A Platform for the Synthesis of Oxidation Products of Bilirubin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38165253
PubMed Central
PMC10797625
DOI
10.1021/jacs.3c11778
Knihovny.cz E-zdroje
- MeSH
- bilirubin * metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- pyrroly * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin * MeSH
- pyrroly * MeSH
Bilirubin is the principal product of heme catabolism. High concentrations of the pigment are neurotoxic, yet slightly elevated levels are beneficial. Being a potent antioxidant, oxidative transformations of bilirubin occur in vivo and lead to various oxidized fragments. The mechanisms of their formation, intrinsic biological activities, and potential roles in human pathophysiology are poorly understood. Degradation methods have been used to obtain samples of bilirubin oxidation products for research. Here, we report a complementary, fully synthetic method of preparation. Our strategy leverages repeating substitution patterns in the parent tetracyclic pigment. Functionalized ready-to-couple γ-lactone, γ-lactam, and pyrrole monocyclic building blocks were designed and efficiently synthesized. Subsequent modular combinations, supported by metal-catalyzed borylation and cross-coupling chemistries, translated into the concise assembly of the structurally diverse bilirubin oxidation products (BOXes, propentdyopents, and biopyrrins). The discovery of a new photoisomer of biopyrrin A named lumipyrrin is reported. Synthetic bilirubin oxidation products made available in sufficient purity and quantity will support future in vitro and in vivo investigations.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Zobrazit více v PubMed
Ryter S. W.; Alam J.; Choi A. M. K. Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol. Rev. 2006, 86, 583–650. 10.1152/physrev.00011.2005. PubMed DOI
Matsui T.; Unno M.; Ikeda-Saito M. Heme Oxygenase Reveals Its Strategy for Catalyzing Three Successive Oxygenation Reactions. Acc. Chem. Res. 2010, 43, 240–247. 10.1021/ar9001685. PubMed DOI
O’Brien L.; Hosick P. A.; John K.; Stec D. E.; Hinds T. D. Biliverdin Reductase Isozymes in Metabolism. Trends Endocrinol. Metab. 2015, 26, 212–220. 10.1016/j.tem.2015.02.001. PubMed DOI PMC
Lightner D. A.Bilirubin: Jekyll and Hyde Pigment of Life; Pursuit of Its Structure through Two World Wars to the New Millenium; Progress in the chemistry of organic natural products; Springer: Wien, 2013. PubMed
Dennery P. A.; Seidman D. S.; Stevenson D. K. Neonatal Hyperbilirubinemia. N. Engl. J. Med. 2001, 344, 581–590. 10.1056/NEJM200102223440807. PubMed DOI
Watchko J. F.; Tiribelli C. Bilirubin-Induced Neurologic Damage -- Mechanisms and Management Approaches. N. Engl. J. Med. 2013, 369, 2021–2030. 10.1056/NEJMra1308124. PubMed DOI
Roche S. P.; Kobos R. Jaundice in the Adult Patient. Am. Fam. Physician 2004, 69, 299–304. PubMed
Méndez-Sánchez N.; Qi X.; Vitek L.; Arrese M. Evaluating an Outpatient With an Elevated Bilirubin. Am. J. Gastroenterol. 2019, 114, 1185–1188. 10.14309/ajg.0000000000000336. PubMed DOI
Méndez-Sánchez N.; Vítek L.; Aguilar-Olivos N. E.; Uribe M.. Bilirubin as a Biomarker in Liver Disease. In Biomarkers in Liver Disease; Preedy V. R., Ed.; Biomarkers in Disease: Methods, Discoveries and Applications; Springer Netherlands: Dordrecht, 2016; pp 1–25.
McDonagh A. F.; Palma L. A.; Lightner D. A. Blue Light and Bilirubin Excretion. Science 1980, 208, 145–151. 10.1126/science.7361112. PubMed DOI
Maisels M. J.; McDonagh A. F. Phototherapy for Neonatal Jaundice. N. Engl. J. Med. 2008, 358, 920–928. 10.1056/NEJMct0708376. PubMed DOI
Vítek L.; Tiribelli C. Gilbert’s Syndrome Revisited. J. Hepatol. 2023, 79, 1049–1055. 10.1016/j.jhep.2023.06.004. PubMed DOI
Gazzin S.; Vitek L.; Watchko J.; Shapiro S. M.; Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016, 22, 758–768. 10.1016/j.molmed.2016.07.004. PubMed DOI
Vitek L.; Hinds T. D.; Stec D. E.; Tiribelli C. The Physiology of Bilirubin: Health and Disease Equilibrium. Trends Mol. Med. 2023, 29, 315–328. 10.1016/j.molmed.2023.01.007. PubMed DOI PMC
Stocker R.; Yamamoto Y.; McDonagh A. F.; Glazer A. N.; Ames B. N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. 10.1126/science.3029864. PubMed DOI
Sedlak T. W.; Saleh M.; Higginson D. S.; Paul B. D.; Juluri K. R.; Snyder S. H. Bilirubin and Glutathione Have Complementary Antioxidant and Cytoprotective Roles. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 5171–5176. 10.1073/pnas.0813132106. PubMed DOI PMC
Vítek L. Bilirubin as a Signaling Molecule. Med. Res. Rev. 2020, 40, 1335–1351. 10.1002/med.21660. PubMed DOI
Vítek L.; Tiribelli C. Bilirubin: The Yellow Hormone?. J. Hepatol. 2021, 75, 1485–1490. 10.1016/j.jhep.2021.06.010. PubMed DOI
Lightner D. A.; Linnane W. P.; Ahlfors C. E. Bilirubin Photooxidation Products in the Urine of Jaundiced Neonates Receiving Phototherapy. Pediatr. Res. 1984, 18, 696–700. 10.1203/00006450-198408000-00003. PubMed DOI
Wurster W. L.; Pyne-Geithman G. J.; Peat I. R.; Clark J. F. Bilirubin Oxidation Products (BOXes): Synthesis, Stability and Chemical Characteristics. Acta Neurochir. Suppl. 2008, 104, 43–50. 10.1007/978-3-211-75718-5_8. PubMed DOI PMC
Tomat E. Propentdyopents: Brief History of a Family of Dipyrrolic Pigments. J. Porphyr. Phthalocyanines 2019, 23, 1265–1272. 10.1142/S1088424619300210. DOI
Yamaguchi T.; Shioji I.; Sugimoto A.; Komoda Y.; Nakajima H. Chemical Structure of a New Family of Bile Pigments from Human Urine. J. Biochem. 1994, 116, 298–303. 10.1093/oxfordjournals.jbchem.a124523. PubMed DOI
Miyaoka T.; Ieda M.; Hashioka S.; Wake R.; Furuya M.; Liaury K.; Hayashida M.; Tsuchie K.; Arauchi R.; Araki T.; Shioji I.; Ezoe S.; Inoue K.; Yamaguchi T.; Horiguchi J. Analysis of Oxidative Stress Expressed by Urinary Level of Biopyrrins and 8-Hydroxydeoxyguanosine in Patients with Chronic Schizophrenia. Psychiatry Clin. Neurosci. 2015, 69, 693–698. 10.1111/pcn.12319. PubMed DOI
Bakry O. A.; El Hefnawy S.; Mariee A. H.; El Gendy Y. Urinary Biopyrrins: A New Marker of Oxidative Stress in Psoriasis. Indian J. Dermatol. 2016, 61, 169–173. 10.4103/0019-5154.177756. PubMed DOI PMC
Trachtenberg B. H.; Hare J. M. Biomarkers of Oxidative Stress in Heart Failure. Heart Fail. Clin. 2009, 5, 561–577. 10.1016/j.hfc.2009.04.003. PubMed DOI
Yamamoto M.; Kondo N.; Tashiro M.; Hanazaki K.; Orihashi K.; Yamaguchi T. Oxidative Stress Evoked by Coronary Artery Bypass Grafting Elucidated by Urinary Biopyrrin. J. Am. College Surgeons 2018, 227, e9510.1016/j.jamcollsurg.2018.08.255. DOI
Otani K.; Shimizu S.; Chijiiwa K.; Yamaguchi K.; Kuroki S.; Tanaka M. Increased Urinary Excretion of Bilirubin Oxidative Metabolites in Septic Patients: A New Marker for Oxidative Stress in Vivo. J. Surg. Res. 2001, 96, 44–49. 10.1006/jsre.2000.6036. PubMed DOI
Miyashita T.; Yamaguchi T.; Motoyama K.; Unno K.; Nakano Y.; Shimoi K. Social Stress Increases Biopyrrins, Oxidative Metabolites of Bilirubin, in Mouse Urine. Biochem. Biophys. Res. Commun. 2006, 349, 775–780. 10.1016/j.bbrc.2006.08.098. PubMed DOI
Joerk A.; Seidel R. A.; Walter S. G.; Wiegand A.; Kahnes M.; Klopfleisch M.; Kirmse K.; Pohnert G.; Westerhausen M.; Witte O. W.; Holthoff K. Impact of Heme and Heme Degradation Products on Vascular Diameter in Mouse Visual Cortex. J. Am. Heart Assoc. 2014, 3, e00122010.1161/JAHA.114.001220. PubMed DOI PMC
Rapoport R. M. Bilirubin Oxidation Products and Cerebral Vasoconstriction. Front. Pharmacol. 2018, 9, 303.10.3389/fphar.2018.00303. PubMed DOI PMC
Joerk A.; Ritter M.; Langguth N.; Seidel R. A.; Freitag D.; Herrmann K. H.; Schaefgen A.; Ritter M.; Günther M.; Sommer C.; Braemer D.; Walter J.; Ewald C.; Kalff R.; Reichenbach J. R.; Westerhausen M.; Pohnert G.; Witte O. W.; Holthoff K. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage. Circ. Res. 2019, 124, e101–e114. 10.1161/CIRCRESAHA.118.314160. PubMed DOI
Kranc K. R.; Pyne G. J.; Tao L.; Claridge T. D. W.; Harris D. A.; Cadoux-Hudson T. A. D.; Turnbull J. J.; Schofield C. J.; Clark J. F. Oxidative Degradation of Bilirubin Produces Vasoactive Compounds: Oxidative Degradation of Bilirubin. Eur. J. Biochem. 2000, 267, 7094–7101. 10.1046/j.1432-1327.2000.01812.x. PubMed DOI
Lu Y.; Zhang W.; Zhang B.; Heinemann S. H.; Hoshi T.; Hou S.; Zhang G. Bilirubin Oxidation End Products (BOXes) Induce Neuronal Oxidative Stress Involving the Nrf2 Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 1–11. 10.1155/2021/8869908. PubMed DOI PMC
McDonagh A. F.; Assisi F. Commercial Bilirubin: A Trinity of Isomers. FEBS Lett. 1971, 18, 315–317. 10.1016/0014-5793(71)80475-1. PubMed DOI
McDonagh A. F. Biliverdin, Immune-Mediated Liver Injury, and the Gigo Effect. Hepatology 2005, 41, 680–681. 10.1002/hep.20587. PubMed DOI
Ritter M.; Seidel R. A.; Bellstedt P.; Schneider B.; Bauer M.; Görls H.; Pohnert G. Isolation and Identification of Intermediates of the Oxidative Bilirubin Degradation. Org. Lett. 2016, 18, 4432–4435. 10.1021/acs.orglett.6b02287. PubMed DOI
Ostrow J. D.; Hammaker L.; Schmid R. The Preparation of Crystalline Bilirubin-C14*. J. Clin. Invest. 1961, 40, 1442–1452. 10.1172/JCI104375. PubMed DOI PMC
Barrett P. V. D.; Mullins F. X.; Berlin N. I. Studies on the Biosynthetic Production of Bilirubin-C: An Improved Method Utilizing δ-Aminolevulinic Acid-4-C14 in Dogs. Trans. Res. 1966, 68, 905–912. PubMed
Hutchinson D. W.; Wilkes N. M.; Au H. Y. N. 3H-Labelled Bilirubin and Biliverdin. J. Label. Compd. Radiopharm. 1981, 18, 1401–1404. 10.1002/jlcr.2580181002. DOI
Ives N. K.; Gardiner R. M. Blood-Brain Barrier Permeability to Bilirubin in the Rat Studied Using Intracarotid Bolus Injection and in Situ Brain Perfusion Techniques. Pediatr. Res. 1990, 27, 436–441. 10.1203/00006450-199005000-00004. PubMed DOI
Latli B.; Hrapchak M.; Krishnamurthy D.; Senanayake C. H. Synthesis of Tritium-Labeled Bilirubin. J. Label. Compd. Radiopharm. 2008, 51, 106–108. 10.1002/jlcr.1489. DOI
Fischer H.; Plieninger H. Synthese Des Biliverdins (Uteroverdins) Und Bilirubins, Der Biliverdine XIII α Und III α, Sowie Der Vinylneoxanthosäure. Hoppe-Seyler’s Z. Physiol. Chem. 1942, 274, 231–260. 10.1515/bchm2.1942.274.1-6.231. DOI
Gossauer A.Synthesis of Bilins. In The Porphyrin Handbook; Elsevier, 2003; pp 237–274.
Jacobi P.; Odeh I.; Buddhu S.; Cai G.; Rajeswari S.; Fry D.; Zheng W.; DeSimone R.; Guo J.; Coutts L.; Hauck S.; Leung S.; Ghosh I.; Pippin D. Synthetic Studies in Phytochrome Chemistry. Synlett 2005, 19, 2861–2885. 10.1055/s-2005-918956. PubMed DOI PMC
Inomata K. Syntheses of Bilin Chromophores toward the Investigation of Structure and Function of Phytochromes. Heterocycles 2012, 85, 2879–2926. 10.3987/REV-12-750. DOI
Sabido P. M. G.; Lightner D. A. Synthesis and Properties of Mesobilirubins XIIγ and XIIIγ and Their Mesobiliverdins. Monatsh. Chem. 2014, 145, 775–789. 10.1007/s00706-014-1160-6. DOI
Plieninger H.; El-Barkawi F.; Ehl K.; Kohler R.; McDonagh A. F. Neue Synthese und C-Markierung von Bilirubin-IXα. Justus Liebigs Ann. Chem. 1972, 758, 195–201. 10.1002/jlac.19727580122. PubMed DOI
Sturrock E. D.; Bull J. R.; Kirsch R. E. The Synthesis of [10-13C]Bilirubin IXα. J. Label. Compd. Radiopharm. 1994, 34, 263–274. 10.1002/jlcr.2580340309. DOI
Klopfleisch M.; Seidel R. A.; Gorls H.; Richter H.; Beckert R.; Imhof W.; Reiher M.; Pohnert G.; Westerhausen M. Total Synthesis and Detection of the Bilirubin Oxidation Product (Z)-2-(3-Ethenyl-4-Methyl-5-Oxo-1,5-Dihydro-2H-Pyrrol-2-Ylidene)Ethanamide (Z-BOX A). Org. Lett. 2013, 15, 4608–4611. 10.1021/ol402221b. PubMed DOI
Seidel R. A.; Schowtka B.; Klopfleisch M.; Kühl T.; Weiland A.; Koch A.; Görls H.; Imhof D.; Pohnert G.; Westerhausen M. Total Synthesis and Characterization of the Bilirubin Oxidation Product (Z)-2-(4-Ethenyl-3-Methyl-5-Oxo-1,5-Dihydro-2H-Pyrrol-2-Ylidene)Ethanamide (Z-BOX B). Tetrahedron Lett. 2014, 55, 6526–6529. 10.1016/j.tetlet.2014.09.108. DOI
Schulze D.; Traber J.; Ritter M.; Gorls H.; Pohnert G.; Westerhausen M. Total Syntheses of the Bilirubin Oxidation End Product Z-BOX C and Its Isomeric Form Z-BOX D. Org. Biomol. Chem. 2019, 17, 6489–6496. 10.1039/C9OB01117J. PubMed DOI
Seidel R. A.; Ritter M.; Joerk A.; Kuschke S.; Langguth N.; Schulze D.; Görls H.; Bauer M.; Witte O. W.; Westerhausen M.; Holthoff K.; Pohnert G. Photoisomerization Neutralizes Vasoconstrictive Activity of a Heme Degradation Product. ACS Omega 2020, 5, 21401–21411. 10.1021/acsomega.0c01698. PubMed DOI PMC
Micklefield J.; Mackman R. L.; Aucken C. J.; Beckmann M.; Block M. H.; Leeper F. J.; Battersby A. R. A Novel Stereoselective Synthesis of the Macrocycle of Haem d1 That Establishes Its Absolute Configuration as 2R,7R. J. Chem. Soc., Chem. Commun. 1993, 275–277. 10.1039/c39930000275. DOI
Jacobi P. A.; Liu H. Studies on Corrin Synthesis. A Solution to the Introduction of Meso Substituents. J. Org. Chem. 1999, 64, 1778–1779. 10.1021/jo9824899. PubMed DOI
Lu X.; Huang X.; Ma S. A Convenient Synthesis of γ-(Z)-Alkylidene Butenolides. Tetrahedron Lett. 1993, 34, 5963–5966. 10.1016/S0040-4039(00)73827-5. DOI
Negishi E.; Alimardanov A.; Xu C. An Efficient and Stereoselective Synthesis of Xerulin via Pd-Catalyzed Cross Coupling and Lactonization Featuring (E)-Iodobromoethylene as a Novel Two-Carbon Synthon. Org. Lett. 2000, 2, 65–67. 10.1021/ol990336h. PubMed DOI
Fiandanese V.; Bottalico D.; Marchese G. An Efficient Stereoselective Approach to Silylated Polyunsaturated γ-Alkylidene Butenolides. Tetrahedron 2001, 57, 10213–10218. 10.1016/S0040-4020(01)01060-2. DOI
Inack-Ngi S.; Rahmani R.; Commeiras L.; Chouraqui G.; Thibonnet J.; Duchêne A.; Abarbri M.; Parrain J.-L. Copper-Catalyzed Preparation of γ-Alkylidenebutenolides and Isocoumarins under Mild Palladium-Free Conditions. Adv. Synth. Catal. 2009, 351, 779–788. 10.1002/adsc.200800757. DOI
Inack-Ngi S.; Cherry K.; Héran V.; Commeiras L.; Parrain J.; Duchêne A.; Abarbri M.; Thibonnet J. Carboxylate-Directed Tandem Functionalisations of α,β-Dihaloalkenoic Acids with 1-Alkynes: A Straightforward Access to (Z)-Configured, α,β-Substituted γ-Alkylidenebutenolides. Chem. - Eur. J. 2011, 17, 13692–13696. 10.1002/chem.201102570. PubMed DOI
Cho C. S.; Kim H. B. Pd/C-Catalyzed Coupling and Cyclization of β-Bromo-α,β-Unsaturated Carboxylic Acids with Terminal Alkynes Leading to Alkylidenefuranones. J. Organomet. Chem. 2011, 696, 3264–3267. 10.1016/j.jorganchem.2011.06.044. DOI
Vu V. A.; Marek I.; Knochel P. Stereoselective Preparationof Functionalized Unsaturated Lactones and Esters via Functionalized Magnesium Carbenoids. Synthesis 2003, 35, 1797–1802. 10.1055/s-2003-41035. DOI
Yusubov M. S.; Yusubova R. Y.; Nemykin V. N.; Zhdankin V. V. Preparation and X-ray Structural Study of 1-Arylbenziodoxolones. J. Org. Chem. 2013, 78, 3767–3773. 10.1021/jo400212u. PubMed DOI
Shah A.-H. A.; Khan Z. A.; Choudhary N.; Lohölter C.; Schäfer S.; Marie G. P. L.; Farooq U.; Witulski B.; Wirth T. Iodoxolone-Based Hypervalent Iodine Reagents. Org. Lett. 2009, 11, 3578–3581. 10.1021/ol9014688. PubMed DOI
Almasalma A. A.; Mejía E. 1-Phenyl-1,2-Benziodoxol-3-(1H)-one as Synthon for Phthalide Synthesis through Pd-Free, Base-Free, Sonogashira-Type Coupling Cyclization Reaction. Eur. J. Org. Chem. 2018, 2018, 188–195. 10.1002/ejoc.201700940. DOI
Martin R.; Buchwald S. L. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. 10.1021/ar800036s. PubMed DOI PMC
Ilardi E. A.; Stivala C. E.; Zakarian A. Hexafluoroisopropanol as a Unique Solvent for Stereoselective Iododesilylation of Vinylsilanes. Org. Lett. 2008, 10, 1727–1730. 10.1021/ol800341z. PubMed DOI
Sidera M.; Costa A. M.; Vilarrasa J. Iododesilylation of TIPS-, TBDPS-, and TBS-Substituted Alkenes in Connection with the Synthesis of Amphidinolides B/D. Org. Lett. 2011, 13, 4934–4937. 10.1021/ol2020187. PubMed DOI
Szudkowska-Frątczak J.; Zaranek M.; Hreczycho G.; Kubicki M.; Grabarkiewicz T.; Pawluć P. A Silicon-Assisted Synthesis of (E)-β-Haloenamides from N-Vinylamides. Appl. Organomet. Chem. 2015, 29, 270–275. 10.1002/aoc.3284. DOI
Mennie K. M.; Vara B. A.; Levi S. M. Reductive sp3–sp2 Coupling Reactions Enable Late-Stage Modification of Pharmaceuticals. Org. Lett. 2020, 22, 556–559. 10.1021/acs.orglett.9b04320. PubMed DOI
Zhang P.; Le C. “C.”; MacMillan D. W. C. Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling. J. Am. Chem. Soc. 2016, 138, 8084–8087. 10.1021/jacs.6b04818. PubMed DOI PMC
Vaz B.; Otero L.; Álvarez R.; de Lera Á. R. Total Synthesis of Enantiopure Pyrrhoxanthin: Alternative Methods for the Stereoselective Preparation of 4-Alkylidenebutenolides. Chem. - Eur. J. 2013, 19, 13065–13074. 10.1002/chem.201301873. PubMed DOI
Yao T.; Larock R. C. Synthesis of Isocoumarins and α-Pyrones via Electrophilic Cyclization. J. Org. Chem. 2003, 68, 5936–5942. 10.1021/jo034308v. PubMed DOI
Barton D. H. R.; Zard S. Z. A New Synthesis of Pyrroles from Nitroalkenes. J. Chem. Soc., Chem. Commun. 1985, 1098–1100. 10.1039/c39850001098. DOI
Ishiyama T.; Takagi J.; Yonekawa Y.; Hartwig J. F.; Miyaura N. Iridium-Catalyzed Direct Borylation of Five-Membered Heteroarenes by Bis(Pinacolato)Diboron: Regioselective, Stoichiometric, and Room Temperature Reactions. Adv. Synth. Catal. 2003, 345, 1103–1106. 10.1002/adsc.200303058. DOI
Mkhalid I. A. I.; Barnard J. H.; Marder T. B.; Murphy J. M.; Hartwig J. F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. 10.1021/cr900206p. PubMed DOI
Madea D.; Mujawar T.; Dvořák A.; Pospíšilová K.; Muchová L.; Čubáková P.; Kloz M.; Švenda J.; Vítek L.; Klán P. Photochemistry of (Z)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. J. Org. Chem. 2022, 87, 3089–3103. 10.1021/acs.joc.1c02870. PubMed DOI
Boger D. L.; Baldino C. M. Singlet Oxygen Mediated Oxidative Decarboxylation of Pyrrole-2-Carboxylic Acids. J. Org. Chem. 1991, 56, 6942–6944. 10.1021/jo00024a045. DOI
Beruter J.; Colombo J.-P.; Schlunegger U. P. Isolation and Identification of the Urinary Pigment Uroerythrin. Eur. J. Biochem. 1975, 56, 239–244. 10.1111/j.1432-1033.1975.tb02226.x. PubMed DOI
Morita Y.; Takahashi H.; Kamihata H.; Yamamoto Y.; Hara K.; Iwasaka T. Urinary Excretion of Biopyrrins, Oxidative Metabolites of Bilirubin, Increases after Spasm Provocation Tests in Patients with Coronary Spastic Angina. Int. J. Cardiol. 2001, 80, 243–250. 10.1016/S0167-5273(01)00517-4. PubMed DOI
Hokamaki J.; Kawano H.; Yoshimura M.; Soejima H.; Miyamoto S.; Kajiwara I.; Kojima S.; Sakamoto T.; Sugiyama S.; Hirai N.; Shimomura H.; Nagayoshi Y.; Tsujita K.; Shioji I.; Sasaki S.; Ogawa H. Urinary Biopyrrins Levels Are Elevated in Relation to Severity of Heart Failure. J. Am. Coll. Cardiol. 2004, 43, 1880–1885. 10.1016/j.jacc.2004.01.028. PubMed DOI
Vitek L.; Kraslova I.; Muchova L.; Novotny L.; Yamaguchi T. Urinary Excretion of Oxidative Metabolites of Bilirubin in Subjects with Gilbert Syndrome. J. Gastroenterol. Hepatol. 2007, 22, 841–845. 10.1111/j.1440-1746.2006.04564.x. PubMed DOI
Chiba T.; Tatematsu S.; Nakao M.; Furue M. Urinary Biopyrrin: A Potential Inflammatory Marker of Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2014, 112, 182–183. 10.1016/j.anai.2013.12.011. PubMed DOI
Kudo K.; Inoue T.; Sonoda N.; Ogawa Y.; Inoguchi T. Relationship between Serum Bilirubin Levels, Urinary Biopyrrin Levels, and Retinopathy in Patients with Diabetes. PLoS One 2021, 16, e024340710.1371/journal.pone.0243407. PubMed DOI PMC
Tomat E.; Curtis C. J. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals. Acc. Chem. Res. 2021, 54, 4584–4594. 10.1021/acs.accounts.1c00613. PubMed DOI
Stoll M. S.; Vicker N.; Gray C. H.; Bonnett R. Concerning the Structure of Photobilirubin II. Biochem. J. 1982, 201, 179–188. 10.1042/bj2010179. PubMed DOI PMC
McDonagh A. F.; Palma L. A.; Lightner D. A. Phototherapy for Neonatal Jaundice. Stereospecific and Regioselective Photoisomerization of Bilirubin Bound to Human Serum Albumin and NMR Characterization of Intramolecularly Cyclized Photoproducts. J. Am. Chem. Soc. 1982, 104, 6867–6869. 10.1021/ja00388a104. DOI
Ennever J. F.; Sobel M.; Mcdonagh A. F.; Speck W. T. Phototherapy for Neonatal Jaundice: In Vitro Comparison of Light Sources. Pediatr. Res. 1984, 18, 667–670. 10.1203/00006450-198407000-00021. PubMed DOI
Bonnett R.; loannou S. Phototherapy and the Chemistry of Bilirubin. Mol. Aspects Med. 1987, 9, 457–471. 10.1016/0098-2997(87)90008-2. PubMed DOI
Ennever J. F.; Dresing T. J. Quantum Yields For the Cyclization and Configurational Isomerization of 4E, 15Z-Bilirubin. Photochem. Photobiol. 1991, 53, 25–32. 10.1111/j.1751-1097.1991.tb08463.x. PubMed DOI
Itoh S.; Okada H.; Kuboi T.; Kusaka T. Phototherapy for Neonatal Hyperbilirubinemia. Pediatr. Int. 2017, 59, 959–966. 10.1111/ped.13332. PubMed DOI
Madea D.; Mahvidi S.; Chalupa D.; Mujawar T.; Dvořák A.; Muchová L.; Janoš J.; Slavíček P.; Švenda J.; Vítek L.; Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J. Org. Chem. 2020, 85, 13015–13028. 10.1021/acs.joc.0c01673. PubMed DOI
Kaplan D.; Navon G. Nuclear Magnetic Resonance Studies of the Conformation of Bilirubin and Its Derivatives in Solution. J. Chem. Soc., Perkin Trans. 1981, 2, 1374–1383. 10.1039/p29810001374. DOI
Efficacy of phototherapy of neonatal jaundice - light wavelength matters