Biorefinery Approach for Aerogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RMX18-0039 (HEALiX)
Swedish Foundation for Strategic Research
Bio4Energy
strategic research environment appointed by the Swedish government
LM2018110
CzechNanoLab Research Infrastructure supported by MEYS CR
DOK.MLĶF/19
Riga Technical university PhD grant, R Development of scientific activity in universities
MLĶF
Performance funding for doctoral grant
project REALHLC, No. Z19/1-0390
Latvian Council of Science
PubMed
33255498
PubMed Central
PMC7760295
DOI
10.3390/polym12122779
PII: polym12122779
Knihovny.cz E-zdroje
- Klíčová slova
- aerogel, alginate, biomass, carrageenan, cellulose, chitosan, lignocellulose, nanocellulose, pectin, starch,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Zobrazit více v PubMed
Kistler S.S. Coherent Expanded Aerogels and Jellies. Nat. Cell Biol. 1931;127:741. doi: 10.1038/127741a0. DOI
Kistler S.S. Coherent Expanded-Aerogels. J. Phys. Chem. 1932;36:52–64. doi: 10.1021/j150331a003. DOI
Teichner S.J., Nicolaon G.A. Method of Preparing Inorganic Aerogels. 3,672,833. U.S. Patent. 1972 Jun 27;
Smith D.M., Maskara A., Boes U. Aerogel-based thermal insulation. J. Non-Cryst. Solids. 1998;225:254–259. doi: 10.1016/S0022-3093(98)00125-2. DOI
Baetens R., Jelle B.P., Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011;43:761–769. doi: 10.1016/j.enbuild.2010.12.012. DOI
Williams J.C., Meador M.A.B., McCorkle L., Mueller C., Wilmoth N. Synthesis and Properties of Step-Growth Polyamide Aerogels Cross-linked with Triacid Chlorides. Chem. Mater. 2014;26:4163–4171. doi: 10.1021/cm5012313. DOI
Meador M.A.B., Alemán C.R., Hanson K., Ramirez N., Vivod S.L., Wilmoth N., McCorkle L. Polyimide Aerogels with Amide Cross-Links: A Low Cost Alternative for Mechanically Strong Polymer Aerogels. ACS Appl. Mater. Interfaces. 2015;7:1240–1249. doi: 10.1021/am507268c. PubMed DOI
Rigacci A., Marechal J., Repoux M., Moreno M., Achard P. Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation. J. Non-Cryst. Solids. 2004;350:372–378. doi: 10.1016/j.jnoncrysol.2004.06.049. DOI
Salerno A., Pascual C.D. Bio-based polymers, supercritical fluids and tissue engineering. Process. Biochem. 2015;50:826–838. doi: 10.1016/j.procbio.2015.02.009. DOI
Buwalda S.J. Bio-based composite hydrogels for biomedical applications. Multifunct. Mater. 2020;3:022001. doi: 10.1088/2399-7532/ab80d6. DOI
Pantić M., Horvat G., Knez Ž., Novak Z. Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Curcumin Case Study. Molecules. 2020;25:1187. doi: 10.3390/molecules25051187. PubMed DOI PMC
Muñoz-Ruíz A., Escobar-García D.M., Quintana M., Pozos-Guillen A., Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019;2019:2875375. doi: 10.1155/2019/2875375. DOI
Raman S., Keil C., Dieringer P., Hübner C., Bueno A., Gurikov P., Nissen J., Holtkamp M., Karst U., Haase H., et al. Alginate aerogels carrying calcium, zinc and silver cations for wound care: Fabrication and metal detection. J. Supercrit. Fluids. 2019;153:104545. doi: 10.1016/j.supflu.2019.104545. DOI
Edwards J.V., Fontenot K.R., Liebner F.W., Condon B.D. Peptide-Cellulose Conjugates on Cotton-Based Materials Have Protease Sensor/Sequestrant Activity. Sensors. 2018;18:2334. doi: 10.3390/s18072334. PubMed DOI PMC
Nešić A., Gordić M., Davidović S., Radovanović Ž., Nedeljković J., Smirnova I., Gurikov P. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 2018;195:128–135. doi: 10.1016/j.carbpol.2018.04.076. PubMed DOI
Groult S., Budtova T. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr. Polym. 2018;196:73–81. doi: 10.1016/j.carbpol.2018.05.026. PubMed DOI
Chtchigrovsky M., Lin Y., Ouchaou K., Chaumontet M., Robitzer M., Quignard F., Taran F. Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chem. Mater. 2012;24:1505–1510. doi: 10.1021/cm3003595. DOI
Mallepally R.R., Bernard I., Marin M.A., Ward K.R., McHugh M.A. Superabsorbent alginate aerogels. J. Supercrit. Fluids. 2013;79:202–208. doi: 10.1016/j.supflu.2012.11.024. DOI
Soorbaghi F.P., Isanejad M., Salatin S., Ghorbani M., Jafari S., Derakhshankhah H. Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed. Pharm. 2019;111:964–975. doi: 10.1016/j.biopha.2019.01.014. PubMed DOI
Mikkonen K.S., Parikka K., Ghafar A., Tenkanen M. Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci. Technol. 2013;34:124–136. doi: 10.1016/j.tifs.2013.10.003. DOI
Ganesan K., Budtova T., Ratke L., Gurikov P., Baudron V., Preibisch I., Niemeyer P., Smirnova I., Milow B. Review on the Production of Polysaccharide Aerogel Particles. Materials. 2018;11:2144. doi: 10.3390/ma11112144. PubMed DOI PMC
Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI
Illera D., Mesa J., Gomez H., Maury H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings. 2018;8:345. doi: 10.3390/coatings8100345. DOI
Cherubini F., Jungmeier G., Mandl M., Philips C., Wellisch M., Jrgensen H., Skiadas I., Boniface L., Dohy M., Pouet J. IEA Bioenergy Task 42 on Biorefineries: Co-Production of Fuels, Chemicals, Power and Materials from Biomass. [(accessed on 24 November 2020)];IEA Bioenergy Task. 2007 :1–37. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Booklet.pdf.
Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010;51:1412–1421. doi: 10.1016/j.enconman.2010.01.015. DOI
Clark J.H., Deswarte F.E.I. The Biorefinery Concept-An Integrated Approach. Introd. Chem. Biomass. 2008:1–20. doi: 10.1002/9780470697474.ch1. DOI
Takkellapati S., Li T., Gonzalez M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Env. Policy. 2018;20:1615–1630. doi: 10.1007/s10098-018-1568-5. PubMed DOI PMC
IUPAC . In: Compendium of Chemical Terminology. 2nd ed. McNaught A.D., Wilkinson A., editors. Blackwell Scientific Publications; Oxford, UK: 2014. the “Gold Book” XML on-line corrected version: http://goldbook.iupac.org , 2006, created by Nic, M., Jirat, J., Kosata, B.; updates compiled by Jenkins, A.; Last update 2014-02-24; version: 2.3.3. DOI
Pierre A.C. Aerogels Handbook. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2011. History of Aerogels; pp. 3–18.
[(accessed on 20 October 2020)]; Available online: https://www.Epa.Gov/Greenchemistry/Basics-Green-Chemistry.
García-González C.A., Budtova T., Durães L., Erkey C., Del Gaudio P., Gurikov P., Koebel M.M., Liebner F., Neagu M., Smirnova I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules. 2019;24:1815. doi: 10.3390/molecules24091815. PubMed DOI PMC
Liu Z., Ran Y., Xi J., Wang J. Polymeric hybrid aerogels and their biomedical applications. Soft Matter. 2020;16:9160–9175. doi: 10.1039/D0SM01261K. PubMed DOI
Rudaz C., Courson R., Bonnet L., Calas-Etienne S., Sallée H., Budtova T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules. 2014;15:2188–2195. doi: 10.1021/bm500345u. PubMed DOI
Saelices C.J., Seantier B., Cathala B., Grohens Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 2017;157:105–113. doi: 10.1016/j.carbpol.2016.09.068. PubMed DOI
Plappert S.F., Nedelec J.-M., Rennhofer H., Lichtenegger H.C., Liebner F.W. Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose. Chem. Mater. 2017;29:6630–6641. doi: 10.1021/acs.chemmater.7b00787. DOI
Druel L., Bardl R., Vorwerg W., Budtova T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules. 2017;18:4232–4239. doi: 10.1021/acs.biomac.7b01272. PubMed DOI
Subrahmanyam R., Gurikov P., Meissner I., Smirnova I. Preparation of Biopolymer Aerogels Using Green Solvents. J. Vis. Exp. 2016;113:e54116. doi: 10.3791/54116. PubMed DOI PMC
Bendahou D., Bendahou A., Seantier B., Lebeau B., Grohens Y., Kaddami H. Structure-Thermal Conductivity Tentative Correlation for Hybrid Aerogels Based on Nanofibrillated Cellulose-Mesoporous Silica Nanocomposite. J. Renew. Mater. 2018;6:299–313. doi: 10.7569/JRM.2017.634185. DOI
Bendahou D., Bendahou A., Seantier B., Grohens Y., Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Ind. Crop. Prod. 2015;65:374–382. doi: 10.1016/j.indcrop.2014.11.012. DOI
Gavillon R., Budtova T. Aerocellulose: New Highly Porous Cellulose Prepared from Cellulose–NaOH Aqueous Solutions. Biomacromolecules. 2008;9:269–277. doi: 10.1021/bm700972k. PubMed DOI
Pircher N., Carbajal L., Schimper C., Bacher M., Rennhofer H., Nedelec J.-M., Lichtenegger H.C., Rosenau T., Liebner F. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose. 2016;23:1949–1966. doi: 10.1007/s10570-016-0896-z. PubMed DOI PMC
Plappert S.F., Nedelec J.-M., Rennhofer H., Lichtenegger H., Bernstorff S., Liebner F.W. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules. 2018;19:4411–4422. doi: 10.1021/acs.biomac.8b01278. PubMed DOI
Ubeyitogullari A., Ciftci O.N. Formation of nanoporous aerogels from wheat starch. Carbohydr. Polym. 2016;147:125–132. doi: 10.1016/j.carbpol.2016.03.086. PubMed DOI
García-González C., Uy J., Alnaief M., Smirnova I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr. Polym. 2012;88:1378–1386. doi: 10.1016/j.carbpol.2012.02.023. DOI
EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP) Bampidis V., Azimonti G., de Lourdes Bastos M., Christensen H., Dusemund B., Kos Durjava M., Kouba M., López-Alonso M., López Puente S. Safety and Efficacy of Microcrystalline Cellulose for all Animal Species. Efsa J. 2020;18:e06209. doi: 10.2903/j.efsa.2020.6209. PubMed DOI PMC
Kobayashi Y., Saito T., Isogai A. Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew. Chem. Int. Ed. 2014;53:10394–10397. doi: 10.1002/anie.201405123. PubMed DOI
Tripathi A., Parsons G.N., Khan S.A., Rojas O.J. Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Sci. Rep. 2018;8:2106. doi: 10.1038/s41598-018-19720-4. PubMed DOI PMC
Gan S., Zakaria S., Chia C.H., Chen R.S., Ellis A.V., Kaco H. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE. 2017;12:e0173743. doi: 10.1371/journal.pone.0173743. PubMed DOI PMC
Simón-Herrero C., Romero A., Valverde J.L., Sánchez-Silva L. Hydroxyethyl cellulose/alumina-based aerogels as lightweight insulating materials with high mechanical strength. J. Mater. Sci. 2018;53:1556–1567. doi: 10.1007/s10853-017-1584-6. DOI
Zhao J., Lu C., He X., Zhang X., Zhang W., Zhang X. Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery. ACS Appl. Mater. Interfaces. 2015;7:2607–2615. doi: 10.1021/am507601m. PubMed DOI
Guan Y., Rao J., Wu Y., Gao H., Liu S., Chen G., Peng F. Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red. Int. J. Biol. Macromol. 2020;155:369–375. doi: 10.1016/j.ijbiomac.2020.03.231. PubMed DOI
Yang H., Sheikhi A., Van De Ven T.G.M. Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir. 2016;32:11771–11779. doi: 10.1021/acs.langmuir.6b03084. PubMed DOI
Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Fierro V. Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013;168:19–29. doi: 10.1016/j.micromeso.2012.09.024. DOI
Chen H., Liu T., Meng Y., Cheng Y., Lu J., Wang H. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids Surf. A Phys. Eng. Asp. 2020;603:125281. doi: 10.1016/j.colsurfa.2020.125281. DOI
Harper B.J., Clendaniel A., Sinche F., Way D., Hughes M., Schardt J., Simonsen J., Stefaniak A.B., Harper S.L. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose. 2016;23:1763–1775. doi: 10.1007/s10570-016-0947-5. PubMed DOI PMC
Adewuyi A., Otuechere C.A., Adebayo O.L., Ajisodun I. Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp. Polym. Bull. 2020:1–25. doi: 10.1007/s00289-020-03152-0. DOI
Zhang F., Wu W., Zhang X., Meng X., Tong G., Deng Y. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose. 2016;23:415–425. doi: 10.1007/s10570-015-0799-4. DOI
Tripathi A., Parsons G.N., Rojas O.J., Khan S.A. Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation. ACS Omega. 2017;2:4297–4305. doi: 10.1021/acsomega.7b00571. PubMed DOI PMC
Mißfeldt F., Gurikov P., Lölsberg W., Weinrich D., Lied F., Fricke M., Smirnova I. Continuous Supercritical Drying of Aerogel Particles: Proof of Concept. Ind. Eng. Chem. Res. 2020;59:11284–11295. doi: 10.1021/acs.iecr.0c01356. DOI
Lavoine N., Bergström L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A. 2017;5:16105–16117. doi: 10.1039/C7TA02807E. DOI
De France K.J., Hoare T., Cranston E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017;29:4609–4631. doi: 10.1021/acs.chemmater.7b00531. DOI
Budtova T. Cellulose II aerogels: A review. Cellulose. 2019;26:81–121. doi: 10.1007/s10570-018-2189-1. DOI
Song A., Huang Y., Liu B., Cao H., Zhong X., Lin Y., Wang M., Li X., Zhong W. Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim. Acta. 2017;247:505–515. doi: 10.1016/j.electacta.2017.07.048. DOI
French A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose. 2017;24:4605–4609. doi: 10.1007/s10570-017-1450-3. DOI
Liebert T. ACS Symposium Series. American Chemical Society; Washington, DC, USA: 2010. Cellulose Solvents—Remarkable History, Bright Future; pp. 3–54.
Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2012.
Saito T., Kuramae R., Wohlert J., Berglund L.A., Isogai A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules. 2013;14:248–253. doi: 10.1021/bm301674e. PubMed DOI
Miyashiro D., Hamano R., Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterial. 2020;10:186. doi: 10.3390/nano10020186. PubMed DOI PMC
Berglund L., Noël M., Aitomäki Y., Öman T., Oksman K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind. Crop. Prod. 2016;92:84–92. doi: 10.1016/j.indcrop.2016.08.003. DOI
Pääkkö M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Österberg M., Ruokolainen J., Laine J., Larsson P.T., Ikkala O., et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules. 2007;8:1934–1941. doi: 10.1021/bm061215p. PubMed DOI
Saito T., Kimura S., Nishiyama Y., Isogai A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules. 2007;8:2485–2491. doi: 10.1021/bm0703970. PubMed DOI
Espinosa E., Tarrés Q., Delgado-Aguilar M., González I., Mutjé P., Rodríguez A., Espinosa E., Rodríguez A. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose. 2016;23:837–852. doi: 10.1007/s10570-015-0807-8. DOI
Rol F., Saini S., Meyer V., Petit-Conil M., Bras J. Production of cationic nanofibrils of cellulose by twin-screw extrusion. Ind. Crop. Prod. 2019;137:81–88. doi: 10.1016/j.indcrop.2019.04.031. DOI
Espinosa E., Rol F., Bras J., Rodríguez A. Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J. Clean. Prod. 2019;239:118083. doi: 10.1016/j.jclepro.2019.118083. DOI
Moriana R., Vilaplana F., Ek M. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydr. Polym. 2016;139:139–149. doi: 10.1016/j.carbpol.2015.12.020. PubMed DOI
Bhat A.H., Dasan Y.K., Khan I., Soleimani H., Usmani A. 9—Application of nanocrystalline cellulose: Processing and biomedical applications. In: Jawaid M., Boufi S., Abdul Khalil H.P.S., editors. Cellulose-Reinforced Nanofibre Composites. Woodhead Publishing; Duxford, UK: 2017. pp. 215–240.
Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI
Lavoine N., Desloges I., Dufresne A., Bras J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012;90:735–764. doi: 10.1016/j.carbpol.2012.05.026. PubMed DOI
Castro C., Cleenwerck I., Trček J., Zuluaga R., De Vos P., Caro G., Aguirre R., Putaux J., Ganan P. Gluconacetobacter Medellinensis Sp. Nov., Cellulose-and Non-Cellulose-Producing Acetic Acid Bacteria Isolated from Vinegar. Int. J. Syst. Evol. Microbiol. 2013;63:1119–1125. doi: 10.1099/ijs.0.043414-0. PubMed DOI
Jozala A.F., De Lencastre-Novaes L.C., Lopes A.M., Santos-Ebinuma V.D.C., Mazzola P.G., Pessoa A., Jr., Grotto D., Gerenutti M., Chaud M.V. Bacterial nanocellulose production and application: A 10-year overview. Appl. Microbiol. Biotechnol. 2016;100:2063–2072. doi: 10.1007/s00253-015-7243-4. PubMed DOI
Tanskul S., Amornthatree K., Jaturonlak N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr. Polym. 2013;92:421–428. doi: 10.1016/j.carbpol.2012.09.017. PubMed DOI
MohammadKazemi F., Azin M., Ashori A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 2015;117:518–523. doi: 10.1016/j.carbpol.2014.10.008. PubMed DOI
Arcot L.R., Gröschel A.H., Linder M.B., Rojas O.J., Ikkala O. Self-Assembly of Native Cellulose Nanostructures. Handb. Nanocellulose Cellul. Nanocomposites. 2017:123–174. doi: 10.1002/9783527689972.ch4. DOI
Martoïa F., Cochereau T., Dumont P., Orgéas L., Terrien M., Belgacem M. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016;104:376–391. doi: 10.1016/j.matdes.2016.04.088. DOI
Sehaqui H., Zhou Q., Berglund L.A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) Compos. Sci. Technol. 2011;71:1593–1599. doi: 10.1016/j.compscitech.2011.07.003. DOI
Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI
Saelices C.J., Seantier B., Grohens Y., Capron I. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions. ACS Appl. Mater. Interfaces. 2018;10:16193–16202. doi: 10.1021/acsami.8b02418. PubMed DOI
Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. Cambridge University Press; Cambridge, UK: 1999.
Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI
Chen W., Li Q., Wang Y., Yi X., Zeng J., Yu H., Liu Y., Li J. Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem. 2014;7:154–161. doi: 10.1002/cssc.201300950. PubMed DOI
Heath L., Thielemans W. Cellulose nanowhisker aerogels. Green Chem. 2010;12:1448–1453. doi: 10.1039/c0gc00035c. DOI
Bakaic E., Smeets N.M.B., Hoare T. Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 2015;5:35469–35486. doi: 10.1039/C4RA13581D. DOI
Xu Z., Sun Q., Huang F., Pu Y., Pan S., Ragauskas A.J. Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Adv. 2014;4:12148. doi: 10.1039/c3ra47621a. DOI
Müller A., Zink M., Hessler N., Wesarg F., Müller F.A., Kralisch D., Fischer D. Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv. 2014;4:57173–57184. doi: 10.1039/C4RA09898F. DOI
Liebner F.W., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI
Haimer E., Wendland M., Schlufter K., Frankenfeld K., Miethe P., Potthast A., Rosenau T., Liebner F.W. Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromol. Symp. 2010;294:64–74. doi: 10.1002/masy.201000008. DOI
Pereira A.L.S., Feitosa J.P.A., Morais J.P.S., Rosa M.D.F. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydr. Polym. 2020;250:116927. doi: 10.1016/j.carbpol.2020.116927. PubMed DOI
Köse K., Mavlan M., Youngblood J.P. Applications and impact of nanocellulose based adsorbents. Cellulose. 2020;27:2967–2990. doi: 10.1007/s10570-020-03011-1. DOI
Wang Q., Xia T., Jia X., Zhao J., Li Q., Ao C., Deng X., Zhang X., Zhang W., Lu C. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 2020;245:116554. doi: 10.1016/j.carbpol.2020.116554. PubMed DOI
Zu G., Shen J., Zou L., Wang F., Wang X., Zhang Y., Yao X. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon. 2016;99:203–211. doi: 10.1016/j.carbon.2015.11.079. DOI
Zhang W., Wang X., Zhang Y., Van Bochove B., Mäkilä E., Seppälä J., Xu W., Willför S., Xu C. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 2020;242:116523. doi: 10.1016/j.seppur.2020.116523. DOI
Ferreira F., Otoni C.G., De France K.J., Barud H.S., Lona L.M., Cranston E.D., Rojas O.J. Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Mater. Today. 2020;37:126–141. doi: 10.1016/j.mattod.2020.03.003. DOI
De Oliveira J.P., Bruni G.P., Fabra M.J., Zavareze E.D.R., López-Rubio A., Martínez-Sanz M. Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocoll. 2019;89:337–350. doi: 10.1016/j.foodhyd.2018.10.047. DOI
Liu J., Cheng F., Grénman H., Spoljaric S., Seppälä J., Eriksson J.E., Willför S., Xu C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. 2016;148:259–271. doi: 10.1016/j.carbpol.2016.04.064. PubMed DOI
Tan T.H., Lee H.V., Yehya Dabdawb W.A., Hamid S.B.B.O.A.A. Chapter 5—A review of nanocellulose in the drug-delivery system. In: Holban A., Grumezescu A.M., editors. Materials for Biomedical Engineering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 131–164.
Valo H., Arola S., Laaksonen P., Torkkeli M., Peltonen L., Linder M.B., Serimaa R., Kuga S., Hirvonen J., Laaksonen T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 2013;50:69–77. doi: 10.1016/j.ejps.2013.02.023. PubMed DOI
Shawkataly A.K., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain S., Balakrishnan V., Gopakumar D.A., Abdullah C., Oyekanmi A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymer. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC
Zhang X., Lin Z., Chen B., Zhang W., Sharma S., Gu W., Deng Y. Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J. Power Sources. 2014;246:283–289. doi: 10.1016/j.jpowsour.2013.07.080. DOI
Yang X., Shi K., Zhitomirsky I., Cranston E.D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Adv. Mater. 2015;27:6104–6109. doi: 10.1002/adma.201502284. PubMed DOI
Wu Z., Li C., Liang H.-W., Chen J.-F., Yu S. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. Int. Ed. 2013;52:2925–2929. doi: 10.1002/anie.201209676. PubMed DOI
Kuhn J., Ebert H.-P., Arduini-Schuster M., Büttner D., Fricke J. Thermal transport in polystyrene and polyurethane foam insulations. Int. J. Heat Mass Transf. 1992;35:1795–1801. doi: 10.1016/0017-9310(92)90150-Q. DOI
Wicklein B., Kocjan A., Salazar-Alvarez G., Carosio F., Camino G., Antonietti M., Bergström L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015;10:277–283. doi: 10.1038/nnano.2014.248. PubMed DOI
Zhao S., Zhang Z., Sèbe G., Wu R., Virtudazo R.V.R., Tingaut P., Koebel M.M. Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization. Adv. Funct. Mater. 2015;25:2326–2334. doi: 10.1002/adfm.201404368. DOI
He X., Cheng L., Wang Y., Zhao J., Zhang W., Lu C. Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. 2014;111:683–687. doi: 10.1016/j.carbpol.2014.05.020. PubMed DOI
Sajab M.S., Chia C.H., Chan C.H., Zakaria S., Kaco H., Chook S.W., Chin S.X., Noor A.M. Bifunctional graphene oxide–cellulose nanofibril aerogel loaded with Fe(iii) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Adv. 2016;6:19819–19825. doi: 10.1039/C5RA26193G. DOI
Ookuma S., Igarashi K., Hara M., Aso K., Yoshidome H., Nakayama H., Suzuki K., Nakajima K. Porous Ion-Exchanged Fine Cellulose Particles, Method for Production Thereof, and Affinity Carrier. 5,196,527. U.S. Patent. 1993 Mar 23;
Pinnow M., Fanter C., Kunze J., Fink H.-P. Characterization of Highly Porous Materials from Cellulose Carbamate. Macromol. Symp. 2008;262:129–139. doi: 10.1002/masy.200850213. DOI
Budtova T., Navard P. Cellulose in NaOH–water based solvents: A review. Cellulose. 2015;23:5–55. doi: 10.1007/s10570-015-0779-8. DOI
Innerlohinger J., Weber H.K., Kraft G. Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose. Macromol. Symp. 2006;244:126–135. doi: 10.1002/masy.200651212. DOI
Sescousse R., Budtova T. Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose. 2009;16:417–426. doi: 10.1007/s10570-009-9287-z. DOI
Schestakow M., Karadagli I., Ratke L. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr. Polym. 2016;137:642–649. doi: 10.1016/j.carbpol.2015.10.097. PubMed DOI
Buchtová N., Budtova T. Cellulose aero-, cryo- and xerogels: Towards understanding of morphology control. Cellulose. 2016;23:2585–2595. doi: 10.1007/s10570-016-0960-8. DOI
Rege A., Schestakow M., Karadagli I., Ratke L., Itskov M. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter. 2016;12:7079–7088. doi: 10.1039/C6SM01460G. PubMed DOI
Sescousse R., Gavillon R., Budtova T. Aerocellulose from cellulose–ionic liquid solutions: Preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 2011;83:1766–1774. doi: 10.1016/j.carbpol.2010.10.043. DOI
Rudaz C. Ph.D. Thesis. Mines ParisTech; Sophia Antipolis, France: 2013. Cellulose and Pectin Aerogels: Towards their Nano-Structuration.
Demilecamps A., Alves M., Rigacci A., Reichenauer G., Budtova T. Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J. Non-Cryst. Solids. 2016;452:259–265. doi: 10.1016/j.jnoncrysol.2016.09.003. DOI
Liebner F., Pircher N., Schimper C., Haimer E., Rosenau T. Aerogels: Cellulose-Based. Encycl. Biomed. Polym. Polym. Biomater. 2016:37–75. doi: 10.1081/e-ebpp-120051062. DOI
Pircher N., Fischhuber D., Carbajal L., Strauß C., Nedelec J.-M., Kasper C., Rosenau T., Liebner F.W. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 2015;300:911–924. doi: 10.1002/mame.201500048. PubMed DOI PMC
Liebner F.W., Dunareanu R., Opietnik M., Haimer E., Wendland M., Werner C., Maitz M.F., Seib F.P., Neouze M.-A., Potthast A., et al. Shaped hemocompatible aerogels from cellulose phosphates: Preparation and properties. Holzforschung. 2012;66:317–321. doi: 10.1515/hf.2011.163. DOI
Hu Y., Zhuo H., Zhong L., Tong X., Peng X., Wang S., Sun R. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 2016;6:15788–15795. doi: 10.1039/C6RA00822D. DOI
Yang X., Fei B., Ma J., Liu X., Yang S., Tian G., Jiang Z. Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydr. Polym. 2018;180:385–392. doi: 10.1016/j.carbpol.2017.10.013. PubMed DOI
Zhuo H., Hu Y., Tong X., Zhong L., Peng X., Sun R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crop. Prod. 2016;87:229–235. doi: 10.1016/j.indcrop.2016.04.041. DOI
Zhou S., Chen G., Feng X., Wang M., Song T., Liu D., Lu F., Qi H. In Situ MnO X/N-Doped Carbon Aerogels from Cellulose as Monolithic and Highly Efficient Catalysts for the Upgrading of Bioderived Aldehydes. Green Chem. 2018;20:3593–3603. doi: 10.1039/C8GC01413B. DOI
Rooke J., Sescousse R., Budtova T., Berthon-Fabry S., Simon B., Chatenet M. Cellulose- Based Nanostructured Carbons for Energy Conversion and Storage Devices. In: Rufford T.E., Zhu J., Hulicova-Jurcakova D., editors. Green Carbon Materials: Advances and Applications. Jenny Stanford Publishing; New York, NY, USA: 2013. pp. 89–111.
Guilminot E., Gavillon R., Chatenet M., Berthon-Fabry S., Rigacci A., Budtova T. New nanostructured carbons based on porous cellulose: Elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J. Power Sources. 2008;185:717–726. doi: 10.1016/j.jpowsour.2008.08.030. DOI
Schoemaker H.E., Piontek K. On the interaction of lignin peroxidase with lignin. Pure Appl. Chem. 1996;68:2089–2096. doi: 10.1351/pac199668112089. DOI
Bhat A., Dasan Y., Khan I. Agricultural Biomass Based Potential Materials. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2015. Extraction of Lignin from Biomass for Biodiesel Production; pp. 155–179.
Robinson A.R., Mansfield S.D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 2009;58:706–714. doi: 10.1111/j.1365-313X.2009.03808.x. PubMed DOI
Dos Santos Abreu H., Do Nascimento A.M., Maria M.A. Lignin Structure and Wood Properties. Wood Fiber Sci. 1999;31:426–433.
Calvo-Flores F.G., Dobado J.A. Lignin as Renewable Raw Material. ChemSusChem. 2010;3:1227–1235. doi: 10.1002/cssc.201000157. PubMed DOI
Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Pizzi A., Fierro V. New tannin–lignin aerogels. Ind. Crop. Prod. 2013;41:347–355. doi: 10.1016/j.indcrop.2012.04.052. DOI
Bhanu Rekha V., Ramachandralu K., Rasigha T. Enhancing the Absorbency of Bagasse through Enzymatic Delignification. J. Fash. Technol. Text. Eng. 2013;1:2. doi: 10.4172/2329-9568.1000101. DOI
Brunow G. Methods to Reveal the Structure of Lignin. Biopolym. Online. 2001 doi: 10.1002/3527600035.bpol1003. DOI
Radotić K., Mićić M. Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer; Berlin/Heidelberg, Germany: 2016. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues; pp. 365–376.
Saake B., Lehnen R. Lignin. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2012. DOI
Saito T., Brown R.H., Hunt M.A., Pickel D.L., Pickel J.M., Messman J.M., Baker F.S., Keller M., Naskar A.K. Turning renewable resources into value-added polymer: Development of lignin-based thermoplastic. Green Chem. 2012;14:3295–3303. doi: 10.1039/c2gc35933b. DOI
Perez-Cantu L., Liebner F.W., Smirnova I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014;195:303–310. doi: 10.1016/j.micromeso.2014.04.018. DOI
Chen F., Xu M., Wang L., Li J. Preparation and Characterization of Organic Aerogels by the Lignin-Resorcinol-Formaldehyde Copolymer. Bioresources. 2011;6:1262–1272.
Chen C., Li F., Zhang Y., Wang B., Fan Y., Wang X., Sun R. Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 2018;350:173–180. doi: 10.1016/j.cej.2018.05.189. DOI
Quraishi S., Martins M., Barros A.A., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids. 2015;105:1–8. doi: 10.1016/j.supflu.2014.12.026. DOI
Karaaslan M.A., Kadla J.F., Ko F. Lignin-Based Aerogels. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. Elsevier; Oxford, UK: Waltham, MA, USA: 2016. pp. 67–93. DOI
Yang J., An X., Liu L., Tang S., Cao H., Xu Q., Liu H. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydr. Polym. 2020;250:116881. doi: 10.1016/j.carbpol.2020.116881. PubMed DOI
Farhat W., Venditti R.A., Quick A., Taha M., Mignard N., Becquart F., Ayoub A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crop. Prod. 2017;107:370–377. doi: 10.1016/j.indcrop.2017.05.055. DOI
Pérez J., Muñoz-Dorado J., De La Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002;5:53–63. doi: 10.1007/s10123-002-0062-3. PubMed DOI
Gírio F., Fonseca C., Carvalheiro F., Duarte L.C., Marques S., Bogel-Łukasik R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 2010;101:4775–4800. doi: 10.1016/j.biortech.2010.01.088. PubMed DOI
Machmudah S., Kanda H., Goto M. Chapter 3—Hydrolysis of Biopolymers in Near-Critical and Subcritical Water. In: Dominguez González H., González Muñoz M.J., editors. Water Extraction of Bioactive Compounds. Elsevier; Amsterdam, The Netherlands: 2017. pp. 69–107.
Álvarez A., Cachero S., González-Sánchez C., Montejo-Bernardo J., Pizarro C., Bueno J.L. Novel method for holocellulose analysis of non-woody biomass wastes. Carbohydr. Polym. 2018;189:250–256. doi: 10.1016/j.carbpol.2018.02.043. PubMed DOI
Flórez-Pardo L.M., González-Córdoba A., Mendoza J.G.S. Evaluation of different methods for efficient extraction of hemicelluloses leaves and tops of sugarcane. DYNA. 2018;85:18–27. doi: 10.15446/dyna.v85n204.66626. DOI
Kim C.H., Lee J., Treasure T., Skotty J., Floyd T., Kelley S.S., Park S. Alkaline extraction and characterization of residual hemicellulose in dissolving pulp. Cellulose. 2018;26:1323–1333. doi: 10.1007/s10570-018-2137-0. DOI
Mohtar S.S., Busu T.N.Z.T.M., Noor A.M.M., Shaari N., Mat H. An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr. Polym. 2017;166:291–299. doi: 10.1016/j.carbpol.2017.02.102. PubMed DOI
Krogell J., Korotkova E., Eränen K., Pranovich A., Salmi T., Murzin D., Willför S. Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor—Effects of wood particle size. Bioresour. Technol. 2013;143:212–220. doi: 10.1016/j.biortech.2013.05.110. PubMed DOI
Doner L.W., Hicks K.B. Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction. Cereal Chem. J. 1997;74:176–181. doi: 10.1094/CCHEM.1997.74.2.176. DOI
Yuan Y., Zou P., Zhou J., Geng Y., Fan J., Clark J., Li Y.-Q., Zhang C.S. Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass. Carbohydr. Polym. 2019;223:115043. doi: 10.1016/j.carbpol.2019.115043. PubMed DOI
Väisänen T., Kilpeläinen P., Kitunen V., Lappalainen R., Tomppo L. Effect of steam treatment on the chemical composition of hemp (Cannabis sativa L.) and identification of the extracted carbohydrates and other compounds. Ind. Crop. Prod. 2019;131:224–233. doi: 10.1016/j.indcrop.2019.01.055. DOI
Mosier N., Wyman C., Dale B., Elander R., Lee Y., Holtzapple M., Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005;96:673–686. doi: 10.1016/j.biortech.2004.06.025. PubMed DOI
Ebringerová A. Structural Diversity and Application Potential of Hemicelluloses. Macromol. Symp. 2005;232:1–12. doi: 10.1002/masy.200551401. DOI
Liu X., Lin Q., Yan Y., Peng F., Sun R., Ren J. Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Curr. Med. Chem. 2019;26:2430–2455. doi: 10.2174/0929867324666170705113657. PubMed DOI
Farhat W., Venditti R.A., Hubbe M., Taha M., Becquart F., Ayoub A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem. 2017;10:305–323. doi: 10.1002/cssc.201601047. PubMed DOI
Laine C., Harlin A., Hartman J., Hyvärinen S., Kammiovirta K., Krogerus B., Pajari H., Rautkoski H., Setälä H., Sievänen J., et al. Hydroxyalkylated xylans—Their synthesis and application in coatings for packaging and paper. Ind. Crop. Prod. 2013;44:692–704. doi: 10.1016/j.indcrop.2012.08.033. DOI
Zoldners J., Kiseleva T. Modification of hemicelluloses with polycarboxylic acids. Holzforschung. 2013;67:567–571. doi: 10.1515/hf-2012-0183. DOI
Peng X., Ren J., Sun R. An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohydr. Polym. 2011;83:1922–1928. doi: 10.1016/j.carbpol.2010.10.064. DOI
Xu W., Pranovich A., Uppstu P., Wang X., Kronlund D., Hemming J., Öblom H., Moritz N., Preis M., Sandler N., et al. Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydr. Polym. 2018;187:51–58. doi: 10.1016/j.carbpol.2018.01.069. PubMed DOI
Lin H., Liu Y., Chang Z., Yan S., Liu S., Han S. A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors. Microporous Mesoporous Mater. 2020;292:109707. doi: 10.1016/j.micromeso.2019.109707. DOI
Comin L.M., Temelli F., Saldaña M.D. Barley beta-glucan aerogels via supercritical CO2 drying. Food Res. Int. 2012;48:442–448. doi: 10.1016/j.foodres.2012.05.002. DOI
Comin L.M., Temelli F., Saldaña M.D. Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. J. Food Eng. 2012;111:625–631. doi: 10.1016/j.jfoodeng.2012.03.005. DOI
Marquez-Escalante J.A., Carvajal-Millán E., Miki-Yoshida M., Álvarez-Contreras L., Toledo-Guillén A.R., Lizardi-Mendoza J., Rascón-Chu A. Water Extractable Arabinoxylan Aerogels Prepared by Supercritical CO2 Drying. Molecules. 2013;18:5531–5542. doi: 10.3390/molecules18055531. PubMed DOI PMC
Berglund L., Forsberg F., Jonoobi M., Oksman K. Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial. RSC Adv. 2018;8:38219–38228. doi: 10.1039/C8RA08166B. PubMed DOI PMC
Jaafar Z., Quelennec B., Moreau C., Lourdin D., Maigret J., Pontoire B., D’Orlando A., Coradin T., Duchemin B., Fernandes F., et al. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydr. Polym. 2020;247:116642. doi: 10.1016/j.carbpol.2020.116642. PubMed DOI
Köhnke T., Lin A., Elder T., Theliander H., Ragauskas A.J. Nanoreinforced xylan–cellulose composite foams by freeze-casting. Green Chem. 2012;14:1864. doi: 10.1039/c2gc35413f. DOI
Chen M., Zhang X., Zhang A., Liu C., Sun R. Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose. 2016;23:1325–1334. doi: 10.1007/s10570-015-0814-9. DOI
Aaltonen O., Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr. Polym. 2009;75:125–129. doi: 10.1016/j.carbpol.2008.07.008. DOI
Sescousse R., Smacchia A., Budtova T. Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose. 2010;17:1137–1146. doi: 10.1007/s10570-010-9448-0. DOI
Geng S., Wei J., Jonasson S., Hedlund J., Oksman K. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage. ACS Appl. Mater. Interfaces. 2020;12:7432–7441. doi: 10.1021/acsami.9b19955. PubMed DOI PMC
Korhonen O., Budtova T. All-cellulose composite aerogels and cryogels. Compos. Part A Appl. Sci. Manuf. 2020;137:106027. doi: 10.1016/j.compositesa.2020.106027. DOI
Zhang Q., Li L., Jiang B., Zhang H., He N., Yang S., Tang D., Song Y. Flexible and Mildew-Resistant Wood-Derived Aerogel for Stable and Efficient Solar Desalination. ACS Appl. Mater. Interfaces. 2020;12:28179–28187. doi: 10.1021/acsami.0c05806. PubMed DOI
Tran D.T., Nguyen S.T., Do N.D., Thai N.N.T., Thai Q.B., Huynh H.K.P., Nguyen V.T.T., Phan A.N. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater. Chem. Phys. 2020;253:123363. doi: 10.1016/j.matchemphys.2020.123363. DOI
Mussana H., Yang X., Tessima M., Han F., Iqbal N., Liu L. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind. Crop. Prod. 2018;113:225–233. doi: 10.1016/j.indcrop.2018.01.025. DOI
Ainsworth C.H., Paris C.B., Perlin N., Dornberger L.N., Iii W.F.P., Chancellor E., Murawski S., Hollander D., Daly K., Romero I.C., et al. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS ONE. 2018;13:e0190840. doi: 10.1371/journal.pone.0190840. PubMed DOI PMC
Hadji E.M., Fu B., Abebe A., Bilal H.M., Wang J. Sponge-based materials for oil spill cleanups: A review. Front. Chem. Sci. Eng. 2020;14:749–762. doi: 10.1007/s11705-019-1890-4. DOI
Chhajed M., Yadav C., Agrawal A.K., Maji P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym. 2019;226:115286. doi: 10.1016/j.carbpol.2019.115286. PubMed DOI
Li Z., Zhong L., Zhang T., Qiu F., Yue X., Yang D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019;7:9984–9994. doi: 10.1021/acssuschemeng.9b01122. DOI
Bidgoli H., Mortazavi Y., Khodadadi A.A. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. J. Hazard. Mater. 2019;366:229–239. doi: 10.1016/j.jhazmat.2018.11.084. PubMed DOI
Xu X., Dong F., Yang X., Liu H., Guo L., Qian Y., Wang A., Wang S., Luo J. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials. J. Agric. Food Chem. 2019;67:637–643. doi: 10.1021/acs.jafc.8b05161. PubMed DOI
Aalbers G., Boott C.E., D’Acierno F., Lewis L., Ho J., Michal C.A., Hamad W.Y., MacLachlan M.J. Post-modification of Cellulose Nanocrystal Aerogels with Thiol–Ene Click Chemistry. Biomacromolecules. 2019;20:2779–2785. doi: 10.1021/acs.biomac.9b00533. PubMed DOI
Fauziyah M., Widiyastuti W., Setyawan H. A hydrophobic cellulose aerogel from coir fibers waste for oil spill application. IOP Conf. Ser. Mater. Sci. Eng. 2020;778:012019. doi: 10.1088/1757-899X/778/1/012019. DOI
Lazzari L.K., Zampieri V.B., Zanini M., Zattera A.J., Baldasso C. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose. 2017;24:3421–3431. doi: 10.1007/s10570-017-1349-z. DOI
Cheng H., Gu B., Pennefather M.P., Nguyen T.X., Phan-Thien N., Duong H.M. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 2017;130:452–458. doi: 10.1016/j.matdes.2017.05.082. DOI
Rafieian F., Hosseini M., Jonoobi M., Yu Q. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose. 2018;25:4695–4710. doi: 10.1007/s10570-018-1867-3. DOI
Yagoub H., Zhu L., Shibraen M.H.M.A., Altam A.A., Babiker D.M.D., Liang S., Jin Y., Yang S. Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil–Water Separation. Polymer. 2019;11:1593. doi: 10.3390/polym11101593. PubMed DOI PMC
Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 2009;1:169–192. doi: 10.1146/annurev.marine.010908.163834. PubMed DOI
Singh G., Lee J., Karakoti A., Bahadur R., Yi J., Zhao D., Albahily K., Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/D0CS00075B. PubMed DOI
Zhang T., Zhang W., Zhang Y., Shen M., Zhang J. Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption. Cellulose. 2020;27:2953–2958. doi: 10.1007/s10570-020-03035-7. DOI
Jiang X., Kong Y., Zou H., Zhao Z., Zhong Y., Shen X. Amine grafted cellulose aerogel for CO2 capture. J. Porous Mater. 2020:1–5. doi: 10.1007/s10934-020-00968-z. DOI
Sepahvand S., Jonoobi M., Ashori A., Gauvin F., Brouwers H.J.H., Oksman K., Yu Q. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydr. Polym. 2020;230:115571. doi: 10.1016/j.carbpol.2019.115571. PubMed DOI
Liu S., Zhang Y., Jiang H., Wang X., Zhang T., Yao Y. High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ. Chem. Lett. 2018;16:605–614. doi: 10.1007/s10311-017-0701-8. DOI
Li Y., Jia P., Xu J., Wu Y., Jiang H., Li Z. The Aminosilane Functionalization of Cellulose Nanofibrils and the Mechanical and CO2 Adsorption Characteristics of Their Aerogel. Ind. Eng. Chem. Res. 2020;59:2874–2882. doi: 10.1021/acs.iecr.9b04253. DOI
Ates B., Koytepe S., Ulu A., Gurses C., Thakur V.K. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem. Rev. 2020;120:9304–9362. doi: 10.1021/acs.chemrev.9b00553. PubMed DOI
Wei X., Huang T., Nie J., Yang J.-H., Qi X.-D., Zhou Z.-W., Wang Y. Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes. Carbohydr. Polym. 2018;198:546–555. doi: 10.1016/j.carbpol.2018.06.112. PubMed DOI
Saeed R.M.Y., Bano Z., Sun J., Wang F., Ullah N., Wang Q. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye. J. Appl. Polym. Sci. 2019;136:47404. doi: 10.1002/app.47404. DOI
Hasan M., Gopakumar D.A., Arumughan V., Pottathara Y.B., Sisanth S.K., Pasquini D., Bračič M., Seantier B., Nzihou A., Thomas S., et al. Robust Superhydrophobic Cellulose Nanofiber Aerogel for Multifunctional Environmental Applications. Polymer. 2019;11:495. doi: 10.3390/polym11030495. PubMed DOI PMC
Song W., Zhu M., Zhu Y., Zhao Y., Yang M., Miao Z., Ren H., Ma Q., Qian L. Zeolitic imidazolate framework-67 functionalized cellulose hybrid aerogel: An environmentally friendly candidate for dye removal. Cellulose. 2019;27:2161–2172. doi: 10.1007/s10570-019-02883-2. DOI
Guo D.-M., An Q.-D., Xiao Z., Zhai S.-R., Shi Z. Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution. RSC Adv. 2017;7:54039–54052. doi: 10.1039/C7RA09940A. DOI
Li J., Zuo K., Wu W., Xu Z., Yi Y., Jing Y., Xiao H., Fang G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II) Carbohydr. Polym. 2018;196:376–384. doi: 10.1016/j.carbpol.2018.05.015. PubMed DOI
Li J., Zheng L., Liu H. A novel carbon aerogel prepared for adsorption of copper(II) ion in water. J. Porous Mater. 2017;24:1575–1580. doi: 10.1007/s10934-017-0397-y. DOI
Wang X., Jiang S., Cui S., Tang Y., Pei Z., Duan H. Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu(II) Cellulose. 2019;26:5051–5063. doi: 10.1007/s10570-019-02444-7. DOI
Giese M., Blusch L.K., Schlesinger M., Meseck G.R., Hamad W.Y., Arjmand M., Sundararaj U., MacLachlan M.J. Magnetic Mesoporous Photonic Cellulose Films. Langmuir. 2016;32:9329–9334. doi: 10.1021/acs.langmuir.6b02974. PubMed DOI
Zanata D.D.M., Battirola L.C., Gonçalves M.D.C. Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane. Cellulose. 2018;25:7225–7238. doi: 10.1007/s10570-018-2090-y. DOI
Qian L., Yang M., Chen H., Xu Y., Zhang S., Zhou Q., He B., Bai Y., Song W. Preparation of a poly(ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 2019;218:154–162. doi: 10.1016/j.carbpol.2019.04.081. PubMed DOI
Keshipour S., Khezerloo M. Au-dimercaprol functionalized cellulose aerogel: Synthesis, characterization and catalytic application. Appl. Organomet. Chem. 2018;32:e4255. doi: 10.1002/aoc.4255. DOI
Liang L., Zhang S., Goenaga G.A., Meng X., Zawodzinski T.A., Ragauskas A.J. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front. Chem. 2020;8:570. doi: 10.3389/fchem.2020.00570. PubMed DOI PMC
Li J., Wang Q., Zheng L., Liu H. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water. J. Mater. Sci. Technol. 2020;41:68–75. doi: 10.1016/j.jmst.2019.09.019. DOI
Wang S., Zhang Q., Wang Z., Pu J. Facile fabrication of an effective nanocellulose-based aerogel and removal of methylene blue from aqueous system. J. Water Process. Eng. 2020;37:101511. doi: 10.1016/j.jwpe.2020.101511. DOI
Balboa E., Moure A., Domínguez H. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept. Mar. Drugs. 2015;13:3745–3760. doi: 10.3390/md13063745. PubMed DOI PMC
Seghetta M., Hou X., Simone B., Bjerre A.-B., Thomsen M. Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers—A step towards a regenerative bioeconomy. J. Clean. Prod. 2016;137:1158–1169. doi: 10.1016/j.jclepro.2016.07.195. DOI
Baghel R.S., Suthar P., Gajaria T.K., Bhattacharya S., Anil A., Reddy C. Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. J. Clean. Prod. 2020;263:121359. doi: 10.1016/j.jclepro.2020.121359. DOI
Rhein-Knudsen N., Ale M.T., Meyer A.S. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs. 2015;13:3340–3359. doi: 10.3390/md13063340. PubMed DOI PMC
Rehm B.H., Moradali M.F. Alginates and their Biomedical Applications. Springer; Berlin/Heidelberg, Germany: 2018.
Kim S. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Baudron V., Gurikov P., Smirnova I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle. Colloids Surf. A Physicochem. Eng. Asp. 2019;566:58–69. doi: 10.1016/j.colsurfa.2018.12.055. DOI
Şahin I., Uzunlar E., Erkey C. Investigation of the effect of gel properties on supercritical drying kinetics of ionotropic alginate gel particles. J. Supercrit. Fluids. 2019;152:104571. doi: 10.1016/j.supflu.2019.104571. DOI
Hatami T., Viganó J., Mei L.H.I., Martínez J. Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J. Supercrit. Fluids. 2020;160:104791. doi: 10.1016/j.supflu.2020.104791. DOI
Rodríguez-Dorado R., López-Iglesias C., García-González C.A., Auriemma G., Aquino R.P., Del Gaudio P. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles’ Micromeritics. Molecules. 2019;24:1049. doi: 10.3390/molecules24061049. PubMed DOI PMC
Siqueira P., Siqueira É., De Lima A.E., Siqueira G., Pinzón-Garcia A.D., Lopes A.P., Segura M.E.C., Isaac A., Pereira F.V., Botaro V.R. Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterial. 2019;9:78. doi: 10.3390/nano9010078. PubMed DOI PMC
De Cicco F., Russo P., Reverchon E., García-González C., Aquino R., Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr. Polym. 2016;147:482–489. doi: 10.1016/j.carbpol.2016.04.031. PubMed DOI
Li X.-L., He Y.-R., Qin Z.-M., Chen M.-J., Chen H.-B. Facile fabrication, mechanical property and flame retardancy of aerogel composites based on alginate and melamine-formaldehyde. Polymer. 2019;181:121783. doi: 10.1016/j.polymer.2019.121783. DOI
Shan C., Wang L., Li Z., Zhong X., Hou Y., Zhang L., Shi F. Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts. Carbohydr. Polym. 2019;203:19–25. doi: 10.1016/j.carbpol.2018.09.024. PubMed DOI
Gorshkova N., Brovko O., Palamarchuk I., Bogolitsyn K., Bogdanovich N., Ivakhnov A., Chukhchin D., Arkhilin M. Formation of supramolecular structure in alginate/chitosan aerogel materials during sol-gel synthesis. J. Sol-Gel Sci. Technol. 2020;95:101–108. doi: 10.1007/s10971-020-05309-9. DOI
Zhai Z., Ren B., Xu Y., Wang S., Zhang L., Liu Z. The preparation of Fe-doped carbon aerogels from sodium alginate. IOP Conf. Ser. Earth Environ. Sci. 2020;508:012137. doi: 10.1088/1755-1315/508/1/012137. DOI
Zhai Z., Ren B., Xu Y., Wang S., Zhang L., Liu Z. Green and facile fabrication of Cu-doped carbon aerogels from sodium alginate for supercapacitors. Org. Electron. 2019;70:246–251. doi: 10.1016/j.orgel.2019.04.028. DOI
Batista M., Gonçalves V., Gaspar F., Nogueira I., Matias A., Gurikov P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI
Athamneh T., Amin A., Benke E., Ambrus R., Leopold C.S., Gurikov P., Smirnova I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids. 2019;150:49–55. doi: 10.1016/j.supflu.2019.04.013. DOI
Dos Santos P., Viganó J., Furtado G.D.F., Cunha R.L., Hubinger M.D., Rezende C.A., Martínez J. Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. J. Supercrit. Fluids. 2020;163:104882. doi: 10.1016/j.supflu.2020.104882. DOI
Lovskaya D., Menshutina N. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Material. 2020;13:329. doi: 10.3390/ma13020329. PubMed DOI PMC
Viganó J., Meirelles A.A., Náthia-Neves G., Baseggio A.M., Cunha R.L., Junior M.R.M., Meireles M.A.A., Gurikov P., Smirnova I., Martínez J. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. Int. J. Biol. Macromol. 2020;155:1060–1068. doi: 10.1016/j.ijbiomac.2019.11.070. PubMed DOI
Wang J., Yang Q., Zhou X., Li S. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 2019;9:547. doi: 10.3390/app9030547. DOI
Kong Y., Zhuang Y., Han K., Shi B. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2020;588:124360. doi: 10.1016/j.colsurfa.2019.124360. DOI
Tao E., Ma D., Yang S., Hao X. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. J. Alloy. Compd. 2020;832:154833. doi: 10.1016/j.jallcom.2020.154833. DOI
Wang Y., Li Y., Zhang X., Zheng H. Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies. J. Polym. Environ. 2020;28:200–210. doi: 10.1007/s10924-019-01577-x. DOI
Jiao C., Li T., Wang J., Wang H., Zhang X., Han X., Du Z., Shang Y., Chen Y. Efficient Removal of Dyes from Aqueous Solution by a Porous Sodium Alginate/gelatin/graphene Oxide Triple-network Composite Aerogel. J. Polym. Environ. 2020;28:1492–1502. doi: 10.1007/s10924-020-01702-1. DOI
Wang S.-J., Bu H., Chen H.-J., Hu T., Chen W.-Z., Wu J.-H., Hu H.-J., Lin M.-Z., Li Y., Jiang G.-B. Floatable magnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater. Chem. Eng. J. 2020;399:125760. doi: 10.1016/j.cej.2020.125760. DOI
Shang K., Liao W., Wang J., Wang Y.-Z., Schiraldi D.A. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Appl. Mater. Interfaces. 2015;8:643–650. doi: 10.1021/acsami.5b09768. PubMed DOI
Jin H., Zhou X., Xu T., Dai C., Gu Y., Yun S., Hu T., Guan G., Chen J. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. ACS Appl. Mater. Interfaces. 2020;12:11815–11824. doi: 10.1021/acsami.9b20923. PubMed DOI
Li X.-L., Chen M.-J., Chen H.-B. Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels. Compos. Part B Eng. 2019;164:18–25. doi: 10.1016/j.compositesb.2018.11.055. DOI
Gurikov P., Raman S.P., Weinrich D., Fricke M., Smirnova I. A novel approach to alginate aerogels: Carbon dioxide induced gelation. RSC Adv. 2015;5:7812–7818. doi: 10.1039/C4RA14653K. DOI
Agostinho D.A., Paninho A.I., Cordeiro T., Nunes A.V., Fonseca I.M., Pereira C., Matias A., Ventura M.G. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Mater. Chem. Phys. 2020;253:123290. doi: 10.1016/j.matchemphys.2020.123290. DOI
Xiao Y., Fu M., Wu D., Xue Z., Xia Y. Preparation of Carrageenan Aerogel from Extraction of Chondrus and Application in Oil/Organic Solvents Absorption. J. Appl. Sci. Eng. Innov. 2020;7:44–48.
Ganesan K., Ratke L. Facile preparation of monolithic κ-carrageenan aerogels. Soft Matter. 2014;10:3218–3224. doi: 10.1039/c3sm52862f. PubMed DOI
El-Naggar M.E., Othman S.I., Allam A.A., Morsy O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020;145:1115–1128. doi: 10.1016/j.ijbiomac.2019.10.037. PubMed DOI
Alnaief M., Obaidat R., Mashaqbeh H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr. Polym. 2018;180:264–275. doi: 10.1016/j.carbpol.2017.10.038. PubMed DOI
Abdellatif F.H.H., Abdellatif M.M. Bio-based i-carrageenan aerogels as efficient adsorbents for heavy metal ions and acid dye from aqueous solution. Cellulose. 2020;27:441–453. doi: 10.1007/s10570-019-02818-x. DOI
Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC
Guo R., Li D., Lv C., Wang Y., Zhang H., Xia Y., Yang D., Zhao X. Porous Ni3S4/C Aerogels Derived from Carrageenan-Ni Hydrogels for High-Performance Sodium-Ion Batteries Anode. Electrochim. Acta. 2019;299:72–79. doi: 10.1016/j.electacta.2019.01.011. DOI
Plazzotta S., Calligaris S., Manzocco L. Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO2-drying, freeze-drying and lettuce-filler addition. Food Hydrocoll. 2019;96:1–10. doi: 10.1016/j.foodhyd.2019.05.008. DOI
Lv D., Li Y., Wang L. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal. Int. J. Biol. Macromol. 2020;148:979–987. doi: 10.1016/j.ijbiomac.2020.01.136. PubMed DOI
Manzocco L., Valoppi F., Calligaris S., Andreatta F., Spilimbergo S., Nicoli M.C. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocoll. 2017;71:68–75. doi: 10.1016/j.foodhyd.2017.04.021. DOI
Pillai C., Paul W., Sharma C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI
Broussignac P. Chitosan: A Natural Polymer Not Well Known by the Industry. Chim. Ind. Genie Chim. 1968;99:1241–1247.
Kurita K., Tomita K., Tada T., Ishii S., Nishimura S.-I., Shimoda K. Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic properties. J. Polym. Sci. Part A Polym. Chem. 1993;31:485–491. doi: 10.1002/pola.1993.080310220. DOI
Bano I., Arshad M., Yasin T., Ghauri M.A., Younus M. Chitosan: A potential biopolymer for wound management. Int. J. Biol. Macromol. 2017;102:380–383. doi: 10.1016/j.ijbiomac.2017.04.047. PubMed DOI
Brown M.A., Daya M.R., Worley J.A. Experience with Chitosan Dressings in a Civilian EMS System. J. Emerg. Med. 2009;37:1–7. doi: 10.1016/j.jemermed.2007.05.043. PubMed DOI
Prashanth K.H., Tharanathan R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007;18:117–131. doi: 10.1016/j.tifs.2006.10.022. DOI
Negm N.A., Hefni H.H., Abd-Elaal A.A., Badr E.A., Kana M.T.A. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020;152:681–702. doi: 10.1016/j.ijbiomac.2020.02.196. PubMed DOI
Alburquerque N.G., Zhao S., Adilien N., Koebel M.M., Lattuada M., Malfait W.J. Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Appl. Mater. Interfaces. 2020;12:22037–22049. doi: 10.1021/acsami.0c03047. PubMed DOI
López-Iglesias C., Barros J., Ardao I., Gurikov P., Monteiro F.J., Smirnova I., Alvarez-Lorenzo C., García-González C. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin. Polymer. 2020;12:273. doi: 10.3390/polym12020273. PubMed DOI PMC
López-Iglesias C., Barros J., Ardao I., Monteiro F.J., Alvarez-Lorenzo C., Gómez-Amoza J.L., García-González C.A. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI
Obaidat R.M., Tashtoush B.M., Bayan M.F., Al Bustami R.T., Alnaief M. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles. Aaps Pharmscitech. 2015;16:1235–1244. doi: 10.1208/s12249-015-0312-2. PubMed DOI PMC
Zhang S., Feng J., Feng J., Jiang Y., Li L. Ultra-low shrinkage chitosan aerogels trussed with polyvinyl alcohol. Mater. Des. 2018;156:398–406. doi: 10.1016/j.matdes.2018.07.004. DOI
Zhao S., Malfait W.J., Jeong E., Fischer B., Zhang Y., Xu H., Angelica E., Risen W.M., Suggs J.W., Koebel M.M. Facile One-Pot Synthesis of Mechanically Robust Biopolymer–Silica Nanocomposite Aerogel by Cogelation of Silicic Acid with Chitosan in Aqueous Media. ACS Sustain. Chem. Eng. 2016;4:5674–5683. doi: 10.1021/acssuschemeng.6b01574. DOI
Takeshita S., Akasaka S., Yoda S. Structural and acoustic properties of transparent chitosan aerogel. Mater. Lett. 2019;254:258–261. doi: 10.1016/j.matlet.2019.07.064. DOI
Takeshita S., Yoda S. Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater. 2015;27:7569–7572. doi: 10.1021/acs.chemmater.5b03610. DOI
Chang X., Chen D., Jiao X. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B. 2008;112:7721–7725. doi: 10.1021/jp8011359. PubMed DOI
Ma Q., Liu Y., Dong Z., Wang J., Hou X. Hydrophobic and nanoporous chitosan-silica composite aerogels for oil absorption. J. Appl. Polym. Sci. 2015;132:132. doi: 10.1002/app.41770. DOI
Diosa J., Guzman F., Bernal C., Mesa M. Formation mechanisms of chitosan-silica hybrid materials and its performance as solid support for KR-12 peptide adsorption: Impact on KR-12 antimicrobial activity and proteolytic stability. J. Mater. Res. Technol. 2020;9:890–901. doi: 10.1016/j.jmrt.2019.11.029. DOI
Gao X.-D., Huang Y.-D., Zhang T.-T., Wu Y.-Q., Li X.-M. Amphiphilic SiO 2 hybrid aerogel: An effective absorbent for emulsified wastewater. J. Mater. Chem. A. 2017;5:12856–12862. doi: 10.1039/C7TA02196H. DOI
Keshipour S., Mirmasoudi S.S. Cross-linked chitosan aerogel modified with Au: Synthesis, characterization and catalytic application. Carbohydr. Polym. 2018;196:494–500. doi: 10.1016/j.carbpol.2018.05.068. PubMed DOI
Rinki K., Dutta P.K., Hunt A.J., MacQuarrie D.J., Clark J.H. Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. Int. J. Polym. Mater. 2011;60:988–999. doi: 10.1080/00914037.2011.553849. DOI
Baldino L., Cardea S., Reverchon E. Nanostructured chitosan-gelatin hybrid aerogels produced by supercritical gel drying. Polym. Eng. Sci. 2017;58:1494–1499. doi: 10.1002/pen.24719. DOI
Valchuk N.A., Brovko O.S., Palamarchuk I.A., Boitsova T.A., Bogolitsyn K.G., Ivakhnov A.D., Chukhchin D.G., Bogdanovich N.I. Preparation of Aerogel Materials Based on Alginate–Chitosan Interpolymer Complex Using Supercritical Fluids. Russ. J. Phys. Chem. B. 2019;13:1121–1124. doi: 10.1134/S1990793119070224. DOI
Baldino L., Cardea S., Scognamiglio M., Reverchon E. A new tool to produce alginate-based aerogels for medical applications, by supercritical gel drying. J. Supercrit. Fluids. 2019;146:152–158. doi: 10.1016/j.supflu.2019.01.016. DOI
Frindy S., El Kadib A., Lahcini M., Primo A., García H. Copper Nanoparticles Stabilized in a Porous Chitosan Aerogel as a Heterogeneous Catalyst for C?S Cross-coupling. ChemCatChem. 2015;7:3307–3315. doi: 10.1002/cctc.201500565. DOI
Anouar A., Katir N., Lahcini M., Primo A., Garcia H. Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Molecules. 2019;24:3290. doi: 10.3390/molecules24183290. PubMed DOI PMC
Sorokin A.B., Quignard F., Valentin R., Mangematin S. Chitosan supported phthalocyanine complexes: Bifunctional catalysts with basic and oxidation active sites. Appl. Catal. A Gen. 2006;309:162–168. doi: 10.1016/j.apcata.2006.03.060. DOI
Kayser H., Müller C.R., García-González C., Smirnova I., Leitner W., De María P.D. Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals. Appl. Catal. A Gen. 2012;445:180–186. doi: 10.1016/j.apcata.2012.08.014. DOI
Raman S., Gurikov P., Smirnova I. Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. J. Supercrit. Fluids. 2015;106:23–33. doi: 10.1016/j.supflu.2015.05.003. DOI
Zhang S., Feng J., Feng J., Jiang Y. Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem. Eng. J. 2017;309:700–707. doi: 10.1016/j.cej.2016.10.098. DOI
Di Renzo F., Valentin R., Boissiere M., Tourrette A., Sparapano G., Molvinger K., Devoisselle J.M., Gérardin C., Quignard F. Hierarchical Macroporosity Induced by Constrained Syneresis in Core–Shell Polysaccharide Composites. Chem. Mater. 2005;17:4693–4699. doi: 10.1021/cm0503477. DOI
Ricci A., Bernardi L., Gioia C., Vierucci S., Robitzer M., Quignard F. Chitosan Aerogel: A Recyclable, Heterogeneous Organocatalyst for the Asymmetric Direct Aldol Reaction in Water. Chem. Commun. 2010;46:6288–6290. doi: 10.1039/c0cc01502d. PubMed DOI
Voragen A.G.J., Coenen G.-J., Verhoef R.P., Schols H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009;20:263–275. doi: 10.1007/s11224-009-9442-z. DOI
Caffall K.H., Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009;344:1879–1900. doi: 10.1016/j.carres.2009.05.021. PubMed DOI
Mohnen D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008;11:266–277. doi: 10.1016/j.pbi.2008.03.006. PubMed DOI
Ridley B.L., O’Neill M.A., Mohnen D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57:929–967. doi: 10.1016/S0031-9422(01)00113-3. PubMed DOI
Gullón B., Gullón P., Sanz Y., Alonso J.L., Parajó J.C., Gullón B. Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Sci. Technol. 2011;44:1687–1696. doi: 10.1016/j.lwt.2011.03.006. DOI
Koubala B., Mbome L., Kansci G., Mbiapo F.T., Crepeau M.-J., Thibault J.-F., Ralet M.-C. Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chem. 2008;106:1202–1207. doi: 10.1016/j.foodchem.2007.07.065. DOI
De Vries R.P., Visser J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001;65:497–522. doi: 10.1128/MMBR.65.4.497-522.2001. PubMed DOI PMC
Müller-Maatsch J., Caligiani A., Tedeschi T., Elst K., Sforza S. Simple and Validated Quantitative1H NMR Method for the Determination of Methylation, Acetylation, and Feruloylation Degree of Pectin. J. Agric. Food Chem. 2014;62:9081–9087. doi: 10.1021/jf502679s. PubMed DOI
Srivastava P., Malviya R. Sources of Pectin, Extraction and its Applications in Pharmaceutical Industry—An Overview. Indian J. Nat. Prod. Resour. 2011;2:10–18.
Canteri-Schemin M.H., Fertonani H.C.R., Waszczynskyj N., Wosiacki G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005;48:259–266. doi: 10.1590/S1516-89132005000200013. DOI
Abdel-Massih R.M., Baydoun E., Waldron K.W., Brett C.T. Effects of partial enzymic degradation of sugar beet pectin on oxidative coupling of pectin-linked ferulates in vitro. Phytochemistry. 2007;68:1785–1790. doi: 10.1016/j.phytochem.2007.04.007. PubMed DOI
Willats W.G.T., McCartney L., Mackie W., Knox J.P. Pectin: Cell biology and prospects for functional analysis. Plant Mol. Biol. 2001;47:9–27. doi: 10.1023/A:1010662911148. PubMed DOI
BeMiller J.N., Whistler R.L. Industrial Gums: Polysaccharides and Their Derivatives. Academic Press; Cambridge, MA, USA: 2012.
Yapo B.M., Lerouge P., Thibault J.-F., Ralet M.-C.J. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr. Polym. 2007;69:426–435. doi: 10.1016/j.carbpol.2006.12.024. DOI
Taylor S. The Chemistry and Technology of Pectin. Academic Press; Cambridge, MA, USA: 2012.
Harholt J., Suttangkakul A., Scheller H.V. Biosynthesis of Pectin. Plant Physiol. 2010;153:384–395. doi: 10.1104/pp.110.156588. PubMed DOI PMC
Yang J.-S., Mu T., Ma M.-M. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018;244:197–205. doi: 10.1016/j.foodchem.2017.10.059. PubMed DOI
Rombouts F.M., Thibault J.-F. Feruloylated pectic substances from sugar-beet pulp. Carbohydr. Res. 1986;154:177–187. doi: 10.1016/S0008-6215(00)90031-4. DOI
Khodaei N., Karboune S. Enzymatic generation of galactose-rich oligosaccharides/oligomers from potato rhamnogalacturonan I pectic polysaccharides. Food Chem. 2016;197:406–414. doi: 10.1016/j.foodchem.2015.10.122. PubMed DOI
Wikiera A., Mika M., Starzyńska-Janiszewska A., Stodolak B. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr. Polym. 2016;142:199–205. doi: 10.1016/j.carbpol.2016.01.063. PubMed DOI
Ghoshal G., Negi P. Isolation of pectin from kinnow peels and its characterization. Food Bioprod. Process. 2020;124:342–353. doi: 10.1016/j.fbp.2020.09.008. DOI
Buathongjan C., Israkarn K., Sangwan W., Outrequin T., Gamonpilas C., Methacanon P. Studies on chemical composition, rheological and antioxidant properties of pectin isolated from Riang (Parkia timoriana (DC.) Merr.) pod. Int. J. Biol. Macromol. 2020;164:4575–4582. doi: 10.1016/j.ijbiomac.2020.09.079. PubMed DOI
Chan S.-Y., Choo W.-S. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem. 2013;141:3752–3758. doi: 10.1016/j.foodchem.2013.06.097. PubMed DOI
Kaya M., Sousa A.G., Crépeau M.-J., Sørensen S.O., Ralet M.-C. Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. Ann. Bot. 2014;114:1319–1326. doi: 10.1093/aob/mcu150. PubMed DOI PMC
Yeoh S., Shi J., Langrish T. Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination. 2008;218:229–237. doi: 10.1016/j.desal.2007.02.018. DOI
Zuin V.G., Ramin L.Z. Chemistry and Chemical Technologies in Waste Valorization. Springer; Berlin/Heidelberg, Germany: 2018. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches; pp. 229–282. PubMed PMC
Khodaei N., Karboune S., Orsat V. Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Food Chem. 2016;190:495–505. doi: 10.1016/j.foodchem.2015.05.082. PubMed DOI
Pińkowska H., Złocińska A. Pektyny–występowanie, budowa chemiczna i właściwości. Wiad. Chem. 2014;68:685–700.
Thakur B.R., Singh R.K., Handa A.K., Rao M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997;37:47–73. doi: 10.1080/10408399709527767. PubMed DOI
Khalil A. Quality of french fried potatoes as influenced by coating with hydrocolloids. Food Chem. 1999;66:201–208. doi: 10.1016/S0308-8146(99)00045-X. DOI
Zaitseva O., Khudyakov A., Sergushkina M., Solomina O., Polezhaeva T. Pectins as a universal medicine. Fitoterapia. 2020;146:104676. doi: 10.1016/j.fitote.2020.104676. PubMed DOI
Minzanova S.T., Mironov V.F., Arkhipova D.M., Khabibullina A.V., Mironova L.G., Zakirova Y.M., Milyukov V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymer. 2018;10:1407. doi: 10.3390/polym10121407. PubMed DOI PMC
Olano-Martin E., Gibson G., Rastall R. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 2002;93:505–511. doi: 10.1046/j.1365-2672.2002.01719.x. PubMed DOI
Wikiera A., Irla M., Mika M. Health-promoting properties of pectin. Postępy Hig. Med. Dosw. 2014;68:590–596. doi: 10.5604/17322693.1102342. PubMed DOI
Sánchez-Infantes D., Muguerza B., Moulay L., Hernandez R., Miguel M., Aleixandre A. Highly Methoxylated Pectin Improves Insulin Resistance and Other Cardiometabolic Risk Factors in Zucker Fatty Rats. J. Agric. Food Chem. 2008;56:3574–3581. doi: 10.1021/jf703598j. PubMed DOI
Schwab U.S., Louheranta A., Törrönen A., Uusitupa M. Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur. J. Clin. Nutr. 2006;60:1073–1080. doi: 10.1038/sj.ejcn.1602421. PubMed DOI
Sudheesh S., Vijayalakshmi N. Lipid-lowering action of pectin from Cucumis sativus. Food Chem. 1999;67:281–286. doi: 10.1016/S0308-8146(99)00135-1. DOI
Jackson C.L., Dreaden T.M., Theobald L.K., Tran N.M., Beal T.L., Eid M., Gao M.Y., Shirley R.B., Stoffel M.T., Kumar M.V., et al. Pectin induces apoptosis in human prostate cancer cells: Correlation of apoptotic function with pectin structure. Glycobioloy. 2007;17:805–819. doi: 10.1093/glycob/cwm054. PubMed DOI
Paulsen B.S., Barsett H. Polysaccharides I. Springer; Berlin/Heidelberg, Germany: 2005. Bioactive Pectic Polysaccharides; pp. 69–101.
Salman H., Bergman M., Djaldetti M., Orlin J., Bessler H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed. Pharm. 2008;62:579–582. doi: 10.1016/j.biopha.2008.07.058. PubMed DOI
Chen C.-H., Sheu M.-T., Chen T.-F., Wang Y.-C., Hou W.-C., Liu D.-Z., Chung T.-C., Liang Y.-C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharm. 2006;72:1001–1009. doi: 10.1016/j.bcp.2006.07.001. PubMed DOI
Groult S., Budtova T. Tuning structure and properties of pectin aerogels. Eur. Polym. J. 2018;108:250–261. doi: 10.1016/j.eurpolymj.2018.08.048. DOI
García-González C., Alnaief M., Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011;86:1425–1438. doi: 10.1016/j.carbpol.2011.06.066. DOI
White R.J., Budarin V.L., Clark J.H. Pectin-Derived Porous Materials. Chem. A Eur. J. 2010;16:1326–1335. doi: 10.1002/chem.200901879. PubMed DOI
Veronovski A., Tkalec G., Knez Ž., Novak Z. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr. Polym. 2014;113:272–278. doi: 10.1016/j.carbpol.2014.06.054. PubMed DOI
García-González C., Carenza E., Zeng M., Smirnova I., Roig A. Design of biocompatible magnetic pectin aerogel monoliths and microspheres. RSC Adv. 2012;2:9816. doi: 10.1039/c2ra21500d. DOI
García-González C., Jin M., Gerth J., Alvarez-Lorenzo C., Smirnova I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym. 2015;117:797–806. doi: 10.1016/j.carbpol.2014.10.045. PubMed DOI
Tkalec G., Knez Z., Novak Z., Gabrijela T., Željko K., Novak Z. Encapsulation of pharmaceuticals into pectin aerogels for controlled drug release. Adv. Technol. 2015;4:49–52. doi: 10.5937/savteh1502049T. DOI
Zhao S., Malfait W.J., Demilecamps A., Zhang Y., Brunner S., Huber L., Tingaut P., Rigacci A., Budtova T., Koebel M. Strong, Thermally Superinsulating Biopolymer–Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin. Angew. Chem. Int. Ed. 2015;54:14282–14286. doi: 10.1002/anie.201507328. PubMed DOI
Tkalec G., Knez Ž., Novak Z. PH sensitive mesoporous materials for immediate or controlled release of NSAID. Microporous Mesoporous Mater. 2016;224:190–200. doi: 10.1016/j.micromeso.2015.11.048. DOI
Tkalec G., Knez Ž., Novak Z. Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J. Supercrit. Fluids. 2015;106:16–22. doi: 10.1016/j.supflu.2015.06.009. DOI
Tkalec G., Knez Ž., Novak Z. Formation of polysaccharide aerogels in ethanol. RSC Adv. 2015;5:77362–77371. doi: 10.1039/C5RA14140K. DOI
Horvat G., Xhanari K., Finšgar M., Gradišnik L., Maver U., Knez Ž., Novak Z. Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 2017;166:365–376. doi: 10.1016/j.carbpol.2017.03.008. PubMed DOI
Zhao H.-B., Chen M., Chen H.-B. Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustain. Chem. Eng. 2017;5:7012–7019. doi: 10.1021/acssuschemeng.7b01247. DOI
Chen K., Zhang H. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int. J. Biol. Macromol. 2019;136:936–943. doi: 10.1016/j.ijbiomac.2019.06.138. PubMed DOI
Horvat G., Pantić M., Knez Ž., Novak Z. Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. J. Non-Cryst. Solids. 2018;481:486–493. doi: 10.1016/j.jnoncrysol.2017.11.037. DOI
Chen H.-B., Li X.-L., Chen M.-J., He Y.-R., Zhao H.-B. Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydr. Polym. 2019;206:609–615. doi: 10.1016/j.carbpol.2018.11.041. PubMed DOI
Horvat G., Pantić M., Knez Ž., Novak Z. Preparation and characterization of polysaccharide—Silica hybrid aerogels. Sci. Rep. 2019;9:16492. doi: 10.1038/s41598-019-52974-0. PubMed DOI PMC
Chen H.-B., Chiou B.-S., Wang Y.-Z., Schiraldi D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces. 2013;5:1715–1721. doi: 10.1021/am3028603. PubMed DOI
Yang W., Yuen A.C.Y., Ping P., Wei R.-C., Hua L., Zhu Z., Li A., Zhu S.-E., Wang L.-L., Liang J., et al. Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Compos. Part A Appl. Sci. Manuf. 2019;119:196–205. doi: 10.1016/j.compositesa.2019.02.003. DOI
Horvat G., Fajfar T., Uzunalić A.P., Knez Ž., Novak Z. Thermal properties of polysaccharide aerogels. J. Anal. Calorim. 2016;127:363–370. doi: 10.1007/s10973-016-5814-y. DOI
Budtova T. Cellulose Science and Technology: Chemistry, Analysis, and Applications. John Wiley & Sons; Chichester, UK: 2018. Bio-Based Aerogels: A New Generation of Thermal Superinsulating Materials; pp. 371–392.
Maleki H., Durães L., García-González C.A., Del Gaudio P., Portugal A., Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI
Rindlav-Westling A., Stading M., Gatenholm P. Crystallinity and Morphology in Films of Starch, Amylose and Amylopectin Blends. Biomacromolecules. 2002;3:84–91. doi: 10.1021/bm010114i. PubMed DOI
Zhu F. Starch based Pickering emulsions: Fabrication, properties, and applications. Trends Food Sci. Technol. 2019;85:129–137. doi: 10.1016/j.tifs.2019.01.012. DOI
Franco P., Aliakbarian B., Perego P., Reverchon E., De Marco I. Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Ind. Eng. Chem. Res. 2018;57:15105–15113. doi: 10.1021/acs.iecr.8b03666. DOI
Glenn G.M., Irving D.W. Starch-Based Microcellular Foams. Cereal Chem. 1995;72:155–161.
García-González C., Camino-Rey M., Alnaief M., Zetzl C., Smirnova I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J. Supercrit. Fluids. 2012;66:297–306. doi: 10.1016/j.supflu.2012.02.026. DOI
Zamora-Sequeira R., Ardao I., Starbird-Perez R., García-González C. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr. Polym. 2018;189:304–312. doi: 10.1016/j.carbpol.2018.02.040. PubMed DOI
García-González C., Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Supercrit. Fluids. 2013;79:152–158. doi: 10.1016/j.supflu.2013.03.001. DOI
Zou F., Budtova T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr. Polym. 2020:117344. doi: 10.1016/j.carbpol.2020.117344. PubMed DOI
Ubeyitogullari A., Moreau R., Rose D.J., Zhang J., Ciftci O.N. Enhancing the Bioaccessibility of Phytosterols Using Nanoporous Corn and Wheat Starch Bioaerogels. Eur. J. Lipid Sci. Technol. 2019;121:1700229. doi: 10.1002/ejlt.201700229. DOI
Martins M., Barros A.A., Quraishi S., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010. DOI
Santos-Rosales V., Ardao I., Alvarez-Lorenzo C., Ribeiro N., Oliveira J.M., García-González C. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO2-Based Approach. Molecules. 2019;24:871. doi: 10.3390/molecules24050871. PubMed DOI PMC
Wang Y., Wu K., Xiao M., Riffat S.B., Su Y., Jiang F. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr. Polym. 2018;197:284–291. doi: 10.1016/j.carbpol.2018.06.009. PubMed DOI
Ye D.-D., Wang T., Liao W., Wang H., Zhao H.-B., Wang Y.-Z., Xu S. Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustain. Chem. Eng. 2019;7:11582–11592. doi: 10.1021/acssuschemeng.9b01487. DOI
Zhang Y., Zhu J., Bi Y., Shi X., Ren H., Wang B. A novel starch-enhanced melamine-formaldehyde aerogel with low volume shrinkage and high toughness. J. Porous Mater. 2017;24:1303–1307. doi: 10.1007/s10934-017-0371-8. DOI
Lovskaya D., Lebedev A., Menshutina N. Aerogels as drug delivery systems: In vitro and in vivo evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI
De Marco I., Reverchon E. Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption. Chem. Eng. Res. Des. 2017;119:221–230. doi: 10.1016/j.cherd.2017.01.024. DOI
Ubeyitogullari A., Ciftci O.N. Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. J. Food Eng. 2017;207:99–107. doi: 10.1016/j.jfoodeng.2017.03.022. DOI
Ubeyitogullari A., Ciftci O.N. Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Adv. 2016;6:108319–108327. doi: 10.1039/C6RA20675A. DOI
Goimil L., Braga M.E., Dias A.M., Gómez-Amoza J.L., Concheiro A., Diaz-Rodriguez P., De Sousa H.C., García-González C.A. Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J. CO2 Util. 2017;18:237–249. doi: 10.1016/j.jcou.2017.01.028. DOI
Miao Z., Ding K., Wu T., Liu Z., Han B., An G., Miao S., Yang G. Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mater. 2008;111:104–109. doi: 10.1016/j.micromeso.2007.07.018. DOI
Starbird-Perez R., García-González C.A., Smirnova I., Krautschneider W.H., Bauhofer W. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C. 2014;37:177–183. doi: 10.1016/j.msec.2013.12.032. PubMed DOI
Anas M., Gönel A.G., Bozbag S.E., Erkey C. Thermodynamics of Adsorption of Carbon Dioxide on Various Aerogels. J. CO2 Util. 2017;21:82–88. doi: 10.1016/j.jcou.2017.06.008. DOI
Loveday S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019;10:311–339. doi: 10.1146/annurev-food-032818-121128. PubMed DOI
Plazzotta S., Calligaris S., Manzocco L. Structural characterization of oleogels from whey protein aerogel particles. Food Res. Int. 2020;132:109099. doi: 10.1016/j.foodres.2020.109099. PubMed DOI
Selmer I., Karnetzke J., Kleemann C., Lehtonen M., Mikkonen K.S., Kulozik U., Smirnova I. Encapsulation of fish oil in protein aerogel micro-particles. J. Food Eng. 2019;260:1–11. doi: 10.1016/j.jfoodeng.2019.04.016. DOI
Andlinger D.J., Bornkeßel A.C., Jung I., Schröter B., Smirnova I., Kulozik U. Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocoll. 2020:106305. doi: 10.1016/j.foodhyd.2020.106305. DOI
Betz M., García-González C., Subrahmanyam R., Smirnova I., Kulozik U. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids. 2012;72:111–119. doi: 10.1016/j.supflu.2012.08.019. DOI
Kleemann C., Selmer I., Smirnova I., Kulozik U. Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocoll. 2018;83:365–374. doi: 10.1016/j.foodhyd.2018.05.021. DOI
Alatalo S.-M., Qiu K., Preuss K., Marinovic A., Sevilla M., Sillanpää M., Guo X., Titirici M.-M., Sevilla M. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon. 2016;96:622–630. doi: 10.1016/j.carbon.2015.09.108. DOI
Marin M.A., Mallepally R.R., McHugh M.A. Silk fibroin aerogels for drug delivery applications. J. Supercrit. Fluids. 2014;91:84–89. doi: 10.1016/j.supflu.2014.04.014. DOI
Selmer I., Kleemann C., Kulozik U., Heinrich S., Smirnova I. Development of egg white protein aerogels as new matrix material for microencapsulation in food. J. Supercrit. Fluids. 2015;106:42–49. doi: 10.1016/j.supflu.2015.05.023. DOI
Maleki H., Whitmore L., Hüsing N. Novel multifunctional polymethylsilsesquioxane–silk fibroin aerogel hybrids for environmental and thermal insulation applications. J. Mater. Chem. A. 2018;6:12598–12612. doi: 10.1039/C8TA02821D. PubMed DOI PMC
Govindarajan D., Duraipandy N., Srivatsan K.V., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Fabrication of Hybrid Collagen Aerogels Reinforced with Wheat Grass Bioactives as Instructive Scaffolds for Collagen Turnover and Angiogenesis for Wound Healing Applications. ACS Appl. Mater. Interfaces. 2017;9:16939–16950. doi: 10.1021/acsami.7b05842. PubMed DOI
Pojić M., Mišan A., Tiwari B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018;75:93–104. doi: 10.1016/j.tifs.2018.03.010. DOI
Placin F., Desvergne J.-P., Cansell F. Organic low molecular weight aerogel formed in supercritical fluids. J. Mater. Chem. 2000;10:2147–2149. doi: 10.1039/b001714k. DOI
Jamart-Grégoire B., Son S., Allix F., Felix V., Barth D., Jannot Y., Pickaert G., DeGiovanni A. Monolithic organic aerogels derived from single amino-acid based supramolecular gels: Physical and thermal properties. RSC Adv. 2016;6:102198–102205. doi: 10.1039/C6RA20803G. DOI