Biorefinery Approach for Aerogels

. 2020 Nov 24 ; 12 (12) : . [epub] 20201124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255498

Grantová podpora
RMX18-0039 (HEALiX) Swedish Foundation for Strategic Research
Bio4Energy strategic research environment appointed by the Swedish government
LM2018110 CzechNanoLab Research Infrastructure supported by MEYS CR
DOK.MLĶF/19 Riga Technical university PhD grant, R Development of scientific activity in universities
MLĶF Performance funding for doctoral grant
project REALHLC, No. Z19/1-0390 Latvian Council of Science

According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".

Zobrazit více v PubMed

Kistler S.S. Coherent Expanded Aerogels and Jellies. Nat. Cell Biol. 1931;127:741. doi: 10.1038/127741a0. DOI

Kistler S.S. Coherent Expanded-Aerogels. J. Phys. Chem. 1932;36:52–64. doi: 10.1021/j150331a003. DOI

Teichner S.J., Nicolaon G.A. Method of Preparing Inorganic Aerogels. 3,672,833. U.S. Patent. 1972 Jun 27;

Smith D.M., Maskara A., Boes U. Aerogel-based thermal insulation. J. Non-Cryst. Solids. 1998;225:254–259. doi: 10.1016/S0022-3093(98)00125-2. DOI

Baetens R., Jelle B.P., Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011;43:761–769. doi: 10.1016/j.enbuild.2010.12.012. DOI

Williams J.C., Meador M.A.B., McCorkle L., Mueller C., Wilmoth N. Synthesis and Properties of Step-Growth Polyamide Aerogels Cross-linked with Triacid Chlorides. Chem. Mater. 2014;26:4163–4171. doi: 10.1021/cm5012313. DOI

Meador M.A.B., Alemán C.R., Hanson K., Ramirez N., Vivod S.L., Wilmoth N., McCorkle L. Polyimide Aerogels with Amide Cross-Links: A Low Cost Alternative for Mechanically Strong Polymer Aerogels. ACS Appl. Mater. Interfaces. 2015;7:1240–1249. doi: 10.1021/am507268c. PubMed DOI

Rigacci A., Marechal J., Repoux M., Moreno M., Achard P. Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation. J. Non-Cryst. Solids. 2004;350:372–378. doi: 10.1016/j.jnoncrysol.2004.06.049. DOI

Salerno A., Pascual C.D. Bio-based polymers, supercritical fluids and tissue engineering. Process. Biochem. 2015;50:826–838. doi: 10.1016/j.procbio.2015.02.009. DOI

Buwalda S.J. Bio-based composite hydrogels for biomedical applications. Multifunct. Mater. 2020;3:022001. doi: 10.1088/2399-7532/ab80d6. DOI

Pantić M., Horvat G., Knez Ž., Novak Z. Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Curcumin Case Study. Molecules. 2020;25:1187. doi: 10.3390/molecules25051187. PubMed DOI PMC

Muñoz-Ruíz A., Escobar-García D.M., Quintana M., Pozos-Guillen A., Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019;2019:2875375. doi: 10.1155/2019/2875375. DOI

Raman S., Keil C., Dieringer P., Hübner C., Bueno A., Gurikov P., Nissen J., Holtkamp M., Karst U., Haase H., et al. Alginate aerogels carrying calcium, zinc and silver cations for wound care: Fabrication and metal detection. J. Supercrit. Fluids. 2019;153:104545. doi: 10.1016/j.supflu.2019.104545. DOI

Edwards J.V., Fontenot K.R., Liebner F.W., Condon B.D. Peptide-Cellulose Conjugates on Cotton-Based Materials Have Protease Sensor/Sequestrant Activity. Sensors. 2018;18:2334. doi: 10.3390/s18072334. PubMed DOI PMC

Nešić A., Gordić M., Davidović S., Radovanović Ž., Nedeljković J., Smirnova I., Gurikov P. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 2018;195:128–135. doi: 10.1016/j.carbpol.2018.04.076. PubMed DOI

Groult S., Budtova T. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr. Polym. 2018;196:73–81. doi: 10.1016/j.carbpol.2018.05.026. PubMed DOI

Chtchigrovsky M., Lin Y., Ouchaou K., Chaumontet M., Robitzer M., Quignard F., Taran F. Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chem. Mater. 2012;24:1505–1510. doi: 10.1021/cm3003595. DOI

Mallepally R.R., Bernard I., Marin M.A., Ward K.R., McHugh M.A. Superabsorbent alginate aerogels. J. Supercrit. Fluids. 2013;79:202–208. doi: 10.1016/j.supflu.2012.11.024. DOI

Soorbaghi F.P., Isanejad M., Salatin S., Ghorbani M., Jafari S., Derakhshankhah H. Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed. Pharm. 2019;111:964–975. doi: 10.1016/j.biopha.2019.01.014. PubMed DOI

Mikkonen K.S., Parikka K., Ghafar A., Tenkanen M. Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci. Technol. 2013;34:124–136. doi: 10.1016/j.tifs.2013.10.003. DOI

Ganesan K., Budtova T., Ratke L., Gurikov P., Baudron V., Preibisch I., Niemeyer P., Smirnova I., Milow B. Review on the Production of Polysaccharide Aerogel Particles. Materials. 2018;11:2144. doi: 10.3390/ma11112144. PubMed DOI PMC

Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI

Illera D., Mesa J., Gomez H., Maury H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings. 2018;8:345. doi: 10.3390/coatings8100345. DOI

Cherubini F., Jungmeier G., Mandl M., Philips C., Wellisch M., Jrgensen H., Skiadas I., Boniface L., Dohy M., Pouet J. IEA Bioenergy Task 42 on Biorefineries: Co-Production of Fuels, Chemicals, Power and Materials from Biomass. [(accessed on 24 November 2020)];IEA Bioenergy Task. 2007 :1–37. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Booklet.pdf.

Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010;51:1412–1421. doi: 10.1016/j.enconman.2010.01.015. DOI

Clark J.H., Deswarte F.E.I. The Biorefinery Concept-An Integrated Approach. Introd. Chem. Biomass. 2008:1–20. doi: 10.1002/9780470697474.ch1. DOI

Takkellapati S., Li T., Gonzalez M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Env. Policy. 2018;20:1615–1630. doi: 10.1007/s10098-018-1568-5. PubMed DOI PMC

IUPAC . In: Compendium of Chemical Terminology. 2nd ed. McNaught A.D., Wilkinson A., editors. Blackwell Scientific Publications; Oxford, UK: 2014. the “Gold Book” XML on-line corrected version: http://goldbook.iupac.org , 2006, created by Nic, M., Jirat, J., Kosata, B.; updates compiled by Jenkins, A.; Last update 2014-02-24; version: 2.3.3. DOI

Pierre A.C. Aerogels Handbook. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2011. History of Aerogels; pp. 3–18.

[(accessed on 20 October 2020)]; Available online: https://www.Epa.Gov/Greenchemistry/Basics-Green-Chemistry.

García-González C.A., Budtova T., Durães L., Erkey C., Del Gaudio P., Gurikov P., Koebel M.M., Liebner F., Neagu M., Smirnova I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules. 2019;24:1815. doi: 10.3390/molecules24091815. PubMed DOI PMC

Liu Z., Ran Y., Xi J., Wang J. Polymeric hybrid aerogels and their biomedical applications. Soft Matter. 2020;16:9160–9175. doi: 10.1039/D0SM01261K. PubMed DOI

Rudaz C., Courson R., Bonnet L., Calas-Etienne S., Sallée H., Budtova T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules. 2014;15:2188–2195. doi: 10.1021/bm500345u. PubMed DOI

Saelices C.J., Seantier B., Cathala B., Grohens Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 2017;157:105–113. doi: 10.1016/j.carbpol.2016.09.068. PubMed DOI

Plappert S.F., Nedelec J.-M., Rennhofer H., Lichtenegger H.C., Liebner F.W. Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose. Chem. Mater. 2017;29:6630–6641. doi: 10.1021/acs.chemmater.7b00787. DOI

Druel L., Bardl R., Vorwerg W., Budtova T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules. 2017;18:4232–4239. doi: 10.1021/acs.biomac.7b01272. PubMed DOI

Subrahmanyam R., Gurikov P., Meissner I., Smirnova I. Preparation of Biopolymer Aerogels Using Green Solvents. J. Vis. Exp. 2016;113:e54116. doi: 10.3791/54116. PubMed DOI PMC

Bendahou D., Bendahou A., Seantier B., Lebeau B., Grohens Y., Kaddami H. Structure-Thermal Conductivity Tentative Correlation for Hybrid Aerogels Based on Nanofibrillated Cellulose-Mesoporous Silica Nanocomposite. J. Renew. Mater. 2018;6:299–313. doi: 10.7569/JRM.2017.634185. DOI

Bendahou D., Bendahou A., Seantier B., Grohens Y., Kaddami H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Ind. Crop. Prod. 2015;65:374–382. doi: 10.1016/j.indcrop.2014.11.012. DOI

Gavillon R., Budtova T. Aerocellulose: New Highly Porous Cellulose Prepared from Cellulose–NaOH Aqueous Solutions. Biomacromolecules. 2008;9:269–277. doi: 10.1021/bm700972k. PubMed DOI

Pircher N., Carbajal L., Schimper C., Bacher M., Rennhofer H., Nedelec J.-M., Lichtenegger H.C., Rosenau T., Liebner F. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose. 2016;23:1949–1966. doi: 10.1007/s10570-016-0896-z. PubMed DOI PMC

Plappert S.F., Nedelec J.-M., Rennhofer H., Lichtenegger H., Bernstorff S., Liebner F.W. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules. 2018;19:4411–4422. doi: 10.1021/acs.biomac.8b01278. PubMed DOI

Ubeyitogullari A., Ciftci O.N. Formation of nanoporous aerogels from wheat starch. Carbohydr. Polym. 2016;147:125–132. doi: 10.1016/j.carbpol.2016.03.086. PubMed DOI

García-González C., Uy J., Alnaief M., Smirnova I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr. Polym. 2012;88:1378–1386. doi: 10.1016/j.carbpol.2012.02.023. DOI

EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP) Bampidis V., Azimonti G., de Lourdes Bastos M., Christensen H., Dusemund B., Kos Durjava M., Kouba M., López-Alonso M., López Puente S. Safety and Efficacy of Microcrystalline Cellulose for all Animal Species. Efsa J. 2020;18:e06209. doi: 10.2903/j.efsa.2020.6209. PubMed DOI PMC

Kobayashi Y., Saito T., Isogai A. Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew. Chem. Int. Ed. 2014;53:10394–10397. doi: 10.1002/anie.201405123. PubMed DOI

Tripathi A., Parsons G.N., Khan S.A., Rojas O.J. Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Sci. Rep. 2018;8:2106. doi: 10.1038/s41598-018-19720-4. PubMed DOI PMC

Gan S., Zakaria S., Chia C.H., Chen R.S., Ellis A.V., Kaco H. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE. 2017;12:e0173743. doi: 10.1371/journal.pone.0173743. PubMed DOI PMC

Simón-Herrero C., Romero A., Valverde J.L., Sánchez-Silva L. Hydroxyethyl cellulose/alumina-based aerogels as lightweight insulating materials with high mechanical strength. J. Mater. Sci. 2018;53:1556–1567. doi: 10.1007/s10853-017-1584-6. DOI

Zhao J., Lu C., He X., Zhang X., Zhang W., Zhang X. Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery. ACS Appl. Mater. Interfaces. 2015;7:2607–2615. doi: 10.1021/am507601m. PubMed DOI

Guan Y., Rao J., Wu Y., Gao H., Liu S., Chen G., Peng F. Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red. Int. J. Biol. Macromol. 2020;155:369–375. doi: 10.1016/j.ijbiomac.2020.03.231. PubMed DOI

Yang H., Sheikhi A., Van De Ven T.G.M. Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir. 2016;32:11771–11779. doi: 10.1021/acs.langmuir.6b03084. PubMed DOI

Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Fierro V. Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013;168:19–29. doi: 10.1016/j.micromeso.2012.09.024. DOI

Chen H., Liu T., Meng Y., Cheng Y., Lu J., Wang H. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids Surf. A Phys. Eng. Asp. 2020;603:125281. doi: 10.1016/j.colsurfa.2020.125281. DOI

Harper B.J., Clendaniel A., Sinche F., Way D., Hughes M., Schardt J., Simonsen J., Stefaniak A.B., Harper S.L. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose. 2016;23:1763–1775. doi: 10.1007/s10570-016-0947-5. PubMed DOI PMC

Adewuyi A., Otuechere C.A., Adebayo O.L., Ajisodun I. Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp. Polym. Bull. 2020:1–25. doi: 10.1007/s00289-020-03152-0. DOI

Zhang F., Wu W., Zhang X., Meng X., Tong G., Deng Y. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose. 2016;23:415–425. doi: 10.1007/s10570-015-0799-4. DOI

Tripathi A., Parsons G.N., Rojas O.J., Khan S.A. Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation. ACS Omega. 2017;2:4297–4305. doi: 10.1021/acsomega.7b00571. PubMed DOI PMC

Mißfeldt F., Gurikov P., Lölsberg W., Weinrich D., Lied F., Fricke M., Smirnova I. Continuous Supercritical Drying of Aerogel Particles: Proof of Concept. Ind. Eng. Chem. Res. 2020;59:11284–11295. doi: 10.1021/acs.iecr.0c01356. DOI

Lavoine N., Bergström L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A. 2017;5:16105–16117. doi: 10.1039/C7TA02807E. DOI

De France K.J., Hoare T., Cranston E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017;29:4609–4631. doi: 10.1021/acs.chemmater.7b00531. DOI

Budtova T. Cellulose II aerogels: A review. Cellulose. 2019;26:81–121. doi: 10.1007/s10570-018-2189-1. DOI

Song A., Huang Y., Liu B., Cao H., Zhong X., Lin Y., Wang M., Li X., Zhong W. Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim. Acta. 2017;247:505–515. doi: 10.1016/j.electacta.2017.07.048. DOI

French A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose. 2017;24:4605–4609. doi: 10.1007/s10570-017-1450-3. DOI

Liebert T. ACS Symposium Series. American Chemical Society; Washington, DC, USA: 2010. Cellulose Solvents—Remarkable History, Bright Future; pp. 3–54.

Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2012.

Saito T., Kuramae R., Wohlert J., Berglund L.A., Isogai A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules. 2013;14:248–253. doi: 10.1021/bm301674e. PubMed DOI

Miyashiro D., Hamano R., Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterial. 2020;10:186. doi: 10.3390/nano10020186. PubMed DOI PMC

Berglund L., Noël M., Aitomäki Y., Öman T., Oksman K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind. Crop. Prod. 2016;92:84–92. doi: 10.1016/j.indcrop.2016.08.003. DOI

Pääkkö M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Österberg M., Ruokolainen J., Laine J., Larsson P.T., Ikkala O., et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules. 2007;8:1934–1941. doi: 10.1021/bm061215p. PubMed DOI

Saito T., Kimura S., Nishiyama Y., Isogai A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules. 2007;8:2485–2491. doi: 10.1021/bm0703970. PubMed DOI

Espinosa E., Tarrés Q., Delgado-Aguilar M., González I., Mutjé P., Rodríguez A., Espinosa E., Rodríguez A. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose. 2016;23:837–852. doi: 10.1007/s10570-015-0807-8. DOI

Rol F., Saini S., Meyer V., Petit-Conil M., Bras J. Production of cationic nanofibrils of cellulose by twin-screw extrusion. Ind. Crop. Prod. 2019;137:81–88. doi: 10.1016/j.indcrop.2019.04.031. DOI

Espinosa E., Rol F., Bras J., Rodríguez A. Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J. Clean. Prod. 2019;239:118083. doi: 10.1016/j.jclepro.2019.118083. DOI

Moriana R., Vilaplana F., Ek M. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydr. Polym. 2016;139:139–149. doi: 10.1016/j.carbpol.2015.12.020. PubMed DOI

Bhat A.H., Dasan Y.K., Khan I., Soleimani H., Usmani A. 9—Application of nanocrystalline cellulose: Processing and biomedical applications. In: Jawaid M., Boufi S., Abdul Khalil H.P.S., editors. Cellulose-Reinforced Nanofibre Composites. Woodhead Publishing; Duxford, UK: 2017. pp. 215–240.

Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI

Lavoine N., Desloges I., Dufresne A., Bras J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012;90:735–764. doi: 10.1016/j.carbpol.2012.05.026. PubMed DOI

Castro C., Cleenwerck I., Trček J., Zuluaga R., De Vos P., Caro G., Aguirre R., Putaux J., Ganan P. Gluconacetobacter Medellinensis Sp. Nov., Cellulose-and Non-Cellulose-Producing Acetic Acid Bacteria Isolated from Vinegar. Int. J. Syst. Evol. Microbiol. 2013;63:1119–1125. doi: 10.1099/ijs.0.043414-0. PubMed DOI

Jozala A.F., De Lencastre-Novaes L.C., Lopes A.M., Santos-Ebinuma V.D.C., Mazzola P.G., Pessoa A., Jr., Grotto D., Gerenutti M., Chaud M.V. Bacterial nanocellulose production and application: A 10-year overview. Appl. Microbiol. Biotechnol. 2016;100:2063–2072. doi: 10.1007/s00253-015-7243-4. PubMed DOI

Tanskul S., Amornthatree K., Jaturonlak N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr. Polym. 2013;92:421–428. doi: 10.1016/j.carbpol.2012.09.017. PubMed DOI

MohammadKazemi F., Azin M., Ashori A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 2015;117:518–523. doi: 10.1016/j.carbpol.2014.10.008. PubMed DOI

Arcot L.R., Gröschel A.H., Linder M.B., Rojas O.J., Ikkala O. Self-Assembly of Native Cellulose Nanostructures. Handb. Nanocellulose Cellul. Nanocomposites. 2017:123–174. doi: 10.1002/9783527689972.ch4. DOI

Martoïa F., Cochereau T., Dumont P., Orgéas L., Terrien M., Belgacem M. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016;104:376–391. doi: 10.1016/j.matdes.2016.04.088. DOI

Sehaqui H., Zhou Q., Berglund L.A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) Compos. Sci. Technol. 2011;71:1593–1599. doi: 10.1016/j.compscitech.2011.07.003. DOI

Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI

Saelices C.J., Seantier B., Grohens Y., Capron I. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions. ACS Appl. Mater. Interfaces. 2018;10:16193–16202. doi: 10.1021/acsami.8b02418. PubMed DOI

Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. Cambridge University Press; Cambridge, UK: 1999.

Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI

Chen W., Li Q., Wang Y., Yi X., Zeng J., Yu H., Liu Y., Li J. Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem. 2014;7:154–161. doi: 10.1002/cssc.201300950. PubMed DOI

Heath L., Thielemans W. Cellulose nanowhisker aerogels. Green Chem. 2010;12:1448–1453. doi: 10.1039/c0gc00035c. DOI

Bakaic E., Smeets N.M.B., Hoare T. Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 2015;5:35469–35486. doi: 10.1039/C4RA13581D. DOI

Xu Z., Sun Q., Huang F., Pu Y., Pan S., Ragauskas A.J. Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Adv. 2014;4:12148. doi: 10.1039/c3ra47621a. DOI

Müller A., Zink M., Hessler N., Wesarg F., Müller F.A., Kralisch D., Fischer D. Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv. 2014;4:57173–57184. doi: 10.1039/C4RA09898F. DOI

Liebner F.W., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI

Haimer E., Wendland M., Schlufter K., Frankenfeld K., Miethe P., Potthast A., Rosenau T., Liebner F.W. Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromol. Symp. 2010;294:64–74. doi: 10.1002/masy.201000008. DOI

Pereira A.L.S., Feitosa J.P.A., Morais J.P.S., Rosa M.D.F. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydr. Polym. 2020;250:116927. doi: 10.1016/j.carbpol.2020.116927. PubMed DOI

Köse K., Mavlan M., Youngblood J.P. Applications and impact of nanocellulose based adsorbents. Cellulose. 2020;27:2967–2990. doi: 10.1007/s10570-020-03011-1. DOI

Wang Q., Xia T., Jia X., Zhao J., Li Q., Ao C., Deng X., Zhang X., Zhang W., Lu C. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 2020;245:116554. doi: 10.1016/j.carbpol.2020.116554. PubMed DOI

Zu G., Shen J., Zou L., Wang F., Wang X., Zhang Y., Yao X. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon. 2016;99:203–211. doi: 10.1016/j.carbon.2015.11.079. DOI

Zhang W., Wang X., Zhang Y., Van Bochove B., Mäkilä E., Seppälä J., Xu W., Willför S., Xu C. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 2020;242:116523. doi: 10.1016/j.seppur.2020.116523. DOI

Ferreira F., Otoni C.G., De France K.J., Barud H.S., Lona L.M., Cranston E.D., Rojas O.J. Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Mater. Today. 2020;37:126–141. doi: 10.1016/j.mattod.2020.03.003. DOI

De Oliveira J.P., Bruni G.P., Fabra M.J., Zavareze E.D.R., López-Rubio A., Martínez-Sanz M. Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocoll. 2019;89:337–350. doi: 10.1016/j.foodhyd.2018.10.047. DOI

Liu J., Cheng F., Grénman H., Spoljaric S., Seppälä J., Eriksson J.E., Willför S., Xu C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. 2016;148:259–271. doi: 10.1016/j.carbpol.2016.04.064. PubMed DOI

Tan T.H., Lee H.V., Yehya Dabdawb W.A., Hamid S.B.B.O.A.A. Chapter 5—A review of nanocellulose in the drug-delivery system. In: Holban A., Grumezescu A.M., editors. Materials for Biomedical Engineering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 131–164.

Valo H., Arola S., Laaksonen P., Torkkeli M., Peltonen L., Linder M.B., Serimaa R., Kuga S., Hirvonen J., Laaksonen T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 2013;50:69–77. doi: 10.1016/j.ejps.2013.02.023. PubMed DOI

Shawkataly A.K., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain S., Balakrishnan V., Gopakumar D.A., Abdullah C., Oyekanmi A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymer. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC

Zhang X., Lin Z., Chen B., Zhang W., Sharma S., Gu W., Deng Y. Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J. Power Sources. 2014;246:283–289. doi: 10.1016/j.jpowsour.2013.07.080. DOI

Yang X., Shi K., Zhitomirsky I., Cranston E.D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Adv. Mater. 2015;27:6104–6109. doi: 10.1002/adma.201502284. PubMed DOI

Wu Z., Li C., Liang H.-W., Chen J.-F., Yu S. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. Int. Ed. 2013;52:2925–2929. doi: 10.1002/anie.201209676. PubMed DOI

Kuhn J., Ebert H.-P., Arduini-Schuster M., Büttner D., Fricke J. Thermal transport in polystyrene and polyurethane foam insulations. Int. J. Heat Mass Transf. 1992;35:1795–1801. doi: 10.1016/0017-9310(92)90150-Q. DOI

Wicklein B., Kocjan A., Salazar-Alvarez G., Carosio F., Camino G., Antonietti M., Bergström L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015;10:277–283. doi: 10.1038/nnano.2014.248. PubMed DOI

Zhao S., Zhang Z., Sèbe G., Wu R., Virtudazo R.V.R., Tingaut P., Koebel M.M. Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization. Adv. Funct. Mater. 2015;25:2326–2334. doi: 10.1002/adfm.201404368. DOI

He X., Cheng L., Wang Y., Zhao J., Zhang W., Lu C. Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. 2014;111:683–687. doi: 10.1016/j.carbpol.2014.05.020. PubMed DOI

Sajab M.S., Chia C.H., Chan C.H., Zakaria S., Kaco H., Chook S.W., Chin S.X., Noor A.M. Bifunctional graphene oxide–cellulose nanofibril aerogel loaded with Fe(iii) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Adv. 2016;6:19819–19825. doi: 10.1039/C5RA26193G. DOI

Ookuma S., Igarashi K., Hara M., Aso K., Yoshidome H., Nakayama H., Suzuki K., Nakajima K. Porous Ion-Exchanged Fine Cellulose Particles, Method for Production Thereof, and Affinity Carrier. 5,196,527. U.S. Patent. 1993 Mar 23;

Pinnow M., Fanter C., Kunze J., Fink H.-P. Characterization of Highly Porous Materials from Cellulose Carbamate. Macromol. Symp. 2008;262:129–139. doi: 10.1002/masy.200850213. DOI

Budtova T., Navard P. Cellulose in NaOH–water based solvents: A review. Cellulose. 2015;23:5–55. doi: 10.1007/s10570-015-0779-8. DOI

Innerlohinger J., Weber H.K., Kraft G. Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose. Macromol. Symp. 2006;244:126–135. doi: 10.1002/masy.200651212. DOI

Sescousse R., Budtova T. Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose. 2009;16:417–426. doi: 10.1007/s10570-009-9287-z. DOI

Schestakow M., Karadagli I., Ratke L. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr. Polym. 2016;137:642–649. doi: 10.1016/j.carbpol.2015.10.097. PubMed DOI

Buchtová N., Budtova T. Cellulose aero-, cryo- and xerogels: Towards understanding of morphology control. Cellulose. 2016;23:2585–2595. doi: 10.1007/s10570-016-0960-8. DOI

Rege A., Schestakow M., Karadagli I., Ratke L., Itskov M. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter. 2016;12:7079–7088. doi: 10.1039/C6SM01460G. PubMed DOI

Sescousse R., Gavillon R., Budtova T. Aerocellulose from cellulose–ionic liquid solutions: Preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 2011;83:1766–1774. doi: 10.1016/j.carbpol.2010.10.043. DOI

Rudaz C. Ph.D. Thesis. Mines ParisTech; Sophia Antipolis, France: 2013. Cellulose and Pectin Aerogels: Towards their Nano-Structuration.

Demilecamps A., Alves M., Rigacci A., Reichenauer G., Budtova T. Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J. Non-Cryst. Solids. 2016;452:259–265. doi: 10.1016/j.jnoncrysol.2016.09.003. DOI

Liebner F., Pircher N., Schimper C., Haimer E., Rosenau T. Aerogels: Cellulose-Based. Encycl. Biomed. Polym. Polym. Biomater. 2016:37–75. doi: 10.1081/e-ebpp-120051062. DOI

Pircher N., Fischhuber D., Carbajal L., Strauß C., Nedelec J.-M., Kasper C., Rosenau T., Liebner F.W. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 2015;300:911–924. doi: 10.1002/mame.201500048. PubMed DOI PMC

Liebner F.W., Dunareanu R., Opietnik M., Haimer E., Wendland M., Werner C., Maitz M.F., Seib F.P., Neouze M.-A., Potthast A., et al. Shaped hemocompatible aerogels from cellulose phosphates: Preparation and properties. Holzforschung. 2012;66:317–321. doi: 10.1515/hf.2011.163. DOI

Hu Y., Zhuo H., Zhong L., Tong X., Peng X., Wang S., Sun R. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 2016;6:15788–15795. doi: 10.1039/C6RA00822D. DOI

Yang X., Fei B., Ma J., Liu X., Yang S., Tian G., Jiang Z. Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydr. Polym. 2018;180:385–392. doi: 10.1016/j.carbpol.2017.10.013. PubMed DOI

Zhuo H., Hu Y., Tong X., Zhong L., Peng X., Sun R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crop. Prod. 2016;87:229–235. doi: 10.1016/j.indcrop.2016.04.041. DOI

Zhou S., Chen G., Feng X., Wang M., Song T., Liu D., Lu F., Qi H. In Situ MnO X/N-Doped Carbon Aerogels from Cellulose as Monolithic and Highly Efficient Catalysts for the Upgrading of Bioderived Aldehydes. Green Chem. 2018;20:3593–3603. doi: 10.1039/C8GC01413B. DOI

Rooke J., Sescousse R., Budtova T., Berthon-Fabry S., Simon B., Chatenet M. Cellulose- Based Nanostructured Carbons for Energy Conversion and Storage Devices. In: Rufford T.E., Zhu J., Hulicova-Jurcakova D., editors. Green Carbon Materials: Advances and Applications. Jenny Stanford Publishing; New York, NY, USA: 2013. pp. 89–111.

Guilminot E., Gavillon R., Chatenet M., Berthon-Fabry S., Rigacci A., Budtova T. New nanostructured carbons based on porous cellulose: Elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J. Power Sources. 2008;185:717–726. doi: 10.1016/j.jpowsour.2008.08.030. DOI

Schoemaker H.E., Piontek K. On the interaction of lignin peroxidase with lignin. Pure Appl. Chem. 1996;68:2089–2096. doi: 10.1351/pac199668112089. DOI

Bhat A., Dasan Y., Khan I. Agricultural Biomass Based Potential Materials. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2015. Extraction of Lignin from Biomass for Biodiesel Production; pp. 155–179.

Robinson A.R., Mansfield S.D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 2009;58:706–714. doi: 10.1111/j.1365-313X.2009.03808.x. PubMed DOI

Dos Santos Abreu H., Do Nascimento A.M., Maria M.A. Lignin Structure and Wood Properties. Wood Fiber Sci. 1999;31:426–433.

Calvo-Flores F.G., Dobado J.A. Lignin as Renewable Raw Material. ChemSusChem. 2010;3:1227–1235. doi: 10.1002/cssc.201000157. PubMed DOI

Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Pizzi A., Fierro V. New tannin–lignin aerogels. Ind. Crop. Prod. 2013;41:347–355. doi: 10.1016/j.indcrop.2012.04.052. DOI

Bhanu Rekha V., Ramachandralu K., Rasigha T. Enhancing the Absorbency of Bagasse through Enzymatic Delignification. J. Fash. Technol. Text. Eng. 2013;1:2. doi: 10.4172/2329-9568.1000101. DOI

Brunow G. Methods to Reveal the Structure of Lignin. Biopolym. Online. 2001 doi: 10.1002/3527600035.bpol1003. DOI

Radotić K., Mićić M. Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer; Berlin/Heidelberg, Germany: 2016. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues; pp. 365–376.

Saake B., Lehnen R. Lignin. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2012. DOI

Saito T., Brown R.H., Hunt M.A., Pickel D.L., Pickel J.M., Messman J.M., Baker F.S., Keller M., Naskar A.K. Turning renewable resources into value-added polymer: Development of lignin-based thermoplastic. Green Chem. 2012;14:3295–3303. doi: 10.1039/c2gc35933b. DOI

Perez-Cantu L., Liebner F.W., Smirnova I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014;195:303–310. doi: 10.1016/j.micromeso.2014.04.018. DOI

Chen F., Xu M., Wang L., Li J. Preparation and Characterization of Organic Aerogels by the Lignin-Resorcinol-Formaldehyde Copolymer. Bioresources. 2011;6:1262–1272.

Chen C., Li F., Zhang Y., Wang B., Fan Y., Wang X., Sun R. Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 2018;350:173–180. doi: 10.1016/j.cej.2018.05.189. DOI

Quraishi S., Martins M., Barros A.A., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids. 2015;105:1–8. doi: 10.1016/j.supflu.2014.12.026. DOI

Karaaslan M.A., Kadla J.F., Ko F. Lignin-Based Aerogels. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. Elsevier; Oxford, UK: Waltham, MA, USA: 2016. pp. 67–93. DOI

Yang J., An X., Liu L., Tang S., Cao H., Xu Q., Liu H. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydr. Polym. 2020;250:116881. doi: 10.1016/j.carbpol.2020.116881. PubMed DOI

Farhat W., Venditti R.A., Quick A., Taha M., Mignard N., Becquart F., Ayoub A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crop. Prod. 2017;107:370–377. doi: 10.1016/j.indcrop.2017.05.055. DOI

Pérez J., Muñoz-Dorado J., De La Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002;5:53–63. doi: 10.1007/s10123-002-0062-3. PubMed DOI

Gírio F., Fonseca C., Carvalheiro F., Duarte L.C., Marques S., Bogel-Łukasik R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 2010;101:4775–4800. doi: 10.1016/j.biortech.2010.01.088. PubMed DOI

Machmudah S., Kanda H., Goto M. Chapter 3—Hydrolysis of Biopolymers in Near-Critical and Subcritical Water. In: Dominguez González H., González Muñoz M.J., editors. Water Extraction of Bioactive Compounds. Elsevier; Amsterdam, The Netherlands: 2017. pp. 69–107.

Álvarez A., Cachero S., González-Sánchez C., Montejo-Bernardo J., Pizarro C., Bueno J.L. Novel method for holocellulose analysis of non-woody biomass wastes. Carbohydr. Polym. 2018;189:250–256. doi: 10.1016/j.carbpol.2018.02.043. PubMed DOI

Flórez-Pardo L.M., González-Córdoba A., Mendoza J.G.S. Evaluation of different methods for efficient extraction of hemicelluloses leaves and tops of sugarcane. DYNA. 2018;85:18–27. doi: 10.15446/dyna.v85n204.66626. DOI

Kim C.H., Lee J., Treasure T., Skotty J., Floyd T., Kelley S.S., Park S. Alkaline extraction and characterization of residual hemicellulose in dissolving pulp. Cellulose. 2018;26:1323–1333. doi: 10.1007/s10570-018-2137-0. DOI

Mohtar S.S., Busu T.N.Z.T.M., Noor A.M.M., Shaari N., Mat H. An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr. Polym. 2017;166:291–299. doi: 10.1016/j.carbpol.2017.02.102. PubMed DOI

Krogell J., Korotkova E., Eränen K., Pranovich A., Salmi T., Murzin D., Willför S. Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor—Effects of wood particle size. Bioresour. Technol. 2013;143:212–220. doi: 10.1016/j.biortech.2013.05.110. PubMed DOI

Doner L.W., Hicks K.B. Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction. Cereal Chem. J. 1997;74:176–181. doi: 10.1094/CCHEM.1997.74.2.176. DOI

Yuan Y., Zou P., Zhou J., Geng Y., Fan J., Clark J., Li Y.-Q., Zhang C.S. Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass. Carbohydr. Polym. 2019;223:115043. doi: 10.1016/j.carbpol.2019.115043. PubMed DOI

Väisänen T., Kilpeläinen P., Kitunen V., Lappalainen R., Tomppo L. Effect of steam treatment on the chemical composition of hemp (Cannabis sativa L.) and identification of the extracted carbohydrates and other compounds. Ind. Crop. Prod. 2019;131:224–233. doi: 10.1016/j.indcrop.2019.01.055. DOI

Mosier N., Wyman C., Dale B., Elander R., Lee Y., Holtzapple M., Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005;96:673–686. doi: 10.1016/j.biortech.2004.06.025. PubMed DOI

Ebringerová A. Structural Diversity and Application Potential of Hemicelluloses. Macromol. Symp. 2005;232:1–12. doi: 10.1002/masy.200551401. DOI

Liu X., Lin Q., Yan Y., Peng F., Sun R., Ren J. Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Curr. Med. Chem. 2019;26:2430–2455. doi: 10.2174/0929867324666170705113657. PubMed DOI

Farhat W., Venditti R.A., Hubbe M., Taha M., Becquart F., Ayoub A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem. 2017;10:305–323. doi: 10.1002/cssc.201601047. PubMed DOI

Laine C., Harlin A., Hartman J., Hyvärinen S., Kammiovirta K., Krogerus B., Pajari H., Rautkoski H., Setälä H., Sievänen J., et al. Hydroxyalkylated xylans—Their synthesis and application in coatings for packaging and paper. Ind. Crop. Prod. 2013;44:692–704. doi: 10.1016/j.indcrop.2012.08.033. DOI

Zoldners J., Kiseleva T. Modification of hemicelluloses with polycarboxylic acids. Holzforschung. 2013;67:567–571. doi: 10.1515/hf-2012-0183. DOI

Peng X., Ren J., Sun R. An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohydr. Polym. 2011;83:1922–1928. doi: 10.1016/j.carbpol.2010.10.064. DOI

Xu W., Pranovich A., Uppstu P., Wang X., Kronlund D., Hemming J., Öblom H., Moritz N., Preis M., Sandler N., et al. Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydr. Polym. 2018;187:51–58. doi: 10.1016/j.carbpol.2018.01.069. PubMed DOI

Lin H., Liu Y., Chang Z., Yan S., Liu S., Han S. A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors. Microporous Mesoporous Mater. 2020;292:109707. doi: 10.1016/j.micromeso.2019.109707. DOI

Comin L.M., Temelli F., Saldaña M.D. Barley beta-glucan aerogels via supercritical CO2 drying. Food Res. Int. 2012;48:442–448. doi: 10.1016/j.foodres.2012.05.002. DOI

Comin L.M., Temelli F., Saldaña M.D. Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. J. Food Eng. 2012;111:625–631. doi: 10.1016/j.jfoodeng.2012.03.005. DOI

Marquez-Escalante J.A., Carvajal-Millán E., Miki-Yoshida M., Álvarez-Contreras L., Toledo-Guillén A.R., Lizardi-Mendoza J., Rascón-Chu A. Water Extractable Arabinoxylan Aerogels Prepared by Supercritical CO2 Drying. Molecules. 2013;18:5531–5542. doi: 10.3390/molecules18055531. PubMed DOI PMC

Berglund L., Forsberg F., Jonoobi M., Oksman K. Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial. RSC Adv. 2018;8:38219–38228. doi: 10.1039/C8RA08166B. PubMed DOI PMC

Jaafar Z., Quelennec B., Moreau C., Lourdin D., Maigret J., Pontoire B., D’Orlando A., Coradin T., Duchemin B., Fernandes F., et al. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydr. Polym. 2020;247:116642. doi: 10.1016/j.carbpol.2020.116642. PubMed DOI

Köhnke T., Lin A., Elder T., Theliander H., Ragauskas A.J. Nanoreinforced xylan–cellulose composite foams by freeze-casting. Green Chem. 2012;14:1864. doi: 10.1039/c2gc35413f. DOI

Chen M., Zhang X., Zhang A., Liu C., Sun R. Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose. 2016;23:1325–1334. doi: 10.1007/s10570-015-0814-9. DOI

Aaltonen O., Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr. Polym. 2009;75:125–129. doi: 10.1016/j.carbpol.2008.07.008. DOI

Sescousse R., Smacchia A., Budtova T. Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose. 2010;17:1137–1146. doi: 10.1007/s10570-010-9448-0. DOI

Geng S., Wei J., Jonasson S., Hedlund J., Oksman K. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage. ACS Appl. Mater. Interfaces. 2020;12:7432–7441. doi: 10.1021/acsami.9b19955. PubMed DOI PMC

Korhonen O., Budtova T. All-cellulose composite aerogels and cryogels. Compos. Part A Appl. Sci. Manuf. 2020;137:106027. doi: 10.1016/j.compositesa.2020.106027. DOI

Zhang Q., Li L., Jiang B., Zhang H., He N., Yang S., Tang D., Song Y. Flexible and Mildew-Resistant Wood-Derived Aerogel for Stable and Efficient Solar Desalination. ACS Appl. Mater. Interfaces. 2020;12:28179–28187. doi: 10.1021/acsami.0c05806. PubMed DOI

Tran D.T., Nguyen S.T., Do N.D., Thai N.N.T., Thai Q.B., Huynh H.K.P., Nguyen V.T.T., Phan A.N. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater. Chem. Phys. 2020;253:123363. doi: 10.1016/j.matchemphys.2020.123363. DOI

Mussana H., Yang X., Tessima M., Han F., Iqbal N., Liu L. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind. Crop. Prod. 2018;113:225–233. doi: 10.1016/j.indcrop.2018.01.025. DOI

Ainsworth C.H., Paris C.B., Perlin N., Dornberger L.N., Iii W.F.P., Chancellor E., Murawski S., Hollander D., Daly K., Romero I.C., et al. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS ONE. 2018;13:e0190840. doi: 10.1371/journal.pone.0190840. PubMed DOI PMC

Hadji E.M., Fu B., Abebe A., Bilal H.M., Wang J. Sponge-based materials for oil spill cleanups: A review. Front. Chem. Sci. Eng. 2020;14:749–762. doi: 10.1007/s11705-019-1890-4. DOI

Chhajed M., Yadav C., Agrawal A.K., Maji P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym. 2019;226:115286. doi: 10.1016/j.carbpol.2019.115286. PubMed DOI

Li Z., Zhong L., Zhang T., Qiu F., Yue X., Yang D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019;7:9984–9994. doi: 10.1021/acssuschemeng.9b01122. DOI

Bidgoli H., Mortazavi Y., Khodadadi A.A. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. J. Hazard. Mater. 2019;366:229–239. doi: 10.1016/j.jhazmat.2018.11.084. PubMed DOI

Xu X., Dong F., Yang X., Liu H., Guo L., Qian Y., Wang A., Wang S., Luo J. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials. J. Agric. Food Chem. 2019;67:637–643. doi: 10.1021/acs.jafc.8b05161. PubMed DOI

Aalbers G., Boott C.E., D’Acierno F., Lewis L., Ho J., Michal C.A., Hamad W.Y., MacLachlan M.J. Post-modification of Cellulose Nanocrystal Aerogels with Thiol–Ene Click Chemistry. Biomacromolecules. 2019;20:2779–2785. doi: 10.1021/acs.biomac.9b00533. PubMed DOI

Fauziyah M., Widiyastuti W., Setyawan H. A hydrophobic cellulose aerogel from coir fibers waste for oil spill application. IOP Conf. Ser. Mater. Sci. Eng. 2020;778:012019. doi: 10.1088/1757-899X/778/1/012019. DOI

Lazzari L.K., Zampieri V.B., Zanini M., Zattera A.J., Baldasso C. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose. 2017;24:3421–3431. doi: 10.1007/s10570-017-1349-z. DOI

Cheng H., Gu B., Pennefather M.P., Nguyen T.X., Phan-Thien N., Duong H.M. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 2017;130:452–458. doi: 10.1016/j.matdes.2017.05.082. DOI

Rafieian F., Hosseini M., Jonoobi M., Yu Q. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose. 2018;25:4695–4710. doi: 10.1007/s10570-018-1867-3. DOI

Yagoub H., Zhu L., Shibraen M.H.M.A., Altam A.A., Babiker D.M.D., Liang S., Jin Y., Yang S. Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil–Water Separation. Polymer. 2019;11:1593. doi: 10.3390/polym11101593. PubMed DOI PMC

Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 2009;1:169–192. doi: 10.1146/annurev.marine.010908.163834. PubMed DOI

Singh G., Lee J., Karakoti A., Bahadur R., Yi J., Zhao D., Albahily K., Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/D0CS00075B. PubMed DOI

Zhang T., Zhang W., Zhang Y., Shen M., Zhang J. Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption. Cellulose. 2020;27:2953–2958. doi: 10.1007/s10570-020-03035-7. DOI

Jiang X., Kong Y., Zou H., Zhao Z., Zhong Y., Shen X. Amine grafted cellulose aerogel for CO2 capture. J. Porous Mater. 2020:1–5. doi: 10.1007/s10934-020-00968-z. DOI

Sepahvand S., Jonoobi M., Ashori A., Gauvin F., Brouwers H.J.H., Oksman K., Yu Q. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydr. Polym. 2020;230:115571. doi: 10.1016/j.carbpol.2019.115571. PubMed DOI

Liu S., Zhang Y., Jiang H., Wang X., Zhang T., Yao Y. High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ. Chem. Lett. 2018;16:605–614. doi: 10.1007/s10311-017-0701-8. DOI

Li Y., Jia P., Xu J., Wu Y., Jiang H., Li Z. The Aminosilane Functionalization of Cellulose Nanofibrils and the Mechanical and CO2 Adsorption Characteristics of Their Aerogel. Ind. Eng. Chem. Res. 2020;59:2874–2882. doi: 10.1021/acs.iecr.9b04253. DOI

Ates B., Koytepe S., Ulu A., Gurses C., Thakur V.K. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem. Rev. 2020;120:9304–9362. doi: 10.1021/acs.chemrev.9b00553. PubMed DOI

Wei X., Huang T., Nie J., Yang J.-H., Qi X.-D., Zhou Z.-W., Wang Y. Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes. Carbohydr. Polym. 2018;198:546–555. doi: 10.1016/j.carbpol.2018.06.112. PubMed DOI

Saeed R.M.Y., Bano Z., Sun J., Wang F., Ullah N., Wang Q. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye. J. Appl. Polym. Sci. 2019;136:47404. doi: 10.1002/app.47404. DOI

Hasan M., Gopakumar D.A., Arumughan V., Pottathara Y.B., Sisanth S.K., Pasquini D., Bračič M., Seantier B., Nzihou A., Thomas S., et al. Robust Superhydrophobic Cellulose Nanofiber Aerogel for Multifunctional Environmental Applications. Polymer. 2019;11:495. doi: 10.3390/polym11030495. PubMed DOI PMC

Song W., Zhu M., Zhu Y., Zhao Y., Yang M., Miao Z., Ren H., Ma Q., Qian L. Zeolitic imidazolate framework-67 functionalized cellulose hybrid aerogel: An environmentally friendly candidate for dye removal. Cellulose. 2019;27:2161–2172. doi: 10.1007/s10570-019-02883-2. DOI

Guo D.-M., An Q.-D., Xiao Z., Zhai S.-R., Shi Z. Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution. RSC Adv. 2017;7:54039–54052. doi: 10.1039/C7RA09940A. DOI

Li J., Zuo K., Wu W., Xu Z., Yi Y., Jing Y., Xiao H., Fang G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II) Carbohydr. Polym. 2018;196:376–384. doi: 10.1016/j.carbpol.2018.05.015. PubMed DOI

Li J., Zheng L., Liu H. A novel carbon aerogel prepared for adsorption of copper(II) ion in water. J. Porous Mater. 2017;24:1575–1580. doi: 10.1007/s10934-017-0397-y. DOI

Wang X., Jiang S., Cui S., Tang Y., Pei Z., Duan H. Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu(II) Cellulose. 2019;26:5051–5063. doi: 10.1007/s10570-019-02444-7. DOI

Giese M., Blusch L.K., Schlesinger M., Meseck G.R., Hamad W.Y., Arjmand M., Sundararaj U., MacLachlan M.J. Magnetic Mesoporous Photonic Cellulose Films. Langmuir. 2016;32:9329–9334. doi: 10.1021/acs.langmuir.6b02974. PubMed DOI

Zanata D.D.M., Battirola L.C., Gonçalves M.D.C. Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane. Cellulose. 2018;25:7225–7238. doi: 10.1007/s10570-018-2090-y. DOI

Qian L., Yang M., Chen H., Xu Y., Zhang S., Zhou Q., He B., Bai Y., Song W. Preparation of a poly(ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 2019;218:154–162. doi: 10.1016/j.carbpol.2019.04.081. PubMed DOI

Keshipour S., Khezerloo M. Au-dimercaprol functionalized cellulose aerogel: Synthesis, characterization and catalytic application. Appl. Organomet. Chem. 2018;32:e4255. doi: 10.1002/aoc.4255. DOI

Liang L., Zhang S., Goenaga G.A., Meng X., Zawodzinski T.A., Ragauskas A.J. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front. Chem. 2020;8:570. doi: 10.3389/fchem.2020.00570. PubMed DOI PMC

Li J., Wang Q., Zheng L., Liu H. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water. J. Mater. Sci. Technol. 2020;41:68–75. doi: 10.1016/j.jmst.2019.09.019. DOI

Wang S., Zhang Q., Wang Z., Pu J. Facile fabrication of an effective nanocellulose-based aerogel and removal of methylene blue from aqueous system. J. Water Process. Eng. 2020;37:101511. doi: 10.1016/j.jwpe.2020.101511. DOI

Balboa E., Moure A., Domínguez H. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept. Mar. Drugs. 2015;13:3745–3760. doi: 10.3390/md13063745. PubMed DOI PMC

Seghetta M., Hou X., Simone B., Bjerre A.-B., Thomsen M. Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers—A step towards a regenerative bioeconomy. J. Clean. Prod. 2016;137:1158–1169. doi: 10.1016/j.jclepro.2016.07.195. DOI

Baghel R.S., Suthar P., Gajaria T.K., Bhattacharya S., Anil A., Reddy C. Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. J. Clean. Prod. 2020;263:121359. doi: 10.1016/j.jclepro.2020.121359. DOI

Rhein-Knudsen N., Ale M.T., Meyer A.S. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs. 2015;13:3340–3359. doi: 10.3390/md13063340. PubMed DOI PMC

Rehm B.H., Moradali M.F. Alginates and their Biomedical Applications. Springer; Berlin/Heidelberg, Germany: 2018.

Kim S. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Baudron V., Gurikov P., Smirnova I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle. Colloids Surf. A Physicochem. Eng. Asp. 2019;566:58–69. doi: 10.1016/j.colsurfa.2018.12.055. DOI

Şahin I., Uzunlar E., Erkey C. Investigation of the effect of gel properties on supercritical drying kinetics of ionotropic alginate gel particles. J. Supercrit. Fluids. 2019;152:104571. doi: 10.1016/j.supflu.2019.104571. DOI

Hatami T., Viganó J., Mei L.H.I., Martínez J. Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J. Supercrit. Fluids. 2020;160:104791. doi: 10.1016/j.supflu.2020.104791. DOI

Rodríguez-Dorado R., López-Iglesias C., García-González C.A., Auriemma G., Aquino R.P., Del Gaudio P. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles’ Micromeritics. Molecules. 2019;24:1049. doi: 10.3390/molecules24061049. PubMed DOI PMC

Siqueira P., Siqueira É., De Lima A.E., Siqueira G., Pinzón-Garcia A.D., Lopes A.P., Segura M.E.C., Isaac A., Pereira F.V., Botaro V.R. Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterial. 2019;9:78. doi: 10.3390/nano9010078. PubMed DOI PMC

De Cicco F., Russo P., Reverchon E., García-González C., Aquino R., Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr. Polym. 2016;147:482–489. doi: 10.1016/j.carbpol.2016.04.031. PubMed DOI

Li X.-L., He Y.-R., Qin Z.-M., Chen M.-J., Chen H.-B. Facile fabrication, mechanical property and flame retardancy of aerogel composites based on alginate and melamine-formaldehyde. Polymer. 2019;181:121783. doi: 10.1016/j.polymer.2019.121783. DOI

Shan C., Wang L., Li Z., Zhong X., Hou Y., Zhang L., Shi F. Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts. Carbohydr. Polym. 2019;203:19–25. doi: 10.1016/j.carbpol.2018.09.024. PubMed DOI

Gorshkova N., Brovko O., Palamarchuk I., Bogolitsyn K., Bogdanovich N., Ivakhnov A., Chukhchin D., Arkhilin M. Formation of supramolecular structure in alginate/chitosan aerogel materials during sol-gel synthesis. J. Sol-Gel Sci. Technol. 2020;95:101–108. doi: 10.1007/s10971-020-05309-9. DOI

Zhai Z., Ren B., Xu Y., Wang S., Zhang L., Liu Z. The preparation of Fe-doped carbon aerogels from sodium alginate. IOP Conf. Ser. Earth Environ. Sci. 2020;508:012137. doi: 10.1088/1755-1315/508/1/012137. DOI

Zhai Z., Ren B., Xu Y., Wang S., Zhang L., Liu Z. Green and facile fabrication of Cu-doped carbon aerogels from sodium alginate for supercapacitors. Org. Electron. 2019;70:246–251. doi: 10.1016/j.orgel.2019.04.028. DOI

Batista M., Gonçalves V., Gaspar F., Nogueira I., Matias A., Gurikov P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI

Athamneh T., Amin A., Benke E., Ambrus R., Leopold C.S., Gurikov P., Smirnova I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids. 2019;150:49–55. doi: 10.1016/j.supflu.2019.04.013. DOI

Dos Santos P., Viganó J., Furtado G.D.F., Cunha R.L., Hubinger M.D., Rezende C.A., Martínez J. Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. J. Supercrit. Fluids. 2020;163:104882. doi: 10.1016/j.supflu.2020.104882. DOI

Lovskaya D., Menshutina N. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Material. 2020;13:329. doi: 10.3390/ma13020329. PubMed DOI PMC

Viganó J., Meirelles A.A., Náthia-Neves G., Baseggio A.M., Cunha R.L., Junior M.R.M., Meireles M.A.A., Gurikov P., Smirnova I., Martínez J. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. Int. J. Biol. Macromol. 2020;155:1060–1068. doi: 10.1016/j.ijbiomac.2019.11.070. PubMed DOI

Wang J., Yang Q., Zhou X., Li S. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 2019;9:547. doi: 10.3390/app9030547. DOI

Kong Y., Zhuang Y., Han K., Shi B. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2020;588:124360. doi: 10.1016/j.colsurfa.2019.124360. DOI

Tao E., Ma D., Yang S., Hao X. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. J. Alloy. Compd. 2020;832:154833. doi: 10.1016/j.jallcom.2020.154833. DOI

Wang Y., Li Y., Zhang X., Zheng H. Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies. J. Polym. Environ. 2020;28:200–210. doi: 10.1007/s10924-019-01577-x. DOI

Jiao C., Li T., Wang J., Wang H., Zhang X., Han X., Du Z., Shang Y., Chen Y. Efficient Removal of Dyes from Aqueous Solution by a Porous Sodium Alginate/gelatin/graphene Oxide Triple-network Composite Aerogel. J. Polym. Environ. 2020;28:1492–1502. doi: 10.1007/s10924-020-01702-1. DOI

Wang S.-J., Bu H., Chen H.-J., Hu T., Chen W.-Z., Wu J.-H., Hu H.-J., Lin M.-Z., Li Y., Jiang G.-B. Floatable magnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater. Chem. Eng. J. 2020;399:125760. doi: 10.1016/j.cej.2020.125760. DOI

Shang K., Liao W., Wang J., Wang Y.-Z., Schiraldi D.A. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Appl. Mater. Interfaces. 2015;8:643–650. doi: 10.1021/acsami.5b09768. PubMed DOI

Jin H., Zhou X., Xu T., Dai C., Gu Y., Yun S., Hu T., Guan G., Chen J. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. ACS Appl. Mater. Interfaces. 2020;12:11815–11824. doi: 10.1021/acsami.9b20923. PubMed DOI

Li X.-L., Chen M.-J., Chen H.-B. Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels. Compos. Part B Eng. 2019;164:18–25. doi: 10.1016/j.compositesb.2018.11.055. DOI

Gurikov P., Raman S.P., Weinrich D., Fricke M., Smirnova I. A novel approach to alginate aerogels: Carbon dioxide induced gelation. RSC Adv. 2015;5:7812–7818. doi: 10.1039/C4RA14653K. DOI

Agostinho D.A., Paninho A.I., Cordeiro T., Nunes A.V., Fonseca I.M., Pereira C., Matias A., Ventura M.G. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Mater. Chem. Phys. 2020;253:123290. doi: 10.1016/j.matchemphys.2020.123290. DOI

Xiao Y., Fu M., Wu D., Xue Z., Xia Y. Preparation of Carrageenan Aerogel from Extraction of Chondrus and Application in Oil/Organic Solvents Absorption. J. Appl. Sci. Eng. Innov. 2020;7:44–48.

Ganesan K., Ratke L. Facile preparation of monolithic κ-carrageenan aerogels. Soft Matter. 2014;10:3218–3224. doi: 10.1039/c3sm52862f. PubMed DOI

El-Naggar M.E., Othman S.I., Allam A.A., Morsy O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020;145:1115–1128. doi: 10.1016/j.ijbiomac.2019.10.037. PubMed DOI

Alnaief M., Obaidat R., Mashaqbeh H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr. Polym. 2018;180:264–275. doi: 10.1016/j.carbpol.2017.10.038. PubMed DOI

Abdellatif F.H.H., Abdellatif M.M. Bio-based i-carrageenan aerogels as efficient adsorbents for heavy metal ions and acid dye from aqueous solution. Cellulose. 2020;27:441–453. doi: 10.1007/s10570-019-02818-x. DOI

Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC

Guo R., Li D., Lv C., Wang Y., Zhang H., Xia Y., Yang D., Zhao X. Porous Ni3S4/C Aerogels Derived from Carrageenan-Ni Hydrogels for High-Performance Sodium-Ion Batteries Anode. Electrochim. Acta. 2019;299:72–79. doi: 10.1016/j.electacta.2019.01.011. DOI

Plazzotta S., Calligaris S., Manzocco L. Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO2-drying, freeze-drying and lettuce-filler addition. Food Hydrocoll. 2019;96:1–10. doi: 10.1016/j.foodhyd.2019.05.008. DOI

Lv D., Li Y., Wang L. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal. Int. J. Biol. Macromol. 2020;148:979–987. doi: 10.1016/j.ijbiomac.2020.01.136. PubMed DOI

Manzocco L., Valoppi F., Calligaris S., Andreatta F., Spilimbergo S., Nicoli M.C. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocoll. 2017;71:68–75. doi: 10.1016/j.foodhyd.2017.04.021. DOI

Pillai C., Paul W., Sharma C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI

Broussignac P. Chitosan: A Natural Polymer Not Well Known by the Industry. Chim. Ind. Genie Chim. 1968;99:1241–1247.

Kurita K., Tomita K., Tada T., Ishii S., Nishimura S.-I., Shimoda K. Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic properties. J. Polym. Sci. Part A Polym. Chem. 1993;31:485–491. doi: 10.1002/pola.1993.080310220. DOI

Bano I., Arshad M., Yasin T., Ghauri M.A., Younus M. Chitosan: A potential biopolymer for wound management. Int. J. Biol. Macromol. 2017;102:380–383. doi: 10.1016/j.ijbiomac.2017.04.047. PubMed DOI

Brown M.A., Daya M.R., Worley J.A. Experience with Chitosan Dressings in a Civilian EMS System. J. Emerg. Med. 2009;37:1–7. doi: 10.1016/j.jemermed.2007.05.043. PubMed DOI

Prashanth K.H., Tharanathan R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007;18:117–131. doi: 10.1016/j.tifs.2006.10.022. DOI

Negm N.A., Hefni H.H., Abd-Elaal A.A., Badr E.A., Kana M.T.A. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020;152:681–702. doi: 10.1016/j.ijbiomac.2020.02.196. PubMed DOI

Alburquerque N.G., Zhao S., Adilien N., Koebel M.M., Lattuada M., Malfait W.J. Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Appl. Mater. Interfaces. 2020;12:22037–22049. doi: 10.1021/acsami.0c03047. PubMed DOI

López-Iglesias C., Barros J., Ardao I., Gurikov P., Monteiro F.J., Smirnova I., Alvarez-Lorenzo C., García-González C. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin. Polymer. 2020;12:273. doi: 10.3390/polym12020273. PubMed DOI PMC

López-Iglesias C., Barros J., Ardao I., Monteiro F.J., Alvarez-Lorenzo C., Gómez-Amoza J.L., García-González C.A. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI

Obaidat R.M., Tashtoush B.M., Bayan M.F., Al Bustami R.T., Alnaief M. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles. Aaps Pharmscitech. 2015;16:1235–1244. doi: 10.1208/s12249-015-0312-2. PubMed DOI PMC

Zhang S., Feng J., Feng J., Jiang Y., Li L. Ultra-low shrinkage chitosan aerogels trussed with polyvinyl alcohol. Mater. Des. 2018;156:398–406. doi: 10.1016/j.matdes.2018.07.004. DOI

Zhao S., Malfait W.J., Jeong E., Fischer B., Zhang Y., Xu H., Angelica E., Risen W.M., Suggs J.W., Koebel M.M. Facile One-Pot Synthesis of Mechanically Robust Biopolymer–Silica Nanocomposite Aerogel by Cogelation of Silicic Acid with Chitosan in Aqueous Media. ACS Sustain. Chem. Eng. 2016;4:5674–5683. doi: 10.1021/acssuschemeng.6b01574. DOI

Takeshita S., Akasaka S., Yoda S. Structural and acoustic properties of transparent chitosan aerogel. Mater. Lett. 2019;254:258–261. doi: 10.1016/j.matlet.2019.07.064. DOI

Takeshita S., Yoda S. Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater. 2015;27:7569–7572. doi: 10.1021/acs.chemmater.5b03610. DOI

Chang X., Chen D., Jiao X. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B. 2008;112:7721–7725. doi: 10.1021/jp8011359. PubMed DOI

Ma Q., Liu Y., Dong Z., Wang J., Hou X. Hydrophobic and nanoporous chitosan-silica composite aerogels for oil absorption. J. Appl. Polym. Sci. 2015;132:132. doi: 10.1002/app.41770. DOI

Diosa J., Guzman F., Bernal C., Mesa M. Formation mechanisms of chitosan-silica hybrid materials and its performance as solid support for KR-12 peptide adsorption: Impact on KR-12 antimicrobial activity and proteolytic stability. J. Mater. Res. Technol. 2020;9:890–901. doi: 10.1016/j.jmrt.2019.11.029. DOI

Gao X.-D., Huang Y.-D., Zhang T.-T., Wu Y.-Q., Li X.-M. Amphiphilic SiO 2 hybrid aerogel: An effective absorbent for emulsified wastewater. J. Mater. Chem. A. 2017;5:12856–12862. doi: 10.1039/C7TA02196H. DOI

Keshipour S., Mirmasoudi S.S. Cross-linked chitosan aerogel modified with Au: Synthesis, characterization and catalytic application. Carbohydr. Polym. 2018;196:494–500. doi: 10.1016/j.carbpol.2018.05.068. PubMed DOI

Rinki K., Dutta P.K., Hunt A.J., MacQuarrie D.J., Clark J.H. Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. Int. J. Polym. Mater. 2011;60:988–999. doi: 10.1080/00914037.2011.553849. DOI

Baldino L., Cardea S., Reverchon E. Nanostructured chitosan-gelatin hybrid aerogels produced by supercritical gel drying. Polym. Eng. Sci. 2017;58:1494–1499. doi: 10.1002/pen.24719. DOI

Valchuk N.A., Brovko O.S., Palamarchuk I.A., Boitsova T.A., Bogolitsyn K.G., Ivakhnov A.D., Chukhchin D.G., Bogdanovich N.I. Preparation of Aerogel Materials Based on Alginate–Chitosan Interpolymer Complex Using Supercritical Fluids. Russ. J. Phys. Chem. B. 2019;13:1121–1124. doi: 10.1134/S1990793119070224. DOI

Baldino L., Cardea S., Scognamiglio M., Reverchon E. A new tool to produce alginate-based aerogels for medical applications, by supercritical gel drying. J. Supercrit. Fluids. 2019;146:152–158. doi: 10.1016/j.supflu.2019.01.016. DOI

Frindy S., El Kadib A., Lahcini M., Primo A., García H. Copper Nanoparticles Stabilized in a Porous Chitosan Aerogel as a Heterogeneous Catalyst for C?S Cross-coupling. ChemCatChem. 2015;7:3307–3315. doi: 10.1002/cctc.201500565. DOI

Anouar A., Katir N., Lahcini M., Primo A., Garcia H. Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Molecules. 2019;24:3290. doi: 10.3390/molecules24183290. PubMed DOI PMC

Sorokin A.B., Quignard F., Valentin R., Mangematin S. Chitosan supported phthalocyanine complexes: Bifunctional catalysts with basic and oxidation active sites. Appl. Catal. A Gen. 2006;309:162–168. doi: 10.1016/j.apcata.2006.03.060. DOI

Kayser H., Müller C.R., García-González C., Smirnova I., Leitner W., De María P.D. Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals. Appl. Catal. A Gen. 2012;445:180–186. doi: 10.1016/j.apcata.2012.08.014. DOI

Raman S., Gurikov P., Smirnova I. Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. J. Supercrit. Fluids. 2015;106:23–33. doi: 10.1016/j.supflu.2015.05.003. DOI

Zhang S., Feng J., Feng J., Jiang Y. Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem. Eng. J. 2017;309:700–707. doi: 10.1016/j.cej.2016.10.098. DOI

Di Renzo F., Valentin R., Boissiere M., Tourrette A., Sparapano G., Molvinger K., Devoisselle J.M., Gérardin C., Quignard F. Hierarchical Macroporosity Induced by Constrained Syneresis in Core–Shell Polysaccharide Composites. Chem. Mater. 2005;17:4693–4699. doi: 10.1021/cm0503477. DOI

Ricci A., Bernardi L., Gioia C., Vierucci S., Robitzer M., Quignard F. Chitosan Aerogel: A Recyclable, Heterogeneous Organocatalyst for the Asymmetric Direct Aldol Reaction in Water. Chem. Commun. 2010;46:6288–6290. doi: 10.1039/c0cc01502d. PubMed DOI

Voragen A.G.J., Coenen G.-J., Verhoef R.P., Schols H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009;20:263–275. doi: 10.1007/s11224-009-9442-z. DOI

Caffall K.H., Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009;344:1879–1900. doi: 10.1016/j.carres.2009.05.021. PubMed DOI

Mohnen D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008;11:266–277. doi: 10.1016/j.pbi.2008.03.006. PubMed DOI

Ridley B.L., O’Neill M.A., Mohnen D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57:929–967. doi: 10.1016/S0031-9422(01)00113-3. PubMed DOI

Gullón B., Gullón P., Sanz Y., Alonso J.L., Parajó J.C., Gullón B. Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Sci. Technol. 2011;44:1687–1696. doi: 10.1016/j.lwt.2011.03.006. DOI

Koubala B., Mbome L., Kansci G., Mbiapo F.T., Crepeau M.-J., Thibault J.-F., Ralet M.-C. Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chem. 2008;106:1202–1207. doi: 10.1016/j.foodchem.2007.07.065. DOI

De Vries R.P., Visser J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001;65:497–522. doi: 10.1128/MMBR.65.4.497-522.2001. PubMed DOI PMC

Müller-Maatsch J., Caligiani A., Tedeschi T., Elst K., Sforza S. Simple and Validated Quantitative1H NMR Method for the Determination of Methylation, Acetylation, and Feruloylation Degree of Pectin. J. Agric. Food Chem. 2014;62:9081–9087. doi: 10.1021/jf502679s. PubMed DOI

Srivastava P., Malviya R. Sources of Pectin, Extraction and its Applications in Pharmaceutical Industry—An Overview. Indian J. Nat. Prod. Resour. 2011;2:10–18.

Canteri-Schemin M.H., Fertonani H.C.R., Waszczynskyj N., Wosiacki G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005;48:259–266. doi: 10.1590/S1516-89132005000200013. DOI

Abdel-Massih R.M., Baydoun E., Waldron K.W., Brett C.T. Effects of partial enzymic degradation of sugar beet pectin on oxidative coupling of pectin-linked ferulates in vitro. Phytochemistry. 2007;68:1785–1790. doi: 10.1016/j.phytochem.2007.04.007. PubMed DOI

Willats W.G.T., McCartney L., Mackie W., Knox J.P. Pectin: Cell biology and prospects for functional analysis. Plant Mol. Biol. 2001;47:9–27. doi: 10.1023/A:1010662911148. PubMed DOI

BeMiller J.N., Whistler R.L. Industrial Gums: Polysaccharides and Their Derivatives. Academic Press; Cambridge, MA, USA: 2012.

Yapo B.M., Lerouge P., Thibault J.-F., Ralet M.-C.J. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr. Polym. 2007;69:426–435. doi: 10.1016/j.carbpol.2006.12.024. DOI

Taylor S. The Chemistry and Technology of Pectin. Academic Press; Cambridge, MA, USA: 2012.

Harholt J., Suttangkakul A., Scheller H.V. Biosynthesis of Pectin. Plant Physiol. 2010;153:384–395. doi: 10.1104/pp.110.156588. PubMed DOI PMC

Yang J.-S., Mu T., Ma M.-M. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018;244:197–205. doi: 10.1016/j.foodchem.2017.10.059. PubMed DOI

Rombouts F.M., Thibault J.-F. Feruloylated pectic substances from sugar-beet pulp. Carbohydr. Res. 1986;154:177–187. doi: 10.1016/S0008-6215(00)90031-4. DOI

Khodaei N., Karboune S. Enzymatic generation of galactose-rich oligosaccharides/oligomers from potato rhamnogalacturonan I pectic polysaccharides. Food Chem. 2016;197:406–414. doi: 10.1016/j.foodchem.2015.10.122. PubMed DOI

Wikiera A., Mika M., Starzyńska-Janiszewska A., Stodolak B. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr. Polym. 2016;142:199–205. doi: 10.1016/j.carbpol.2016.01.063. PubMed DOI

Ghoshal G., Negi P. Isolation of pectin from kinnow peels and its characterization. Food Bioprod. Process. 2020;124:342–353. doi: 10.1016/j.fbp.2020.09.008. DOI

Buathongjan C., Israkarn K., Sangwan W., Outrequin T., Gamonpilas C., Methacanon P. Studies on chemical composition, rheological and antioxidant properties of pectin isolated from Riang (Parkia timoriana (DC.) Merr.) pod. Int. J. Biol. Macromol. 2020;164:4575–4582. doi: 10.1016/j.ijbiomac.2020.09.079. PubMed DOI

Chan S.-Y., Choo W.-S. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem. 2013;141:3752–3758. doi: 10.1016/j.foodchem.2013.06.097. PubMed DOI

Kaya M., Sousa A.G., Crépeau M.-J., Sørensen S.O., Ralet M.-C. Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. Ann. Bot. 2014;114:1319–1326. doi: 10.1093/aob/mcu150. PubMed DOI PMC

Yeoh S., Shi J., Langrish T. Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination. 2008;218:229–237. doi: 10.1016/j.desal.2007.02.018. DOI

Zuin V.G., Ramin L.Z. Chemistry and Chemical Technologies in Waste Valorization. Springer; Berlin/Heidelberg, Germany: 2018. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches; pp. 229–282. PubMed PMC

Khodaei N., Karboune S., Orsat V. Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Food Chem. 2016;190:495–505. doi: 10.1016/j.foodchem.2015.05.082. PubMed DOI

Pińkowska H., Złocińska A. Pektyny–występowanie, budowa chemiczna i właściwości. Wiad. Chem. 2014;68:685–700.

Thakur B.R., Singh R.K., Handa A.K., Rao M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997;37:47–73. doi: 10.1080/10408399709527767. PubMed DOI

Khalil A. Quality of french fried potatoes as influenced by coating with hydrocolloids. Food Chem. 1999;66:201–208. doi: 10.1016/S0308-8146(99)00045-X. DOI

Zaitseva O., Khudyakov A., Sergushkina M., Solomina O., Polezhaeva T. Pectins as a universal medicine. Fitoterapia. 2020;146:104676. doi: 10.1016/j.fitote.2020.104676. PubMed DOI

Minzanova S.T., Mironov V.F., Arkhipova D.M., Khabibullina A.V., Mironova L.G., Zakirova Y.M., Milyukov V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymer. 2018;10:1407. doi: 10.3390/polym10121407. PubMed DOI PMC

Olano-Martin E., Gibson G., Rastall R. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 2002;93:505–511. doi: 10.1046/j.1365-2672.2002.01719.x. PubMed DOI

Wikiera A., Irla M., Mika M. Health-promoting properties of pectin. Postępy Hig. Med. Dosw. 2014;68:590–596. doi: 10.5604/17322693.1102342. PubMed DOI

Sánchez-Infantes D., Muguerza B., Moulay L., Hernandez R., Miguel M., Aleixandre A. Highly Methoxylated Pectin Improves Insulin Resistance and Other Cardiometabolic Risk Factors in Zucker Fatty Rats. J. Agric. Food Chem. 2008;56:3574–3581. doi: 10.1021/jf703598j. PubMed DOI

Schwab U.S., Louheranta A., Törrönen A., Uusitupa M. Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur. J. Clin. Nutr. 2006;60:1073–1080. doi: 10.1038/sj.ejcn.1602421. PubMed DOI

Sudheesh S., Vijayalakshmi N. Lipid-lowering action of pectin from Cucumis sativus. Food Chem. 1999;67:281–286. doi: 10.1016/S0308-8146(99)00135-1. DOI

Jackson C.L., Dreaden T.M., Theobald L.K., Tran N.M., Beal T.L., Eid M., Gao M.Y., Shirley R.B., Stoffel M.T., Kumar M.V., et al. Pectin induces apoptosis in human prostate cancer cells: Correlation of apoptotic function with pectin structure. Glycobioloy. 2007;17:805–819. doi: 10.1093/glycob/cwm054. PubMed DOI

Paulsen B.S., Barsett H. Polysaccharides I. Springer; Berlin/Heidelberg, Germany: 2005. Bioactive Pectic Polysaccharides; pp. 69–101.

Salman H., Bergman M., Djaldetti M., Orlin J., Bessler H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed. Pharm. 2008;62:579–582. doi: 10.1016/j.biopha.2008.07.058. PubMed DOI

Chen C.-H., Sheu M.-T., Chen T.-F., Wang Y.-C., Hou W.-C., Liu D.-Z., Chung T.-C., Liang Y.-C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharm. 2006;72:1001–1009. doi: 10.1016/j.bcp.2006.07.001. PubMed DOI

Groult S., Budtova T. Tuning structure and properties of pectin aerogels. Eur. Polym. J. 2018;108:250–261. doi: 10.1016/j.eurpolymj.2018.08.048. DOI

García-González C., Alnaief M., Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011;86:1425–1438. doi: 10.1016/j.carbpol.2011.06.066. DOI

White R.J., Budarin V.L., Clark J.H. Pectin-Derived Porous Materials. Chem. A Eur. J. 2010;16:1326–1335. doi: 10.1002/chem.200901879. PubMed DOI

Veronovski A., Tkalec G., Knez Ž., Novak Z. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr. Polym. 2014;113:272–278. doi: 10.1016/j.carbpol.2014.06.054. PubMed DOI

García-González C., Carenza E., Zeng M., Smirnova I., Roig A. Design of biocompatible magnetic pectin aerogel monoliths and microspheres. RSC Adv. 2012;2:9816. doi: 10.1039/c2ra21500d. DOI

García-González C., Jin M., Gerth J., Alvarez-Lorenzo C., Smirnova I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym. 2015;117:797–806. doi: 10.1016/j.carbpol.2014.10.045. PubMed DOI

Tkalec G., Knez Z., Novak Z., Gabrijela T., Željko K., Novak Z. Encapsulation of pharmaceuticals into pectin aerogels for controlled drug release. Adv. Technol. 2015;4:49–52. doi: 10.5937/savteh1502049T. DOI

Zhao S., Malfait W.J., Demilecamps A., Zhang Y., Brunner S., Huber L., Tingaut P., Rigacci A., Budtova T., Koebel M. Strong, Thermally Superinsulating Biopolymer–Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin. Angew. Chem. Int. Ed. 2015;54:14282–14286. doi: 10.1002/anie.201507328. PubMed DOI

Tkalec G., Knez Ž., Novak Z. PH sensitive mesoporous materials for immediate or controlled release of NSAID. Microporous Mesoporous Mater. 2016;224:190–200. doi: 10.1016/j.micromeso.2015.11.048. DOI

Tkalec G., Knez Ž., Novak Z. Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J. Supercrit. Fluids. 2015;106:16–22. doi: 10.1016/j.supflu.2015.06.009. DOI

Tkalec G., Knez Ž., Novak Z. Formation of polysaccharide aerogels in ethanol. RSC Adv. 2015;5:77362–77371. doi: 10.1039/C5RA14140K. DOI

Horvat G., Xhanari K., Finšgar M., Gradišnik L., Maver U., Knez Ž., Novak Z. Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 2017;166:365–376. doi: 10.1016/j.carbpol.2017.03.008. PubMed DOI

Zhao H.-B., Chen M., Chen H.-B. Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustain. Chem. Eng. 2017;5:7012–7019. doi: 10.1021/acssuschemeng.7b01247. DOI

Chen K., Zhang H. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int. J. Biol. Macromol. 2019;136:936–943. doi: 10.1016/j.ijbiomac.2019.06.138. PubMed DOI

Horvat G., Pantić M., Knez Ž., Novak Z. Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. J. Non-Cryst. Solids. 2018;481:486–493. doi: 10.1016/j.jnoncrysol.2017.11.037. DOI

Chen H.-B., Li X.-L., Chen M.-J., He Y.-R., Zhao H.-B. Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydr. Polym. 2019;206:609–615. doi: 10.1016/j.carbpol.2018.11.041. PubMed DOI

Horvat G., Pantić M., Knez Ž., Novak Z. Preparation and characterization of polysaccharide—Silica hybrid aerogels. Sci. Rep. 2019;9:16492. doi: 10.1038/s41598-019-52974-0. PubMed DOI PMC

Chen H.-B., Chiou B.-S., Wang Y.-Z., Schiraldi D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces. 2013;5:1715–1721. doi: 10.1021/am3028603. PubMed DOI

Yang W., Yuen A.C.Y., Ping P., Wei R.-C., Hua L., Zhu Z., Li A., Zhu S.-E., Wang L.-L., Liang J., et al. Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Compos. Part A Appl. Sci. Manuf. 2019;119:196–205. doi: 10.1016/j.compositesa.2019.02.003. DOI

Horvat G., Fajfar T., Uzunalić A.P., Knez Ž., Novak Z. Thermal properties of polysaccharide aerogels. J. Anal. Calorim. 2016;127:363–370. doi: 10.1007/s10973-016-5814-y. DOI

Budtova T. Cellulose Science and Technology: Chemistry, Analysis, and Applications. John Wiley & Sons; Chichester, UK: 2018. Bio-Based Aerogels: A New Generation of Thermal Superinsulating Materials; pp. 371–392.

Maleki H., Durães L., García-González C.A., Del Gaudio P., Portugal A., Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI

Rindlav-Westling A., Stading M., Gatenholm P. Crystallinity and Morphology in Films of Starch, Amylose and Amylopectin Blends. Biomacromolecules. 2002;3:84–91. doi: 10.1021/bm010114i. PubMed DOI

Zhu F. Starch based Pickering emulsions: Fabrication, properties, and applications. Trends Food Sci. Technol. 2019;85:129–137. doi: 10.1016/j.tifs.2019.01.012. DOI

Franco P., Aliakbarian B., Perego P., Reverchon E., De Marco I. Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Ind. Eng. Chem. Res. 2018;57:15105–15113. doi: 10.1021/acs.iecr.8b03666. DOI

Glenn G.M., Irving D.W. Starch-Based Microcellular Foams. Cereal Chem. 1995;72:155–161.

García-González C., Camino-Rey M., Alnaief M., Zetzl C., Smirnova I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J. Supercrit. Fluids. 2012;66:297–306. doi: 10.1016/j.supflu.2012.02.026. DOI

Zamora-Sequeira R., Ardao I., Starbird-Perez R., García-González C. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr. Polym. 2018;189:304–312. doi: 10.1016/j.carbpol.2018.02.040. PubMed DOI

García-González C., Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Supercrit. Fluids. 2013;79:152–158. doi: 10.1016/j.supflu.2013.03.001. DOI

Zou F., Budtova T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr. Polym. 2020:117344. doi: 10.1016/j.carbpol.2020.117344. PubMed DOI

Ubeyitogullari A., Moreau R., Rose D.J., Zhang J., Ciftci O.N. Enhancing the Bioaccessibility of Phytosterols Using Nanoporous Corn and Wheat Starch Bioaerogels. Eur. J. Lipid Sci. Technol. 2019;121:1700229. doi: 10.1002/ejlt.201700229. DOI

Martins M., Barros A.A., Quraishi S., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010. DOI

Santos-Rosales V., Ardao I., Alvarez-Lorenzo C., Ribeiro N., Oliveira J.M., García-González C. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO2-Based Approach. Molecules. 2019;24:871. doi: 10.3390/molecules24050871. PubMed DOI PMC

Wang Y., Wu K., Xiao M., Riffat S.B., Su Y., Jiang F. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr. Polym. 2018;197:284–291. doi: 10.1016/j.carbpol.2018.06.009. PubMed DOI

Ye D.-D., Wang T., Liao W., Wang H., Zhao H.-B., Wang Y.-Z., Xu S. Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustain. Chem. Eng. 2019;7:11582–11592. doi: 10.1021/acssuschemeng.9b01487. DOI

Zhang Y., Zhu J., Bi Y., Shi X., Ren H., Wang B. A novel starch-enhanced melamine-formaldehyde aerogel with low volume shrinkage and high toughness. J. Porous Mater. 2017;24:1303–1307. doi: 10.1007/s10934-017-0371-8. DOI

Lovskaya D., Lebedev A., Menshutina N. Aerogels as drug delivery systems: In vitro and in vivo evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI

De Marco I., Reverchon E. Starch aerogel loaded with poorly water-soluble vitamins through supercritical CO2 adsorption. Chem. Eng. Res. Des. 2017;119:221–230. doi: 10.1016/j.cherd.2017.01.024. DOI

Ubeyitogullari A., Ciftci O.N. Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. J. Food Eng. 2017;207:99–107. doi: 10.1016/j.jfoodeng.2017.03.022. DOI

Ubeyitogullari A., Ciftci O.N. Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Adv. 2016;6:108319–108327. doi: 10.1039/C6RA20675A. DOI

Goimil L., Braga M.E., Dias A.M., Gómez-Amoza J.L., Concheiro A., Diaz-Rodriguez P., De Sousa H.C., García-González C.A. Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J. CO2 Util. 2017;18:237–249. doi: 10.1016/j.jcou.2017.01.028. DOI

Miao Z., Ding K., Wu T., Liu Z., Han B., An G., Miao S., Yang G. Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mater. 2008;111:104–109. doi: 10.1016/j.micromeso.2007.07.018. DOI

Starbird-Perez R., García-González C.A., Smirnova I., Krautschneider W.H., Bauhofer W. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C. 2014;37:177–183. doi: 10.1016/j.msec.2013.12.032. PubMed DOI

Anas M., Gönel A.G., Bozbag S.E., Erkey C. Thermodynamics of Adsorption of Carbon Dioxide on Various Aerogels. J. CO2 Util. 2017;21:82–88. doi: 10.1016/j.jcou.2017.06.008. DOI

Loveday S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019;10:311–339. doi: 10.1146/annurev-food-032818-121128. PubMed DOI

Plazzotta S., Calligaris S., Manzocco L. Structural characterization of oleogels from whey protein aerogel particles. Food Res. Int. 2020;132:109099. doi: 10.1016/j.foodres.2020.109099. PubMed DOI

Selmer I., Karnetzke J., Kleemann C., Lehtonen M., Mikkonen K.S., Kulozik U., Smirnova I. Encapsulation of fish oil in protein aerogel micro-particles. J. Food Eng. 2019;260:1–11. doi: 10.1016/j.jfoodeng.2019.04.016. DOI

Andlinger D.J., Bornkeßel A.C., Jung I., Schröter B., Smirnova I., Kulozik U. Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocoll. 2020:106305. doi: 10.1016/j.foodhyd.2020.106305. DOI

Betz M., García-González C., Subrahmanyam R., Smirnova I., Kulozik U. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids. 2012;72:111–119. doi: 10.1016/j.supflu.2012.08.019. DOI

Kleemann C., Selmer I., Smirnova I., Kulozik U. Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocoll. 2018;83:365–374. doi: 10.1016/j.foodhyd.2018.05.021. DOI

Alatalo S.-M., Qiu K., Preuss K., Marinovic A., Sevilla M., Sillanpää M., Guo X., Titirici M.-M., Sevilla M. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon. 2016;96:622–630. doi: 10.1016/j.carbon.2015.09.108. DOI

Marin M.A., Mallepally R.R., McHugh M.A. Silk fibroin aerogels for drug delivery applications. J. Supercrit. Fluids. 2014;91:84–89. doi: 10.1016/j.supflu.2014.04.014. DOI

Selmer I., Kleemann C., Kulozik U., Heinrich S., Smirnova I. Development of egg white protein aerogels as new matrix material for microencapsulation in food. J. Supercrit. Fluids. 2015;106:42–49. doi: 10.1016/j.supflu.2015.05.023. DOI

Maleki H., Whitmore L., Hüsing N. Novel multifunctional polymethylsilsesquioxane–silk fibroin aerogel hybrids for environmental and thermal insulation applications. J. Mater. Chem. A. 2018;6:12598–12612. doi: 10.1039/C8TA02821D. PubMed DOI PMC

Govindarajan D., Duraipandy N., Srivatsan K.V., Lakra R., Korapatti P.S., Jayavel R., Kiran M.S. Fabrication of Hybrid Collagen Aerogels Reinforced with Wheat Grass Bioactives as Instructive Scaffolds for Collagen Turnover and Angiogenesis for Wound Healing Applications. ACS Appl. Mater. Interfaces. 2017;9:16939–16950. doi: 10.1021/acsami.7b05842. PubMed DOI

Pojić M., Mišan A., Tiwari B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018;75:93–104. doi: 10.1016/j.tifs.2018.03.010. DOI

Placin F., Desvergne J.-P., Cansell F. Organic low molecular weight aerogel formed in supercritical fluids. J. Mater. Chem. 2000;10:2147–2149. doi: 10.1039/b001714k. DOI

Jamart-Grégoire B., Son S., Allix F., Felix V., Barth D., Jannot Y., Pickaert G., DeGiovanni A. Monolithic organic aerogels derived from single amino-acid based supramolecular gels: Physical and thermal properties. RSC Adv. 2016;6:102198–102205. doi: 10.1039/C6RA20803G. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO2 Aerogels

. 2023 Apr 24 ; 9 (5) : . [epub] 20230424

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...