Bilirubin Photoisomers in Neonatal Jaundice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Z69118512
ZonMw - Netherlands
MH CZ-DRO VFN 64165
Czech Ministry of Health
PubMed
41226827
PubMed Central
PMC12610296
DOI
10.3390/ijms262110791
PII: ijms262110791
Knihovny.cz E-zdroje
- Klíčová slova
- hyperbilirubinemia, mass spectrometry, newborn infant, photoisomers, phototherapy,
- MeSH
- bilirubin * chemie metabolismus MeSH
- fototerapie metody MeSH
- isomerie MeSH
- lidé MeSH
- novorozenec MeSH
- novorozenecká žloutenka * terapie metabolismus krev MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bilirubin * MeSH
Phototherapy is the standard treatment for neonatal hyperbilirubinemia. During phototherapy, the highly lipophilic bilirubin is converted into more hydrophilic photoisomers, which can be more easily excreted from the body. This process typically lowers bilirubin levels to non-harmful concentrations. However, despite decades of research into the formation and role of bilirubin photoisomers, methodological limitations and the compound's complex biochemistry have hindered comprehensive understanding. This review provides an updated overview of current knowledge on bilirubin photoisomers, including their basic chemistry, analytical quantification, clinical relevance, and future research directions. Improved insight into the mechanism of photoisomer formation and kinetics may inform optimization of phototherapy parameters, including light intensity and wavelength, and offer additional indicators of treatment efficacy beyond total bilirubin concentration. Advances in sensitive and standardized mass spectrometry techniques now enable more accurate measurement of different bilirubin isomers and serve as a first step towards a deeper insight into the clinical relevance of photoisomers.
Department of Clinical Chemistry Karolinska University Hospital 171 64 Stockholm Sweden
Department of Laboratory Medicine Karolinska Institutet 171 77 Stockholm Sweden
Department of Laboratory Medicine Radboud University medical center 6525 GA Nijmegen The Netherlands
Murdoch Children's Research Institute Parkville VIC 3052 Australia
School of Health Sciences Swinburne University of Technology Melbourne VIC 3122 Australia
Zobrazit více v PubMed
Cremer R.J., Perryman P.W., Richards D.H. Influence of light on the hyperbilirubinaemia of infants. Lancet. 1958;271:1094–1097. doi: 10.1016/S0140-6736(58)91849-X. PubMed DOI
Ferreira H.C., Cardim W.H., Mellone O. Phototherapy. A new therapeutic method in hyperbilirubinemia of the newborn. J. Pediatr. 1960;25:347–391. PubMed
Lucey J., Ferreiro M., Hewitt J. Prevention of hyperbilirubinemia of prematurity by phototherapy. Pediatrics. 1968;41:1047–1054. doi: 10.1542/peds.41.6.1047. PubMed DOI
Scheidt P.C., Bryla D.A., Nelson K.B., Hirtz D.G., Hoffman H.J. Phototherapy for Neonatal Hyperbilirubinemia—6-Year Follow-up of the National-Institute-of-Child-Health-and-Human-Development Clinical-Trial. Pediatrics. 1990;85:455–463. PubMed
Bergman D.A., Cooley J.R., Coombs J.B., Goldberg M.J., Homer C.J., Nazarian L.F., Riemenschneider T.A., Roberts K.B., Shea D.W., Tonniges T.F., et al. Practice Parameter—Management of Hyperbilirubinemia in the Healthy Term Newborn. Pediatrics. 1994;94:558–565. PubMed
Morris B.H., Oh W., Tyson J.E., Stevenson D.K., Phelps D.L., O’Shea T.M., McDavid G.E., Perritt R.L., Van Meurs K.P., Vohr B.R., et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 2008;359:1885–1896. doi: 10.1056/NEJMoa0803024. PubMed DOI PMC
Jasprová J., Dal Ben M., Hurny D., Hwang S., Zízalová K., Kotek J., Wong R.J., Stevenson D.K., Gazzin S., Tiribelli C., et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 2018;8:7444. doi: 10.1038/s41598-018-25684-2. PubMed DOI PMC
Mujawar T., Sevelda P., Madea D., Klan P., Svenda J. A Platform for the Synthesis of Oxidation Products of Bilirubin. J. Am. Chem. Soc. 2024;146:1603–1611. doi: 10.1021/jacs.3c11778. PubMed DOI PMC
Ennever J.F., Costarino A.T., Polin R.A., Speck W.T. Rapid Clearance of a Structural Isomer of Bilirubin during Phototherapy. J. Clin. Investig. 1987;79:1674–1678. doi: 10.1172/JCI113006. PubMed DOI PMC
McDonagh A.F. Bilirubin photo-isomers: Regiospecific acyl glucuronidation in vivo. Monatshefte Fur. Chem. 2014;145:465–482. doi: 10.1007/s00706-013-1076-6. DOI
Vreman H.J., Kourula S., Jasprová J., Ludvíková L., Klán P., Muchová L., Vítek L., Cline B.K., Wong R.J., Stevenson D.K. The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production. Pediatr. Res. 2019;85:865–873. doi: 10.1038/s41390-019-0310-2. Correction in Pediatr. Res. 2019, 85, 905. PubMed DOI
Uchida Y., Takahashi Y., Kurata C., Morimoto Y., Ohtani E., Tosaki A., Kumagai A., Greimel P., Nishikubo T., Miyawaki A. Urinary lumirubin excretion in jaundiced preterm neonates during phototherapy with blue light-emitting diode vs. green fluorescent lamp. Sci. Rep. 2023;13:18359. doi: 10.1038/s41598-023-45147-7. PubMed DOI PMC
Takahashi M., Sugiyama K., Shumiya S., Nagase S. Penetration of Bilirubin into the Brain in Albumin-Deficient and Jaundiced Rats (Ajr) and Nagase Analbuminemic Rats (Nar) J. Biochem. 1984;96:1705–1712. doi: 10.1093/oxfordjournals.jbchem.a135003. PubMed DOI
Wennberg R.P. The blood-brain barrier and bilirubin encephalopathy. Cell. Mol. Neurobiol. 2000;20:97–109. doi: 10.1023/A:1006900111744. PubMed DOI PMC
Lightner D.A., Reisinger M., Landen G.L. On the Structure of Albumin-Bound Bilirubin—Selective Binding of Intramolecularly Hydrogen-Bonded Conformational Enantiomers. J. Biol. Chem. 1986;261:6034–6038. doi: 10.1016/S0021-9258(17)38489-2. PubMed DOI
Moss G.P. Basic terminology of stereochemistry. Pure Appl. Chem. 1996;68:2193–2222. doi: 10.1351/pac199668122193. DOI
McDonagh A.F., Assisi F. Ready Isomerization of Bilirubin-IX-Alpha in Aqueous-Solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC
McDonagh A.F. Ex uno plures: The concealed complexity of bilirubin species in neonatal blood samples. Pediatrics. 2006;118:1185–1187. doi: 10.1542/peds.2006-0594. PubMed DOI
Ullrich D., Fevery J., Sieg A., Tischler T., Bircher J. The Influence of Gestational-Age on Bilirubin Conjugation in Newborns. Eur. J. Clin. Investig. 1991;21:83–89. doi: 10.1111/j.1365-2362.1991.tb01363.x. PubMed DOI
Ennever J.F., Knox I., Denne S.C., Speck W.T. Phototherapy for Neonatal Jaundice—Invivo Clearance of Bilirubin Photoproducts. Pediatr. Res. 1985;19:205–208. doi: 10.1203/00006450-198502000-00012. PubMed DOI
Itoh S., Onishi S. Kinetic study of the photochemical changes of (ZZ)-bilirubin IX alpha bound to human serum albumin. Demonstration of (EZ)-bilirubin IX alpha as an intermediate in photochemical changes from (ZZ)-bilirubin IX alpha to (EZ)-cyclobilirubin IX alpha. Biochem. J. 1985;226:251–258. doi: 10.1042/bj2260251. PubMed DOI PMC
Onishi S., Kawade N., Itoh S., Isobe K., Sugiyama S. High-Pressure Liquid-Chromatographic Analysis of Anaerobic Photoproducts of Bilirubin-Ix-Alpha Invitro and Its Comparison with Photoproducts Invivo. Biochem. J. 1980;190:527–532. doi: 10.1042/bj1900527. PubMed DOI PMC
Bhutani V.K., Wong R.J., Turkewitz D., Rauch D.A., Mowitz M.E., Barfield W.D., Eichenwald E., Ambalavanan N., Guillory C., Hudak M. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation: Technical report. Pediatrics. 2024;154:e2024068026. doi: 10.1542/peds.2024-068026. PubMed DOI
Ebbesen F., Hansen T.W., Maisels M.J. Update on phototherapy in jaundiced neonates. Curr. Pediatr. Rev. 2017;13:176–180. doi: 10.2174/1573396313666170718150056. PubMed DOI
Ebbesen F., Madsen P.H., Rodrigo-Domingo M., Donneborg M.L. Bilirubin isomers during LED phototherapy of hyperbilirubinemic neonates, blue-green (∼478 nm) vs blue. Pediatr. Res. 2024;97:1623–1628. doi: 10.1038/s41390-024-03493-w. PubMed DOI
Cruz A.B., de Brito L.G., Leal P.V.B., Ramos W.T.D., Pereira D.H. Intramolecular hydrogen bonds interactions in the isomers of the bilirubin molecule: DFT and QTAIM analysis. J. Mol. Model. 2023;29:318. doi: 10.1007/s00894-023-05720-3. PubMed DOI
Troup G.J., Agati G., Fusi F., Pratesi R. Photophysics of the variable quantum yield of asymmetric bilirubin. Aust. J. Phys. 1996;49:673–681. doi: 10.1071/PH960673. DOI
Ebbesen F., Madsen P.H., Vandborg P.K., Jakobsen L.H., Trydal T., Vreman H.J. Bilirubin isomer distribution in jaundiced neonates during phototherapy with LED light centered at 497 nm (turquoise) vs. 459 nm (blue) Pediatr. Res. 2016;80:511–515. doi: 10.1038/pr.2016.115. PubMed DOI
Lamola A.A. Optical Properties and Structure of Tetrapyrroles. De Gruyter Brill; Berlin, Germany: 1985. Effects of environment on photophysical processes of bilirubin; pp. 311–326.
Lamola A.A., Flores J., Doleiden F.H. Quantum Yield and Equilibrium Position of the Configurational Photo-Isomerization of Bilirubin Bound to Human-Serum Albumin. Photochem. Photobiol. 1982;35:649–654. doi: 10.1111/j.1751-1097.1982.tb02624.x. PubMed DOI
Dixon J.M., Taniguchi M., Lindsey J.S. PhotochemCAD 2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations. Photochem. Photobiol. 2005;81:212–213. doi: 10.1111/j.1751-1097.2005.tb01544.x. PubMed DOI
Du H., Fuh R.C.A., Li J.Z., Corkan L.A., Lindsey J.S. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol. 1998;68:141–142. doi: 10.1111/j.1751-1097.1998.tb02480.x. DOI
Lee K.S., Gartner L.M. Spectrophotometric Characteristics of Bilirubin. Pediatr. Res. 1976;10:782–788. doi: 10.1203/00006450-197609000-00004. PubMed DOI
Weisiger R.A., Ostrow J.D., Koehler R.K., Webster C.C., Mukerjee P., Pascolo L., Tiribelli C. Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition: Results of a novel ultrafiltration method. J. Biol. Chem. 2001;276:29953–29960. doi: 10.1074/jbc.M104628200. PubMed DOI
Zunszain P.A., Ghuman J., McDonagh A.F., Curry S. Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXalpha. J. Mol. Biol. 2008;381:394–406. doi: 10.1016/j.jmb.2008.06.016. PubMed DOI PMC
Nii K., Okada H., Itoh S., Kusaka T. Characteristics of bilirubin photochemical changes under green light-emitting diodes in humans compared with animal species. Sci. Rep. 2021;11:6391. doi: 10.1038/s41598-021-85632-5. PubMed DOI PMC
Cuperus F.J., Schreuder A.B., van Imhoff D.E., Vitek L., Vanikova J., Konickova R., Ahlfors C.E., Hulzebos C.V., Verkade H.J. Beyond plasma bilirubin: The effects of phototherapy and albumin on brain bilirubin levels in Gunn rats. J. Hepatol. 2013;58:134–140. doi: 10.1016/j.jhep.2012.08.011. PubMed DOI
Nagase S., Shimamune K., Shumiya S. Albumin-deficient rat mutant. Science. 1979;205:590–591. doi: 10.1126/science.451621. PubMed DOI
Vodret S., Bortolussi G., Schreuder A.B., Jasprova J., Vitek L., Verkade H.J., Muro A.F. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci. Rep. 2015;5:16203. doi: 10.1038/srep16203. PubMed DOI PMC
Mitra S., Samanta M., Sarkar M., De A.K., Chatterjee S. Pre-exchange 5% albumin infusion in low birth weight neonates with intensive phototherapy failure--a randomized controlled trial. J. Trop. Pediatr. 2011;57:217–221. doi: 10.1093/tropej/fmq083. PubMed DOI
Shahian M., Moslehi M.A. Effect of albumin administration prior to exchange transfusion in term neonates with hyperbilirubinemia--a randomized controlled trial. Indian Pediatr. 2010;47:241–244. doi: 10.1007/s13312-010-0046-x. PubMed DOI
Dash N., Kumar P., Sundaram V., Attri S.V. Pre exchange Albumin Administration in Neonates with Hyperbilirubinemia: A Randomized Controlled Trial. Indian Pediatr. 2015;52:763–767. doi: 10.1007/s13312-015-0713-z. PubMed DOI
Magai D.N., Mwaniki M., Abubakar A., Mohammed S., Gordon A.L., Kalu R., Mwangi P., Koot H.M., Newton C.R. A randomized control trial of phototherapy and 20% albumin versus phototherapy and saline in Kilifi, Kenya. BMC Res. Notes. 2019;12:617. doi: 10.1186/s13104-019-4632-2. PubMed DOI PMC
Govaert P., Lequin M., Swarte R., Robben S., De Coo R., Weisglas-Kuperus N., De Rijke Y., Sinaasappel M., Barkovich J. Changes in globus pallidus with (Pre) term kernicterus. Pediatrics. 2003;112:1256–1263. doi: 10.1542/peds.112.6.1256. PubMed DOI
Kemper A.R., Newman T.B., Slaughter J.L., Maisels M.J., Watchko J.F., Downs S.M., Grout R.W., Bundy D.G., Stark A.R., Bogen D.L., et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2022;150:e2022058859. doi: 10.1542/peds.2022-058859. PubMed DOI
Hansen T.W.R., Maisels M.J., Ebbesen F., Vreman H.J., Stevenson D.K., Wong R.J., Bhutani V.K. Sixty years of phototherapy for neonatal jaundice–from serendipitous observation to standardized treatment and rescue for millions. J. Perinatol. 2020;40:180–193. doi: 10.1038/s41372-019-0439-1. PubMed DOI
Hansen T.W.R. Biology of bilirubin photoisomers. Clin. Perinatol. 2016;43:277–290. doi: 10.1016/j.clp.2016.01.011. PubMed DOI
Hansen T.W.R. Seminars in Perinatology. Volume 34. Elsevier; Amsterdam, The Netherlands: 2010. Phototherapy for neonatal jaundice—Therapeutic effects on more than one level? pp. 231–234. PubMed
Capková N., Pospísilová V., Fedorová V., Raska J., Pospísilová K., Dal Ben M., Dvorák A., Viktorová J., Bohaciaková D., Vítek L. The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells. Antioxidants. 2021;10:1532. doi: 10.3390/antiox10101532. PubMed DOI PMC
Doumas B.T., Wu T.W., Jendrzejczak B. Delta-Bilirubin—Absorption-Spectra, Molar Absorptivity, and Reactivity in the Diazo Reaction. Clin. Chem. 1987;33:769–774. doi: 10.1093/clinchem/33.6.769. PubMed DOI
Kiuchi S., Ihara H., Osawa S., Ishibashi M., Kinpara K., Ohtake K., Ida T., Miura Y., Fujimura Y., Ueda S., et al. A survey of the reactivity of in vitro diagnostic bilirubin reagents developed in Japan using artificially prepared bilirubin materials: A comparison of synthetic delta, unconjugated, and taurine-conjugated bilirubin. Ann. Clin. Biochem. 2021;58:563–571. doi: 10.1177/00045632211026699. PubMed DOI
Kawamoto S., Koyano K., Ozaki M., Arai T., Iwase T., Okada H., Itoh S., Murao K., Kusaka T. Effects of bilirubin configurational photoisomers on the measurement of direct bilirubin by the vanadate oxidation method. Ann. Clin. Biochem. 2021;58:311–317. doi: 10.1177/0004563221999068. PubMed DOI
Okada H., Itoh S., Kawamoto S., Ozaki M., Kusaka T. Reactivity of bilirubin photoisomers on the measurement of direct bilirubin using vanadic acid method. Ann. Clin. Biochem. 2018;55:296–298. doi: 10.1177/0004563217709844. PubMed DOI
Itoh S., Kusaka T., Imai T., Isobe K., Onishi S. Effects of bilirubin and its photoisomers on direct bilirubin measurement using bilirubin oxidase. Ann. Clin. Biochem. 2000;37:452–456. doi: 10.1177/000456320003700404. PubMed DOI
Kawaguchi N., Koyano K., Morita H., Fadly D., Shinabe Y., Noguchi Y., Arioka M., Nakao Y., Ozaki M., Nakamura S., et al. Quantitative effects of bilirubin photoisomers on the measurement of direct bilirubin by the enzymatic bilirubin oxidase method. Ann. Clin. Biochem. doi: 10.1177/00045632251367245. 2025, online ahead of print. PubMed DOI
Okada H., Kawada K., Itoh S., Ozaki M., Kakutani I., Arai T., Koyano K., Yasuda S., Iwase T., Murao K. Effects of bilirubin photoisomers on the measurement of direct bilirubin by the bilirubin oxidase method. Ann. Clin. Biochem. 2018;55:276–280. doi: 10.1177/0004563217716474. PubMed DOI
Itoh S., Isobe K., Onishi S. Accurate and sensitive high-performance liquid chromatographic method for geometrical and structural photoisomers of bilirubin IXα using the relative molar absorptivity values. J. Chromatogr. A. 1999;848:169–177. doi: 10.1016/S0021-9673(99)00469-0. PubMed DOI
Jasprová J., Dvorák A., Vecka M., Lenícek M., Lacina O., Valáskova P., Zapadlo M., Plavka R., Klán P., Vítek L. A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC
McCarthy J.J., McClintock S.A., Purdy W.C. The Separation of Bilirubin, Photobilirubin and Their Major Isomers by Ion-Pair High-Pressure Liquid-Chromatography. Anal. Lett. Part. B-Clin. Biochem. Anal. 1984;17:1843–1855. doi: 10.1080/00032718408077187. DOI
McDonagh A.F., Palma L.A., Trull F.R., Lightner D.A. Phototherapy for Neonatal Jaundice—Configurational Isomers of Bilirubin. J. Am. Chem. Soc. 1982;104:6865–6867. doi: 10.1021/ja00388a103. DOI
Moosavi-Movahedi Z., Safarian S., Zahedi M., Sadeghi M., Saboury A.A., Chamani J., Bahrami H., Ashraf-Modarres A., Moosavi-Movahedi A.A. Calorimetric and binding dissections of HSA upon interaction with bilirubin. Protein J. 2006;25:193–201. doi: 10.1007/s10930-006-9002-y. PubMed DOI
Thomas M., Hardikar W., Greaves R.F., Tingay D.G., Loh T.P., Ignjatovic V., Newall F., Rajapaksa A.E. Mechanism of bilirubin elimination in urine: Insights and prospects for neonatal jaundice. Clin. Chem. Lab. Med. 2021;59:1025–1033. doi: 10.1515/cclm-2020-1759. PubMed DOI
Uchida Y., Takahashi Y., Morimoto Y., Greimel P., Tosaki A., Kumagai A., Nishikubo T., Miyawaki A. Noninvasive monitoring of bilirubin photoisomer excretion during phototherapy. Sci. Rep. 2022;12:11798. doi: 10.1038/s41598-022-16180-9. PubMed DOI PMC