterojunctions as Sunlight-Driven Photocatalysts for Hydrogen Production from Water Splitting. Nanoscale. 2015;7:8187–8208. doi: 10.1039/C4NR07224C. PubMed DOI
Dalod A.R.M., Henriksen L., Grande T., Einarsrud M. Functionalized TiO2 Nanoparticles by Single-Step Hydrothermal Synthesis: The Role of the Silane Coupling Agents. Beilstein J. Nanotechnol. 2017;8:304–312. doi: 10.3762/bjnano.8.33. PubMed DOI PMC
Franceschini E.A., Gomez M.J., Lacconi G.I. One Step Synthesis of High Efficiency Nickel/Mesoporous TiO2 Hybrid Catalyst for Hydrogen Evolution Reaction. J. Energy Chem. 2019;29:79–87. doi: 10.1016/j.jechem.2018.02.005. DOI
Luttrell T., Halpegamage S., Tao J., Kramer A., Sutter E., Batzill M. Why Is Anatase a Better Photocatalyst than Rutile?—Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2015;4:4043. doi: 10.1038/srep04043. PubMed DOI PMC
Hurum D.C., Agrios A.G., Gray K.A., Rajh T., Thurnauer M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B. 2003;107:4545–4549. doi: 10.1021/jp0273934. DOI
Moradi V., Jun M.B.G., Blackburn A., Herring R.A. Significant Improvement in Visible Light Photocatalytic Activity of Fe Doped TiO2 Using an Acid Treatment Process. Appl. Surf. Sci. 2018;427:791–799. doi: 10.1016/j.apsusc.2017.09.017. DOI
Zhang W., Wang S., Li J., Yang X. Photocatalytic Hydrogen Production from Methanol Aqueous Solution under Visible-Light Using Cu/S–TiO2 Prepared by Electroless Plating Method. Catal. Commun. 2015;59:189–194. doi: 10.1016/j.catcom.2014.10.029. DOI
Patel R., Patel S. Renewable Hydrogen Production from Butanol: A Review. Clean Energy. 2017;1:90–101. doi: 10.1093/ce/zkx008. DOI
Huang L., Li R., Chong R., Liu G., Han J., Li C. Cl- Making Overall Water Splitting Possible on TiO2-Based Photocatalysts. Catal. Sci. Technol. 2014;4:2913–2918. doi: 10.1039/C4CY00408F. DOI
Hippargi G., Mangrulkar P., Chilkalwar A., Labhsetwar N., Rayalu S. Chloride Ion: A Promising Hole Scavenger for Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy. 2018;43:6815–6823. doi: 10.1016/j.ijhydene.2017.12.179. DOI
Hasanpour M., Hatami M. Photocatalytic Performance of Aerogels for Organic Dyes Removal from Wastewaters: Review Study. J. Mol. Liq. 2020;309:113094. doi: 10.1016/j.molliq.2020.113094. DOI
Tinoco Navarro L.K., Bednarikova V., Kastyl J., Cihlar J. Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO2 Aerogels. Gels. 2023;9:357. doi: 10.3390/GELS9050357/S1. PubMed DOI PMC
Oh W., Yv W., Jung C. Synthesis and Characterization of Fe-Containing C/TiO2 Composites and Their Degradation Effect for the Piggery Waste. Processing. 2008;13:18–20.
Lim T.T., Yap P.S., Srinivasan M., Fane A.G. TiO2/AC Composites for Synergistic Adsorption-Photocatalysis Processes: Present Challenges and Further Developments for Water Treatment and Reclamation. Crit. Rev. Environ. Sci. Technol. 2011;41:1173–1230. doi: 10.1080/10643380903488664. DOI
Zhu C., Yao H., Sun T., Le S., Jin Q., Chen C., Xu H., Wang S. Ultrathin Fluorine-Doped TiO2(B) Nanosheets-Anchored Hierarchical Cog Wheel-Shaped NH2-MIL-53(Al) for Boosting Photocatalytic Activity. Chem. Eng. J. 2023;460:141849. doi: 10.1016/j.cej.2023.141849. DOI
Dozzi M.V., D’Andrea C., Ohtani B., Valentini G., Selli E. Fluorine-Doped TiO2 Materials: Photocatalytic Activity vs. Time-Resolved Photoluminescence. J. Phys. Chem. C. 2013;117:25586–25595. doi: 10.1021/jp4095563. DOI
Boningari T., Inturi S.N.R., Suidan M., Smirniotis P.G. Novel One-Step Synthesis of Sulfur Doped-TiO2 by Flame Spray Pyrolysis for Visible Light Photocatalytic Degradation of Acetaldehyde. Chem. Eng. J. 2018;339:249–258. doi: 10.1016/j.cej.2018.01.063. DOI
Ganesh I., Kumar P.P., Gupta A.K., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G. Preparation and Characterization of Fe-Doped TiO2 Powders for Solar Light Response and Photocatalytic Applications. Process. Appl. Ceram. 2012;6:21–36. doi: 10.2298/PAC1201021G. PubMed DOI PMC
Bharti B., Kumar S., Lee H.N., Kumar R. Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment. Sci. Rep. 2016;6:32355. doi: 10.1038/srep32355. PubMed DOI PMC
Arab H., Chiarello G.L., Selli E., Bomboi G., Calloni A., Bussetti G., Albani G., Bestetti M., Franz S. Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes. Surfaces. 2020;3:168–181. doi: 10.3390/surfaces3020013. DOI
Mahy J.G., Cerfontaine V., Poelman D., Devred F., Gaigneaux E.M., Heinrichs B., Lambert S.D. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications. Materials. 2018;11:584. doi: 10.3390/ma11040584. PubMed DOI PMC
Jung M., Hart J.N., Boensch D., Scott J., Ng Y.H., Amal R. Hydrogen Evolution via Glycerol Photoreforming over Cu–Pt Nanoalloys on TiO2. Appl. Catal. A Gen. 2016;518:221–230. doi: 10.1016/j.apcata.2015.10.040. DOI
Rahul T.K., Mohan M., Sandhyarani N. Enhanced Solar Hydrogen Evolution over in Situ Gold-Platinum Bimetallic Nanoparticle-Loaded Ti3+ Self-Doped Titania Photocatalysts. ACS Sustain. Chem. Eng. 2018;6:3049–3059. doi: 10.1021/acssuschemeng.7b02898. DOI
Di Liberto G., Tosoni S., Pacchioni G. Nitrogen Doping in Coexposed (001)-(101) Anatase TiO2 Surfaces: A DFT Study. Phys. Chem. Chem. Phys. 2019;21:21497–21505. doi: 10.1039/C9CP03930A. PubMed DOI
Rivero M.J., Iglesias O., Ribao P., Ortiz I. Kinetic Performance of TiO2/Pt/Reduced Graphene Oxide Composites in the Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy. 2019;44:101–109. doi: 10.1016/j.ijhydene.2018.02.115. DOI
Lettieri S., Pavone M., Fioravanti A., Amato L.S., Maddalena P. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials. 2021;14:1645. doi: 10.3390/ma14071645. PubMed DOI PMC
Li J., Liu B., Han X., Liu B., Jiang J., Liu S., Zhang J., Shi H. Direct Z-Scheme TiO2-x/AgI Heterojunctions for Highly Efficient Photocatalytic Degradation of Organic Contaminants and Inactivation of Pathogens. Sep. Purif. Technol. 2021;261:118306. doi: 10.1016/j.seppur.2021.118306. DOI
Ahmadi N., Nemati A., Bagherzadeh M. Synthesis and Properties of Ce-Doped TiO2-Reduced Graphene Oxide Nanocomposite. J. Alloys Compd. 2018;742:986–995. doi: 10.1016/j.jallcom.2018.01.105. DOI
Ho C.C., Kang F., Chang G.M., You S.J., Wang Y.F. Application of Recycled Lanthanum-Doped TiO2 Immobilized on Commercial Air Filter for Visible-Light Photocatalytic Degradation of Acetone and NO. Appl. Surf. Sci. 2019;465:31–40. doi: 10.1016/j.apsusc.2018.09.136. DOI
Lal M., Sharma P., Ram C. Calcination Temperature Effect on Titanium Oxide (TiO2) Nanoparticles Synthesis. Opt. Stuttg. 2021;241:166934. doi: 10.1016/j.ijleo.2021.166934. DOI
Jiang D., Otitoju T.A., Ouyang Y., Shoparwe N.F., Wang S., Zhang A., Li S. A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants. Catalysts. 2021;11:1039. doi: 10.3390/catal11091039. DOI
Jaramillo-Fierro X., León R. Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide—A Comparative Study. Nanomaterials. 2023;13:1068. doi: 10.3390/nano13061068. PubMed DOI PMC
Keerthana S.P., Yuvakkumar R., Ravi G., Hong S.I., Al-Sehemi A.G., Velauthapillai D. Fabrication of Ce Doped TiO2 for Efficient Organic Pollutants Removal from Wastewater. Chemosphere. 2022;293:133540. doi: 10.1016/j.chemosphere.2022.133540. PubMed DOI
Chen X., Huang Y., Wang X., Li H., Zhu L., Xu X., Jiang S. Enhancing CO2 Photoconversion Activity of TiO2 via Synergistic Effects of La-Doping and Ammonia Vapor Heat Treatment. J. Photochem. Photobiol. A Chem. 2023;441:114755. doi: 10.1016/j.jphotochem.2023.114755. DOI
Dubey R.S., Jadkar S.R., Bhorde A.B. Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells. ACS Omega. 2021;6:3470–3482. doi: 10.1021/acsomega.0c01614. PubMed DOI PMC
Liu J., Hodes G., Yan J., Liu S. (Frank) Metal-Doped Mo2C (Metal = Fe, Co, Ni, Cu) as Catalysts on TiO2 for Photocatalytic Hydrogen Evolution in Neutral Solution. Chin. J. Catal. 2020;42:205–216. doi: 10.1016/S1872-2067(20)63589-6. DOI
Vargas Hernández J., Coste S., García Murillo A., Carrillo Romo F., Kassiba A. Effects of Metal Doping (Cu, Ag, Eu) on the Electronic and Optical Behavior of Nanostructured TiO2. J. Alloys Compd. 2017;710:355–363. doi: 10.1016/j.jallcom.2017.03.275. DOI
Kim M.G., Kang J.M., Lee J.E., Kim K.S., Kim K.H., Cho M., Lee S.G. Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2Nanoparticles. ACS Omega. 2021;6:10668–10678. doi: 10.1021/acsomega.1c00043. PubMed DOI PMC
Hamad H., Bailón-García E., Morales-Torres S., Pérez-Cadenas A.F., Carrasco-Marín F., Maldonado-Hódar F.J. Bio-Based Materials and Biotechnologies for Eco-Efficient Construction. Woodhead Publishing; Sawston, UK: 2020. Cellulose–TiO2 Composites for the Removal of Water Pollutants; pp. 329–358. DOI
Xin W., Gao T., Zhang W., Hu T., Sun X., Zhou G. Three-Dimensional Hollow SnO2@TiO2 Spheres Encapsulated in Reduced Graphene Oxide Aerogels as Promising Anodes for Lithium-Ion Storage. J. Alloys Compd. 2019;784:157–164. doi: 10.1016/j.jallcom.2019.01.038. DOI
Kuspanov Z., Bakbolat B., Baimenov A., Issadykov A., Yeleuov M., Daulbayev C. Photocatalysts for a Sustainable Future: Innovations in Large-Scale Environmental and Energy Applications. Sci. Total Environ. 2023;885:163914. doi: 10.1016/j.scitotenv.2023.163914. PubMed DOI
Gurushantha K., Kottam N., Smrithi S.P., Dharmaprakash M.S., Keshavamurthy K., Meena S., Srinatha N. Visible Light Active WO3/TiO2 Heterojunction Nanomaterials for Electrochemical Sensor, Capacitance and Photocatalytic Application s. Catal. Lett. 2023;1:1–12. doi: 10.1007/s10562-023-04362-7. DOI
Turlybekuly A., Sarsembina M., Mentbayeva A., Bakenov Z., Soltabayev B. CuO/TiO2 Heterostructure-Based Sensors for Conductometric NO2 and N2O Gas Detection at Room Temperature. Sens. Actuators B Chem. 2023;397:134635. doi: 10.1016/j.snb.2023.134635. DOI
Tian X., Hu Z., Wang T., Wang H., Zhang Q., Wei X. Influence of Multi-Layer TiO2/SnO2 Heterojunctions on Fast and Sensitive Ethanol Detection. Vacuum. 2023;207:111620. doi: 10.1016/j.vacuum.2022.111620. DOI
Li G., Zhang Y., Liang Q., Zhang J., Liu J., Liu Y., Wang C., Gao J., Lu H. Nanoporous Co3O4-TiO2Heterojunction Nanosheets for Ethanol Sensing. ACS Appl. Nano Mater. 2022;5:4779–4786. doi: 10.1021/acsanm.1c04259. DOI
Galstyan V., Poli N., Golovanov V., D’Arco A., Macis S., Lupi S., Bolli E., Kaciulis S., Mezzi A., Comini E. Tunable Chemical Reactivity and Selectivity of WO3/TiO2 Heterojunction for Gas Sensing Application s. Adv. Mater. Technol. 2022;7:2201751. doi: 10.1002/admt.202201751. DOI
Yoon Y.H., Lee S.Y., Gwon J.G., Cho H.J., Wu Q., Kim Y.H., Lee W.H. Photocatalytic Performance of Highly Transparent and Mesoporous Molybdenum-Doped Titania Films Fabricated by Templating Cellulose Nanocrystals. Ceram. Int. 2018;44:16647–16653. doi: 10.1016/j.ceramint.2018.06.091. DOI
Bakre P.V., Tilve S.G. Direct Access to Highly Crystalline Mesoporous Nano TiO2 Using Sterically Bulky Organic Acid Templates. J. Phys. Chem. Solids. 2018;116:234–240. doi: 10.1016/j.jpcs.2018.01.043. DOI
Lishchynskyi O., Shymborska Y., Stetsyshyn Y., Raczkowska J., Skirtach A.G., Peretiatko T., Budkowski A. Passive Antifouling and Active Self-Disinfecting Antiviral Surfaces. Chem. Eng. J. 2022;446:137048. doi: 10.1016/j.cej.2022.137048. PubMed DOI PMC
Zhu H., Tan J., Qiu J., Wang D., Zhao Z., Lu Z., Huang G., Liu X., Mei Y. Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect. Coatings. 2022;12:1351. doi: 10.3390/coatings12091351. DOI
Tomás-Gamasa M., Mascareñas J.L. TiO2-Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem. 2020;21:294–309. doi: 10.1002/cbic.201900229. PubMed DOI
Kumaravel V., Nair K.M., Mathew S., Bartlett J., Kennedy J.E., Manning H.G., Whelan B.J., Leyland N.S., Pillai S.C. Antimicrobial TiO2 Nanocomposite Coatings for Surfaces, Dental and Orthopaedic Implants. Chem. Eng. J. 2021;416:129071. doi: 10.1016/j.cej.2021.129071. PubMed DOI PMC
Wang R., Shi M., Xu F., Qiu Y., Zhang P., Shen K., Zhao Q., Yu J., Zhang Y. Graphdiyne-Modified TiO2 Nanofibers with Osteoinductive and Enhanced Photocatalytic Antibacterial Activities to Prevent Implant Infection. Nat. Commun. 2020;11:4465. doi: 10.1038/s41467-020-18267-1. PubMed DOI PMC
Song P., Wang M.L., Duan Y.X., Wang A.J., Xue Y., Mei L.P., Feng J.J. Bifunctional Photoelectrochemical Aptasensor Based on Heterostructured Ag3PO4/Ag/TiO2 Nanorod Array for Determination of Two Tumor Markers. Microchim. Acta. 2023;190:85. doi: 10.1007/s00604-023-05654-w. PubMed DOI
Sharma B., Sharma A., Myung J. ha Highly Selective Detection of Acetone by TiO2-SnO2 Heterostructures for Environmental Biomarkers of Diabetes. Sens. Actuators B Chem. 2021;349:130733. doi: 10.1016/j.snb.2021.130733. DOI
Pourmadadi M., Rajabzadeh-Khosroshahi M., Eshaghi M.M., Rahmani E., Motasadizadeh H., Arshad R., Rahdar A., Pandey S. TiO2-Based Nanocomposites for Cancer Diagnosis and Therapy: A Comprehensive Review. J. Drug Deliv. Sci. Technol. 2023;82:104370. doi: 10.1016/j.jddst.2023.104370. DOI
Liu J., Cheng Y., Wang H., Yang D., Liu C., Dou W., Jiang X., Deng H., Yang R. Regulation of TiO2 @PVDF Piezoelectric Nanofiber Membranes on Osteogenic Differentiation of Mesenchymal Stem Cells. Nano Energy. 2023;115:108742. doi: 10.1016/j.nanoen.2023.108742. DOI
Ramesh S., Govarthanan K., Palaniappan A. TiO2 Nanostructures—A Double Edged Sword: Current Progress on Their Role in Stem Cells’ Differentiation, Cancer Therapy, and Their Toxicity Issues. Nanotoxicology. 2023;17:176–201. doi: 10.1080/17435390.2023.2199858. PubMed DOI