Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO2 Aerogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC20019
Ministry of Education Youth and Sports of the Czech Republic
CA18125
COST Action CA18125
LM2018110
MEYS CR
PubMed
37232949
PubMed Central
PMC10217561
DOI
10.3390/gels9050357
PII: gels9050357
Knihovny.cz E-zdroje
- Klíčová slova
- aerogels, anatase, brookite, photocatalytic properties, transition metal ions,
- Publikační typ
- časopisecké články MeSH
TiO2 aerogels doped with Ni, Co, Cu, and Fe were prepared, and their structure and photocatalytic activity during the decomposition of a model pollutant, acid orange (AO7), were studied. After calcination at 500 °C and 900 °C, the structure and composition of the doped aerogels were evaluated and analyzed. XRD analysis revealed the presence of anatase/brookite and rutile phases in the aerogels along with other oxide phases from the dopants. SEM and TEM microscopy showed the nanostructure of the aerogels, and BET analysis showed their mesoporosity and high specific surface area of 130 to 160 m2·g-1. SEM-EDS, STEM-EDS, XPS, EPR methods and FTIR analysis evaluated the presence of dopants and their chemical state. The concentration of doped metals in aerogels varied from 1 to 5 wt.%. The photocatalytic activity was evaluated using UV spectrophotometry and photodegradation of the AO7 pollutant. Ni-TiO2 and Cu-TiO2 aerogels calcined at 500 °C showed higher photoactivity coefficients (kaap) than aerogels calcined at 900 °C, which were ten times less active due to the transformation of anatase and brookite to the rutile phase and the loss of textural properties of the aerogels.
Zobrazit více v PubMed
Hasanpour M., Hatami M. Photocatalytic Performance of Aerogels for Organic Dyes Removal from Wastewaters: Review Study. J. Mol. Liq. 2020;309:113094. doi: 10.1016/j.molliq.2020.113094. DOI
Kumaravel V., Mathew S., Bartlett J., Pillai S.C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B Environ. 2019;244:1021–1064. doi: 10.1016/j.apcatb.2018.11.080. DOI
Dorraj M., Goh B.T., Sairi N.A., Woi P.M., Basirun W.J. Improved Visible-Light Photocatalytic Activity of TiO2 Co-Doped with Copper and Iodine. Appl. Surf. Sci. 2018;439:999–1009. doi: 10.1016/j.apsusc.2017.12.248. DOI
Khan H., Berk D. Effect of a Chelating Agent on the Physicochemical Properties of TiO2: Characterization and Photocatalytic Activity. Catal. Letters. 2014;144:890–904. doi: 10.1007/s10562-014-1233-5. DOI
Mandari K.K., Police A.K.R., Do J.Y., Kang M., Byon C. Rare Earth Metal Gd Influenced Defect Sites in N Doped TiO2: Defect Mediated Improved Charge Transfer for Enhanced Photocatalytic Hydrogen Production. Int. J. Hydrog. Energy. 2018;43:2073–2082. doi: 10.1016/j.ijhydene.2017.12.050. DOI
Cihlar J., Tinoco Navarro L.K., Kasparek V., Michalicka J., Kastyl J., Castkova K., Celko L. Influence of LA/Ti Molar Ratio on the Complex Synthesis of Anatase/Brookite Nanoparticles and Their Hydrogen Production. Int. J. Hydrog. Energy. 2021;46:8578–8593. doi: 10.1016/j.ijhydene.2020.12.080. DOI
Reza Gholipour M., Dinh C.T., Béland F., Do T.O. Nanocomposite Heterojunctions as Sunlight-Driven Photocatalysts for Hydrogen Production from Water Splitting. Nanoscale. 2015;7:8187–8208. doi: 10.1039/C4NR07224C. PubMed DOI
Cho H.-W., Liao K.-L., Yang J.-S., Wu J.-J. Revelation of Rutile Phase by Raman Scattering for Enhanced Photoelectrochemical Performance of Hydrothermally-Grown Anatase TiO2 Film. Appl. Surf. Sci. 2018;440:125–132. doi: 10.1016/j.apsusc.2018.01.139. DOI
Cihlar J., Navarro L.K.T., Cihlar J., Kasparek V., Michalicka J., Castkova K., Lazar I., Kastyl J., Celko L., Vesely M., et al. Influence of Substituted Acetic Acids on “Bridge” Synthesis of Highly Photocatalytic Active Heterophase TiO2 in Hydrogen Production. J. Sol.-Gel. Sci. Technol. 2022;105:471–488. doi: 10.1007/s10971-022-06011-8. DOI
Chen Y., Dong X., Cao Y., Xiang J., Gao H. Enhanced Photocatalytic Activities of Low-Bandgap TiO2-Reduced Graphene Oxide Nanocomposites. J. Nanoparticle Res. 2017;19:200. doi: 10.1007/s11051-017-3871-1. DOI
Hippargi G., Mangrulkar P., Chilkalwar A., Labhsetwar N., Rayalu S. Chloride Ion: A Promising Hole Scavenger for Photocatalytic Hydrogen Generation. Int. J. Hydrog. Energy. 2018;43:6815–6823. doi: 10.1016/j.ijhydene.2017.12.179. DOI
Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic Degradation for Environmental Applications—A Review. J. Chem. Technol. Biotechnol. 2002;77:102–116. doi: 10.1002/jctb.532. DOI
Vargas Hernández J., Coste S., García Murillo A., Carrillo Romo F., Kassiba A. Effects of Metal Doping (Cu, Ag, Eu) on the Electronic and Optical Behavior of Nanostructured TiO2. J. Alloys Compd. 2017;710:355–363. doi: 10.1016/j.jallcom.2017.03.275. DOI
Mathew S., Ganguly P., Rhatigan S., Kumaravel V., Byrne C., Hinder S.J., Bartlett J., Nolan M., Pillai S.C. Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018;8:2067. doi: 10.3390/app8112067. DOI
Yasuda M., Matsumoto T., Yamashita T. Sacrificial Hydrogen Production over TiO2-Based Photocatalysts: Polyols, Carboxylic Acids, and Saccharides. Renew. Sustain. Energy Rev. 2018;81:1627–1635. doi: 10.1016/j.rser.2017.05.243. DOI
Zaleska-Medynska A., Grabowska E., Marchelek M., Paszkiewicz-Gawron M., Zaleska-Medynska A. Metal Oxide-Based Photocatalysis. Elsevier; Amsterdam, The Netherlands: 2018. Metal Oxide Photocatalysts; pp. 51–209. DOI
Yu Y., Zhu X., Wang L., Wu F., Liu S., Chang C., Luo X. A Simple Strategy to Design 3-Layered Au-TiO2 Dual Nanoparticles Immobilized Cellulose Membranes with Enhanced Photocatalytic Activity. Carbohydr. Polym. 2020;231:115694. doi: 10.1016/j.carbpol.2019.115694. PubMed DOI
Cihlar J., Cihlar J., Bartonickova E. Low-Temperature Sol-Gel Synthesis of Anatase Nanoparticles Modified by Au, Pd and Pt and Activity of TiO2/Au, Pd, Pt Photocatalysts in Water Splitting. J. Sol.-Gel. Sci. Technol. 2013;65:430–442. doi: 10.1007/s10971-012-2955-8. DOI
Cihlar J., Vrba R., Castkova K., Cihlar J. Effect of Transition Metal on Stability and Activity of La-Ca-M-(Al)-O (M=Co, Cr, Fe and Mn) Perovskite Oxides during Partial Oxidation of Methane. Int. J. Hydrog. Energy. 2017;42:19920–19934. doi: 10.1016/j.ijhydene.2017.06.075. DOI
Moradi V., Jun M.B.G., Blackburn A., Herring R.A. Significant Improvement in Visible Light Photocatalytic Activity of Fe Doped TiO2 Using an Acid Treatment Process. Appl. Surf. Sci. 2018;427:791–799. doi: 10.1016/j.apsusc.2017.09.017. DOI
Ganesh I., Kumar P.P., Gupta A.K., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G. Preparation and Characterization of Fe-Doped TiO2 Powders for Solar Light Response and Photocatalytic Applications. Process. Appl. Ceram. 2012;6:21–36. doi: 10.2298/PAC1201021G. PubMed DOI PMC
Zaleska A. Doped-TiO2: A Review Doped-TiO2: A Review. Recent Patents Eng. 2014;2:157–164. doi: 10.2174/187221208786306289. DOI
Zhang W., Wang S., Li J., Yang X. Photocatalytic Hydrogen Production from Methanol Aqueous Solution under Visible-Light Using Cu/S–TiO2 Prepared by Electroless Plating Method. Catal. Commun. 2015;59:189–194. doi: 10.1016/j.catcom.2014.10.029. DOI
Mugundan S., Rajamannan B., Viruthagiri G., Shanmugam N., Gobi R., Praveen P. Synthesis and Characterization of Undoped and Cobalt-Doped TiO2 Nanoparticles via Sol–Gel Technique. Appl. Nanosci. 2015;5:449–456. doi: 10.1007/s13204-014-0337-y. DOI
Sadanandam G., Lalitha K., Kumari V.D., Shankar M.V., Subrahmanyam M. Cobalt Doped TiO2: A Stable and Efficient Photocatalyst for Continuous Hydrogen Production from Glycerol: Water Mixtures under Solar Light Irradiation. Int. J. Hydrog. Energy. 2013;38:9655–9664. doi: 10.1016/j.ijhydene.2013.05.116. DOI
Seadira T., Sadanandam G., Ntho T.A., Lu X., Masuku C.M., Scurrell M. Hydrogen Production from Glycerol Reforming: Conventional and Green Production. Rev. Chem. Eng. 2018;34:695–726. doi: 10.1515/revce-2016-0064. DOI
Franceschini E.A., Gomez M.J., Lacconi G.I. One Step Synthesis of High Efficiency Nickel/Mesoporous TiO2 Hybrid Catalyst for Hydrogen Evolution Reaction. J. Energy Chem. 2019;29:79–87. doi: 10.1016/j.jechem.2018.02.005. DOI
Lamouchi W., Ben Slama S., Saadallah F., Bouaicha M. Nickel Doping Induced Amorphization of Brookite TiO2: Photoluminescence Enhancement. Optik. 2021;227:166123. doi: 10.1016/j.ijleo.2020.166123. DOI
Ali H., Vandevyvere T., Lauwaert J., Kansal S.K., Saravanamurugan S., Thybaut J.W. Impact of Oxygen Vacancies in Ni Supported Mixed Oxide Catalysts on Anisole Hydrodeoxygenation. Catal. Commun. 2022;164:106436. doi: 10.1016/j.catcom.2022.106436. DOI
Moussaoui R., Elghniji K., ben Mosbah M., Elaloui E., Moussaoui Y. Sol–Gel Synthesis of Highly TiO2 Aerogel Photocatalyst via High Temperature Supercritical Drying. J. Saudi Chem. Soc. 2017;21:751–760. doi: 10.1016/j.jscs.2017.04.001. DOI
Budtova T., Aguilera D.A., Beluns S., Berglund L., Chartier C., Espinosa E., Gaidukovs S., Klimek-kopyra A., Kmita A., Lachowicz D., et al. Biorefinery Approach for Aerogels. Polymers. 2020;12:2779. doi: 10.3390/polym12122779. PubMed DOI PMC
Wang X., Li C., Shi Z., Zhi M., Hong Z. The Investigation of an Organic Acid Assisted Sol-Gel Method for Preparing Monolithic Zirconia Aerogels. RSC Adv. 2018;8:8011–8020. doi: 10.1039/C7RA13041D. PubMed DOI PMC
Vorsina I., Grigorieva T., Barinova A., Lyakhov N. Mechanochemical Interaction of Silicon Dioxide With Organic Acids. Chem. Sustain. Dev. 2011;19:236–247.
Cihlar J., Kasparek V., Kralova M., Castkova K. Biphasic Anatase-Brookite Nanoparticles Prepared by Sol-Gel Complex Synthesis and Their Photocatalytic Activity in Hydrogen Production. Int. J. Hydrog. Energy. 2015;40:2950–2962. doi: 10.1016/j.ijhydene.2015.01.008. DOI
Mahy J.G., Cerfontaine V., Poelman D., Devred F., Gaigneaux E.M., Heinrichs B., Lambert S.D. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications. Materials. 2018;11:584. doi: 10.3390/ma11040584. PubMed DOI PMC
Lal M., Sharma P., Ram C. Calcination Temperature Effect on Titanium Oxide (TiO2) Nanoparticles Synthesis. Optik. 2021;241:166934. doi: 10.1016/j.ijleo.2021.166934. DOI
Kim M.G., Kang J.M., Lee J.E., Kim K.S., Kim K.H., Cho M., Lee S.G. Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2Nanoparticles. ACS Omega. 2021;6:10668–10678. doi: 10.1021/acsomega.1c00043. PubMed DOI PMC
Kim G.H., Jeong S. Change of Electronic Structures by Dopant-Induced Local Strain. Sci. Rep. 2015;5:11227. doi: 10.1038/srep11227. PubMed DOI PMC
Zhang A., Zhang Z., Chen J., Sheng W., Sun L., Xiang J. Effect of Calcination Temperature on the Activity and Structure of MnOx/TiO2 Adsorbent for Hg0 Removal. Fuel Process. Technol. 2015;135:25–33. doi: 10.1016/j.fuproc.2014.10.007. DOI
Espinos J.P., Gonz A.R., Caballero A., GARCfA J., Munuera G. The State of Nickel in Ni/SiO2 and Ni/TiO2-Calcined Catalysts. J. Catal. 1992;136:415–422. doi: 10.1016/0021-9517(92)90072-P. DOI
Tyo E.C., Yin C., Di Vece M., Qian Q., Kwon G., Lee S., Lee B., Debartolo J.E., Seifert S., Winans R.E., et al. Oxidative Dehydrogenation of Cyclohexane on Cobalt Oxide (Co3O4) Nanoparticles: The Effect of Particle Size on Activity and Selectivity. ACS Catal. 2012;2:2409–2423. doi: 10.1021/cs300479a. DOI
Habibi M.H., Shojaee E. Synthesis of a Heterojunction CoTiO3/Co3O4 Nano-Composite Thin Film with Superior Photocatalytic Activity and Reusability: Effect of Calcination Temperature on Phase Transformation and Effect of Oxidants on Enhanced Degradation of Indo Light Blue Dye. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020;229:117796. doi: 10.1016/j.saa.2019.117796. PubMed DOI
Sakaguchi Miyamoto N., Miyamoto R., Giamello E., Kurisaki T., Wakita H. Evaluation of Coexistent Metal Ions with TiO2: An EPR Approach. Res. Chem. Intermed. 2018;44:4563–4575. doi: 10.1007/s11164-018-3468-z. DOI
Phani A.R., Santucci S. Structural Characterization of Nickel Titanium Oxide Synthesized by Sol-Gel Spin Coating Technique. Thin Solid Films. 2001;396:1–4. doi: 10.1016/S0040-6090(01)01131-2. DOI
Gabal M.A.E.F., Al Angari Y.M., Obaid A.Y. Structural Characterization and Activation Energy of NiTiO3 Nanopowders Prepared by the Co-Precipitation and Impregnation with Calcinations. Comptes Rendus Chim. 2013;16:704–711. doi: 10.1016/j.crci.2013.01.009. DOI
Kokorin A.I., Amal R., Teoh W.Y., Kulak A.I. Studies of Nanosized Iron-Doped TiO2 Photocatalysts by Spectroscopic Methods. Appl. Magn. Reson. 2017;48:447–459. doi: 10.1007/s00723-017-0873-1. DOI
Fernando N., Swaminathan J., Robles Hernandez F.C., Priyadarshana G., Sandaruwan C., Yang W., Karunaratne V., Wang Z., Amaratunga G.A.J., Kottegoda N., et al. Pseudobrookite Based Heterostructures for Efficient Electrocatalytic Hydrogen Evolution. Mater. Rep. Energy. 2021;1:100020. doi: 10.1016/j.matre.2021.100020. DOI
Dubey R.S., Jadkar S.R., Bhorde A.B. Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells. ACS Omega. 2021;6:3470–3482. doi: 10.1021/acsomega.0c01614. PubMed DOI PMC
Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. [(accessed on 9 November 2022)]. Available online: https://books.google.cz/books?hl=es&lr=&id=UOE-ZscCYncC&oi=fnd&pg=PP1&ots=0T__DEslnv&sig=jF4A7rVRX5_aDPQtMEamWcE7XvM&redir_esc=y#v=onepage&q&f=false.
Yu J., Yu H., Cheng B., Trapalis C. Effects of Calcination Temperature on the Microstructures and Photocatalytic Activity of Titanate Nanotubes. J. Mol. Catal. A Chem. 2006;249:135–142. doi: 10.1016/j.molcata.2006.01.003. DOI
Wu S., Ishisone K., Sheng Y., Manuputty M.Y., Kraft M., Xu R. TiO2 with Controllable Oxygen Vacancies for Efficient Isopropanol Degradation: Photoactivity and Reaction Mechanism. Catal. Sci. Technol. 2021;11:4060–4071. doi: 10.1039/D1CY00417D. DOI
Singh R., Dutta S. Synthesis and Characterization of Solar Photoactive TiO2 Nanoparticles with Enhanced Structural and Optical Properties. Adv. Powder Technol. 2018;29:211–219. doi: 10.1016/j.apt.2017.11.005. DOI
Rahul T.K., Mohan M., Sandhyarani N. Enhanced Solar Hydrogen Evolution over in Situ Gold-Platinum Bimetallic Nanoparticle-Loaded Ti3+ Self-Doped Titania Photocatalysts. ACS Sustain. Chem. Eng. 2018;6:3049–3059. doi: 10.1021/acssuschemeng.7b02898. DOI
Qiu C., Lin J., Shen J., Liu D., Zhang Z., Lin H., Wang X. Regulation of the Rutile/Anatase TiO2 heterophase Interface by Ni12P5to Improve Photocatalytic Hydrogen Evolution. Catal. Sci. Technol. 2020;10:3709–3719. doi: 10.1039/D0CY00634C. DOI
Liu J., Hodes G., Yan J., Liu S. (Frank) Metal-Doped Mo2C (Metal = Fe, Co, Ni, Cu) as Catalysts on TiO2 for Photocatalytic Hydrogen Evolution in Neutral Solution. Chinese J. Catal. 2020;42:205–216. doi: 10.1016/S1872-2067(20)63589-6. DOI
Bharti B., Kumar S., Lee H.N., Kumar R. Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment. Sci. Rep. 2016;6:srep32355. doi: 10.1038/srep32355. PubMed DOI PMC
Lyson-Sypien B., Czapla A., Zakrzewska K., Swierczek K., Radecka M., Rekas M., Michalow K., Graule T. Influence of Grain Size on Gas Sensing Properties of TiO2 Nanopowders. Procedia Eng. 2012;47:1057–1060. doi: 10.1016/j.proeng.2012.09.332. DOI
Godiksen A., Stappen F.N., Vennestrøm P.N.R., Giordanino F., Birk Rasmussen S., Lundegaard L.F., Mossin S., Topsøe H.A. Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance. J. Phys. Chem. C. 2014;118:23126–23138. doi: 10.1021/jp5065616. DOI
Zhou S., Cižmár E., Potzger K., Krause M., Talut G., Helm M., Fassbender J., Zvyagin S.A., Wosnitza J., Schmidt H. Origin of Magnetic Moments in Defective TiO2 Single Crystals. Phys. Rev. B. 2009;79:113201. doi: 10.1103/PhysRevB.79.113201. DOI
Niemöller A., Jakes P., Eurich S., Paulus A., Kungl H., Eichel R.-A., Granwehr J., Niemöller N., Eichel R.-A. Monitoring Local Redox Processes in LiNi0.5Mn1.5O4 Battery Cathode Material by in Operando EPR Spectroscopy. Cit. J. Chem. Phys. 2018;148:14705. doi: 10.1063/1.5008251. PubMed DOI
Savoyant A., Alnoor H., Bertaina S., Nur O., Willander M. EPR Investigation of Pure and Co-Doped ZnO Oriented Nanocrystals. Nanotechnology. 2017;28:035705. doi: 10.1088/1361-6528/28/3/035705. PubMed DOI
Bennett B., Kowalski J.M. EPR Methods for Biological Cu(II): L-Band CW and NARS. Methods Enzymol. 2015;563:341. doi: 10.1016/BS.MIE.2015.06.030. PubMed DOI PMC
Kumar C.P., Gopal N.O., Wang T.C., Wong M.S., Ke S.C. EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B. 2006;110:5223–5229. doi: 10.1021/jp057053t. PubMed DOI
Khan Z., Shahwar D., Khatoon B. Trans-Generational Response of TiO2 Nanoparticles in Inducing Variability and Changes in Biochemical Pool of Lentil F2 Progenies. J. Biosci. 2022;47:35. doi: 10.1007/s12038-022-00268-5. PubMed DOI
Mahmoud H.A., Narasimharao K., Ali T.T., Khalil K.M.S. Acidic Peptizing Agent Effect on Anatase-Rutile Ratio and Photocatalytic Performance of TiO2 Nanoparticles. Nanoscale Res. Lett. 2018;13:48. doi: 10.1186/s11671-018-2465-x. PubMed DOI PMC
Chelbi S., Djouadi D., Chelouche A., Hammiche L., Touam T., Doghmane A. Effects of Ti-Precursor Concentration and Annealing Temperature on Structural and Morphological Properties of TiO2 Nano-Aerogels Synthesized in Supercritical Ethanol. SN Appl. Sci. 2020;2:872. doi: 10.1007/s42452-020-2633-3. DOI
Asenjo N.G., Santamaría R., Blanco C., Granda M., Álvarez P., Menéndez R. Correct Use of the Langmuir–Hinshelwood Equation for Proving the Absence of a Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon. Carbon. 2013;55:62–69. doi: 10.1016/j.carbon.2012.12.010. DOI
Qourzal S., Barka N., Tamimi M., Assabbane A., Ait-Ichou Y. Photodegradation of 2-Naphthol in Water by Artificial Light Illumination Using TiO2 Photocatalyst: Identification of Intermediates and the Reaction Pathway. Appl. Catal. A Gen. 2008;334:386–393. doi: 10.1016/j.apcata.2007.09.034. DOI
Khan M.M., Ansari S.A., Pradhan D., Ansari M.O., Han D.H., Lee J., Cho M.H. Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies. J. Mater. Chem. A. 2014;2:637–644. doi: 10.1039/C3TA14052K. DOI
Jafarikojour M., Dabir B., Sohrabi M., Royaee S.J. Evaluation and Optimization of a New Design Photocatalytic Reactor Using Impinging Jet Stream on a TiO2 Coated Disc. Chem. Eng. Process. Process. Intensif. 2017;121:215–223. doi: 10.1016/j.cep.2017.08.011. DOI
Phromma S., Wutikhun T., Kasamechonchung P., Eksangsri T., Sapcharoenkun C. Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method. Appl. Sci. 2020;10:993. doi: 10.3390/app10030993. DOI
Muthee D.K., Dejene B.F. Effect of Annealing Temperature on Structural, Optical, and Photocatalytic Properties of Titanium Dioxide Nanoparticles. Heliyon. 2021;7:e07269. doi: 10.1016/j.heliyon.2021.e07269. PubMed DOI PMC
Ganesh I., Gupta A.K., Kumar P.P., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G. Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications. Sci. World J. 2012;2012:16. doi: 10.1100/2012/127326. PubMed DOI PMC
Zhang X., Sun D.D., Li G., Wang Y. Investigation of the Roles of Active Oxygen Species in Photodegradation of Azo Dye AO7 in TiO2 Photocatalysis Illuminated by Microwave Electrodeless Lamp. J. Photochem. Photobiol. A Chem. 2008;199:311–315. doi: 10.1016/j.jphotochem.2008.06.009. DOI
Meng A., Zhang L., Cheng B., Yu J. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater. 2019;31:e1807660. doi: 10.1002/adma.201807660. PubMed DOI
Torres-Rodríguez J., Kalmár J., Menelaou M., Čelko L., Dvořak K., Cihlář J., Cihlař J., Kaiser J., Győri E., Veres P., et al. Heat Treatment Induced Phase Transformations in Zirconia and Yttria-Stabilized Zirconia Monolithic Aerogels. J. Supercrit. Fluids. 2019;149:54–63. doi: 10.1016/j.supflu.2019.02.011. DOI