A Platform for the Synthesis of Oxidation Products of Bilirubin

. 2024 Jan 17 ; 146 (2) : 1603-1611. [epub] 20240102

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38165253

Bilirubin is the principal product of heme catabolism. High concentrations of the pigment are neurotoxic, yet slightly elevated levels are beneficial. Being a potent antioxidant, oxidative transformations of bilirubin occur in vivo and lead to various oxidized fragments. The mechanisms of their formation, intrinsic biological activities, and potential roles in human pathophysiology are poorly understood. Degradation methods have been used to obtain samples of bilirubin oxidation products for research. Here, we report a complementary, fully synthetic method of preparation. Our strategy leverages repeating substitution patterns in the parent tetracyclic pigment. Functionalized ready-to-couple γ-lactone, γ-lactam, and pyrrole monocyclic building blocks were designed and efficiently synthesized. Subsequent modular combinations, supported by metal-catalyzed borylation and cross-coupling chemistries, translated into the concise assembly of the structurally diverse bilirubin oxidation products (BOXes, propentdyopents, and biopyrrins). The discovery of a new photoisomer of biopyrrin A named lumipyrrin is reported. Synthetic bilirubin oxidation products made available in sufficient purity and quantity will support future in vitro and in vivo investigations.

Zobrazit více v PubMed

Ryter S. W.; Alam J.; Choi A. M. K. Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol. Rev. 2006, 86, 583–650. 10.1152/physrev.00011.2005. PubMed DOI

Matsui T.; Unno M.; Ikeda-Saito M. Heme Oxygenase Reveals Its Strategy for Catalyzing Three Successive Oxygenation Reactions. Acc. Chem. Res. 2010, 43, 240–247. 10.1021/ar9001685. PubMed DOI

O’Brien L.; Hosick P. A.; John K.; Stec D. E.; Hinds T. D. Biliverdin Reductase Isozymes in Metabolism. Trends Endocrinol. Metab. 2015, 26, 212–220. 10.1016/j.tem.2015.02.001. PubMed DOI PMC

Lightner D. A.Bilirubin: Jekyll and Hyde Pigment of Life; Pursuit of Its Structure through Two World Wars to the New Millenium; Progress in the chemistry of organic natural products; Springer: Wien, 2013. PubMed

Dennery P. A.; Seidman D. S.; Stevenson D. K. Neonatal Hyperbilirubinemia. N. Engl. J. Med. 2001, 344, 581–590. 10.1056/NEJM200102223440807. PubMed DOI

Watchko J. F.; Tiribelli C. Bilirubin-Induced Neurologic Damage -- Mechanisms and Management Approaches. N. Engl. J. Med. 2013, 369, 2021–2030. 10.1056/NEJMra1308124. PubMed DOI

Roche S. P.; Kobos R. Jaundice in the Adult Patient. Am. Fam. Physician 2004, 69, 299–304. PubMed

Méndez-Sánchez N.; Qi X.; Vitek L.; Arrese M. Evaluating an Outpatient With an Elevated Bilirubin. Am. J. Gastroenterol. 2019, 114, 1185–1188. 10.14309/ajg.0000000000000336. PubMed DOI

Méndez-Sánchez N.; Vítek L.; Aguilar-Olivos N. E.; Uribe M.. Bilirubin as a Biomarker in Liver Disease. In Biomarkers in Liver Disease; Preedy V. R., Ed.; Biomarkers in Disease: Methods, Discoveries and Applications; Springer Netherlands: Dordrecht, 2016; pp 1–25.

McDonagh A. F.; Palma L. A.; Lightner D. A. Blue Light and Bilirubin Excretion. Science 1980, 208, 145–151. 10.1126/science.7361112. PubMed DOI

Maisels M. J.; McDonagh A. F. Phototherapy for Neonatal Jaundice. N. Engl. J. Med. 2008, 358, 920–928. 10.1056/NEJMct0708376. PubMed DOI

Vítek L.; Tiribelli C. Gilbert’s Syndrome Revisited. J. Hepatol. 2023, 79, 1049–1055. 10.1016/j.jhep.2023.06.004. PubMed DOI

Gazzin S.; Vitek L.; Watchko J.; Shapiro S. M.; Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016, 22, 758–768. 10.1016/j.molmed.2016.07.004. PubMed DOI

Vitek L.; Hinds T. D.; Stec D. E.; Tiribelli C. The Physiology of Bilirubin: Health and Disease Equilibrium. Trends Mol. Med. 2023, 29, 315–328. 10.1016/j.molmed.2023.01.007. PubMed DOI PMC

Stocker R.; Yamamoto Y.; McDonagh A. F.; Glazer A. N.; Ames B. N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. 10.1126/science.3029864. PubMed DOI

Sedlak T. W.; Saleh M.; Higginson D. S.; Paul B. D.; Juluri K. R.; Snyder S. H. Bilirubin and Glutathione Have Complementary Antioxidant and Cytoprotective Roles. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 5171–5176. 10.1073/pnas.0813132106. PubMed DOI PMC

Vítek L. Bilirubin as a Signaling Molecule. Med. Res. Rev. 2020, 40, 1335–1351. 10.1002/med.21660. PubMed DOI

Vítek L.; Tiribelli C. Bilirubin: The Yellow Hormone?. J. Hepatol. 2021, 75, 1485–1490. 10.1016/j.jhep.2021.06.010. PubMed DOI

Lightner D. A.; Linnane W. P.; Ahlfors C. E. Bilirubin Photooxidation Products in the Urine of Jaundiced Neonates Receiving Phototherapy. Pediatr. Res. 1984, 18, 696–700. 10.1203/00006450-198408000-00003. PubMed DOI

Wurster W. L.; Pyne-Geithman G. J.; Peat I. R.; Clark J. F. Bilirubin Oxidation Products (BOXes): Synthesis, Stability and Chemical Characteristics. Acta Neurochir. Suppl. 2008, 104, 43–50. 10.1007/978-3-211-75718-5_8. PubMed DOI PMC

Tomat E. Propentdyopents: Brief History of a Family of Dipyrrolic Pigments. J. Porphyr. Phthalocyanines 2019, 23, 1265–1272. 10.1142/S1088424619300210. DOI

Yamaguchi T.; Shioji I.; Sugimoto A.; Komoda Y.; Nakajima H. Chemical Structure of a New Family of Bile Pigments from Human Urine. J. Biochem. 1994, 116, 298–303. 10.1093/oxfordjournals.jbchem.a124523. PubMed DOI

Miyaoka T.; Ieda M.; Hashioka S.; Wake R.; Furuya M.; Liaury K.; Hayashida M.; Tsuchie K.; Arauchi R.; Araki T.; Shioji I.; Ezoe S.; Inoue K.; Yamaguchi T.; Horiguchi J. Analysis of Oxidative Stress Expressed by Urinary Level of Biopyrrins and 8-Hydroxydeoxyguanosine in Patients with Chronic Schizophrenia. Psychiatry Clin. Neurosci. 2015, 69, 693–698. 10.1111/pcn.12319. PubMed DOI

Bakry O. A.; El Hefnawy S.; Mariee A. H.; El Gendy Y. Urinary Biopyrrins: A New Marker of Oxidative Stress in Psoriasis. Indian J. Dermatol. 2016, 61, 169–173. 10.4103/0019-5154.177756. PubMed DOI PMC

Trachtenberg B. H.; Hare J. M. Biomarkers of Oxidative Stress in Heart Failure. Heart Fail. Clin. 2009, 5, 561–577. 10.1016/j.hfc.2009.04.003. PubMed DOI

Yamamoto M.; Kondo N.; Tashiro M.; Hanazaki K.; Orihashi K.; Yamaguchi T. Oxidative Stress Evoked by Coronary Artery Bypass Grafting Elucidated by Urinary Biopyrrin. J. Am. College Surgeons 2018, 227, e9510.1016/j.jamcollsurg.2018.08.255. DOI

Otani K.; Shimizu S.; Chijiiwa K.; Yamaguchi K.; Kuroki S.; Tanaka M. Increased Urinary Excretion of Bilirubin Oxidative Metabolites in Septic Patients: A New Marker for Oxidative Stress in Vivo. J. Surg. Res. 2001, 96, 44–49. 10.1006/jsre.2000.6036. PubMed DOI

Miyashita T.; Yamaguchi T.; Motoyama K.; Unno K.; Nakano Y.; Shimoi K. Social Stress Increases Biopyrrins, Oxidative Metabolites of Bilirubin, in Mouse Urine. Biochem. Biophys. Res. Commun. 2006, 349, 775–780. 10.1016/j.bbrc.2006.08.098. PubMed DOI

Joerk A.; Seidel R. A.; Walter S. G.; Wiegand A.; Kahnes M.; Klopfleisch M.; Kirmse K.; Pohnert G.; Westerhausen M.; Witte O. W.; Holthoff K. Impact of Heme and Heme Degradation Products on Vascular Diameter in Mouse Visual Cortex. J. Am. Heart Assoc. 2014, 3, e00122010.1161/JAHA.114.001220. PubMed DOI PMC

Rapoport R. M. Bilirubin Oxidation Products and Cerebral Vasoconstriction. Front. Pharmacol. 2018, 9, 303.10.3389/fphar.2018.00303. PubMed DOI PMC

Joerk A.; Ritter M.; Langguth N.; Seidel R. A.; Freitag D.; Herrmann K. H.; Schaefgen A.; Ritter M.; Günther M.; Sommer C.; Braemer D.; Walter J.; Ewald C.; Kalff R.; Reichenbach J. R.; Westerhausen M.; Pohnert G.; Witte O. W.; Holthoff K. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage. Circ. Res. 2019, 124, e101–e114. 10.1161/CIRCRESAHA.118.314160. PubMed DOI

Kranc K. R.; Pyne G. J.; Tao L.; Claridge T. D. W.; Harris D. A.; Cadoux-Hudson T. A. D.; Turnbull J. J.; Schofield C. J.; Clark J. F. Oxidative Degradation of Bilirubin Produces Vasoactive Compounds: Oxidative Degradation of Bilirubin. Eur. J. Biochem. 2000, 267, 7094–7101. 10.1046/j.1432-1327.2000.01812.x. PubMed DOI

Lu Y.; Zhang W.; Zhang B.; Heinemann S. H.; Hoshi T.; Hou S.; Zhang G. Bilirubin Oxidation End Products (BOXes) Induce Neuronal Oxidative Stress Involving the Nrf2 Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 1–11. 10.1155/2021/8869908. PubMed DOI PMC

McDonagh A. F.; Assisi F. Commercial Bilirubin: A Trinity of Isomers. FEBS Lett. 1971, 18, 315–317. 10.1016/0014-5793(71)80475-1. PubMed DOI

McDonagh A. F. Biliverdin, Immune-Mediated Liver Injury, and the Gigo Effect. Hepatology 2005, 41, 680–681. 10.1002/hep.20587. PubMed DOI

Ritter M.; Seidel R. A.; Bellstedt P.; Schneider B.; Bauer M.; Görls H.; Pohnert G. Isolation and Identification of Intermediates of the Oxidative Bilirubin Degradation. Org. Lett. 2016, 18, 4432–4435. 10.1021/acs.orglett.6b02287. PubMed DOI

Ostrow J. D.; Hammaker L.; Schmid R. The Preparation of Crystalline Bilirubin-C14*. J. Clin. Invest. 1961, 40, 1442–1452. 10.1172/JCI104375. PubMed DOI PMC

Barrett P. V. D.; Mullins F. X.; Berlin N. I. Studies on the Biosynthetic Production of Bilirubin-C: An Improved Method Utilizing δ-Aminolevulinic Acid-4-C14 in Dogs. Trans. Res. 1966, 68, 905–912. PubMed

Hutchinson D. W.; Wilkes N. M.; Au H. Y. N. 3H-Labelled Bilirubin and Biliverdin. J. Label. Compd. Radiopharm. 1981, 18, 1401–1404. 10.1002/jlcr.2580181002. DOI

Ives N. K.; Gardiner R. M. Blood-Brain Barrier Permeability to Bilirubin in the Rat Studied Using Intracarotid Bolus Injection and in Situ Brain Perfusion Techniques. Pediatr. Res. 1990, 27, 436–441. 10.1203/00006450-199005000-00004. PubMed DOI

Latli B.; Hrapchak M.; Krishnamurthy D.; Senanayake C. H. Synthesis of Tritium-Labeled Bilirubin. J. Label. Compd. Radiopharm. 2008, 51, 106–108. 10.1002/jlcr.1489. DOI

Fischer H.; Plieninger H. Synthese Des Biliverdins (Uteroverdins) Und Bilirubins, Der Biliverdine XIII α Und III α, Sowie Der Vinylneoxanthosäure. Hoppe-Seyler’s Z. Physiol. Chem. 1942, 274, 231–260. 10.1515/bchm2.1942.274.1-6.231. DOI

Gossauer A.Synthesis of Bilins. In The Porphyrin Handbook; Elsevier, 2003; pp 237–274.

Jacobi P.; Odeh I.; Buddhu S.; Cai G.; Rajeswari S.; Fry D.; Zheng W.; DeSimone R.; Guo J.; Coutts L.; Hauck S.; Leung S.; Ghosh I.; Pippin D. Synthetic Studies in Phytochrome Chemistry. Synlett 2005, 19, 2861–2885. 10.1055/s-2005-918956. PubMed DOI PMC

Inomata K. Syntheses of Bilin Chromophores toward the Investigation of Structure and Function of Phytochromes. Heterocycles 2012, 85, 2879–2926. 10.3987/REV-12-750. DOI

Sabido P. M. G.; Lightner D. A. Synthesis and Properties of Mesobilirubins XIIγ and XIIIγ and Their Mesobiliverdins. Monatsh. Chem. 2014, 145, 775–789. 10.1007/s00706-014-1160-6. DOI

Plieninger H.; El-Barkawi F.; Ehl K.; Kohler R.; McDonagh A. F. Neue Synthese und C-Markierung von Bilirubin-IXα. Justus Liebigs Ann. Chem. 1972, 758, 195–201. 10.1002/jlac.19727580122. PubMed DOI

Sturrock E. D.; Bull J. R.; Kirsch R. E. The Synthesis of [10-13C]Bilirubin IXα. J. Label. Compd. Radiopharm. 1994, 34, 263–274. 10.1002/jlcr.2580340309. DOI

Klopfleisch M.; Seidel R. A.; Gorls H.; Richter H.; Beckert R.; Imhof W.; Reiher M.; Pohnert G.; Westerhausen M. Total Synthesis and Detection of the Bilirubin Oxidation Product (Z)-2-(3-Ethenyl-4-Methyl-5-Oxo-1,5-Dihydro-2H-Pyrrol-2-Ylidene)Ethanamide (Z-BOX A). Org. Lett. 2013, 15, 4608–4611. 10.1021/ol402221b. PubMed DOI

Seidel R. A.; Schowtka B.; Klopfleisch M.; Kühl T.; Weiland A.; Koch A.; Görls H.; Imhof D.; Pohnert G.; Westerhausen M. Total Synthesis and Characterization of the Bilirubin Oxidation Product (Z)-2-(4-Ethenyl-3-Methyl-5-Oxo-1,5-Dihydro-2H-Pyrrol-2-Ylidene)Ethanamide (Z-BOX B). Tetrahedron Lett. 2014, 55, 6526–6529. 10.1016/j.tetlet.2014.09.108. DOI

Schulze D.; Traber J.; Ritter M.; Gorls H.; Pohnert G.; Westerhausen M. Total Syntheses of the Bilirubin Oxidation End Product Z-BOX C and Its Isomeric Form Z-BOX D. Org. Biomol. Chem. 2019, 17, 6489–6496. 10.1039/C9OB01117J. PubMed DOI

Seidel R. A.; Ritter M.; Joerk A.; Kuschke S.; Langguth N.; Schulze D.; Görls H.; Bauer M.; Witte O. W.; Westerhausen M.; Holthoff K.; Pohnert G. Photoisomerization Neutralizes Vasoconstrictive Activity of a Heme Degradation Product. ACS Omega 2020, 5, 21401–21411. 10.1021/acsomega.0c01698. PubMed DOI PMC

Micklefield J.; Mackman R. L.; Aucken C. J.; Beckmann M.; Block M. H.; Leeper F. J.; Battersby A. R. A Novel Stereoselective Synthesis of the Macrocycle of Haem d1 That Establishes Its Absolute Configuration as 2R,7R. J. Chem. Soc., Chem. Commun. 1993, 275–277. 10.1039/c39930000275. DOI

Jacobi P. A.; Liu H. Studies on Corrin Synthesis. A Solution to the Introduction of Meso Substituents. J. Org. Chem. 1999, 64, 1778–1779. 10.1021/jo9824899. PubMed DOI

Lu X.; Huang X.; Ma S. A Convenient Synthesis of γ-(Z)-Alkylidene Butenolides. Tetrahedron Lett. 1993, 34, 5963–5966. 10.1016/S0040-4039(00)73827-5. DOI

Negishi E.; Alimardanov A.; Xu C. An Efficient and Stereoselective Synthesis of Xerulin via Pd-Catalyzed Cross Coupling and Lactonization Featuring (E)-Iodobromoethylene as a Novel Two-Carbon Synthon. Org. Lett. 2000, 2, 65–67. 10.1021/ol990336h. PubMed DOI

Fiandanese V.; Bottalico D.; Marchese G. An Efficient Stereoselective Approach to Silylated Polyunsaturated γ-Alkylidene Butenolides. Tetrahedron 2001, 57, 10213–10218. 10.1016/S0040-4020(01)01060-2. DOI

Inack-Ngi S.; Rahmani R.; Commeiras L.; Chouraqui G.; Thibonnet J.; Duchêne A.; Abarbri M.; Parrain J.-L. Copper-Catalyzed Preparation of γ-Alkylidenebutenolides and Isocoumarins under Mild Palladium-Free Conditions. Adv. Synth. Catal. 2009, 351, 779–788. 10.1002/adsc.200800757. DOI

Inack-Ngi S.; Cherry K.; Héran V.; Commeiras L.; Parrain J.; Duchêne A.; Abarbri M.; Thibonnet J. Carboxylate-Directed Tandem Functionalisations of α,β-Dihaloalkenoic Acids with 1-Alkynes: A Straightforward Access to (Z)-Configured, α,β-Substituted γ-Alkylidenebutenolides. Chem. - Eur. J. 2011, 17, 13692–13696. 10.1002/chem.201102570. PubMed DOI

Cho C. S.; Kim H. B. Pd/C-Catalyzed Coupling and Cyclization of β-Bromo-α,β-Unsaturated Carboxylic Acids with Terminal Alkynes Leading to Alkylidenefuranones. J. Organomet. Chem. 2011, 696, 3264–3267. 10.1016/j.jorganchem.2011.06.044. DOI

Vu V. A.; Marek I.; Knochel P. Stereoselective Preparationof Functionalized Unsaturated Lactones and Esters via Functionalized Magnesium Carbenoids. Synthesis 2003, 35, 1797–1802. 10.1055/s-2003-41035. DOI

Yusubov M. S.; Yusubova R. Y.; Nemykin V. N.; Zhdankin V. V. Preparation and X-ray Structural Study of 1-Arylbenziodoxolones. J. Org. Chem. 2013, 78, 3767–3773. 10.1021/jo400212u. PubMed DOI

Shah A.-H. A.; Khan Z. A.; Choudhary N.; Lohölter C.; Schäfer S.; Marie G. P. L.; Farooq U.; Witulski B.; Wirth T. Iodoxolone-Based Hypervalent Iodine Reagents. Org. Lett. 2009, 11, 3578–3581. 10.1021/ol9014688. PubMed DOI

Almasalma A. A.; Mejía E. 1-Phenyl-1,2-Benziodoxol-3-(1H)-one as Synthon for Phthalide Synthesis through Pd-Free, Base-Free, Sonogashira-Type Coupling Cyclization Reaction. Eur. J. Org. Chem. 2018, 2018, 188–195. 10.1002/ejoc.201700940. DOI

Martin R.; Buchwald S. L. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. 10.1021/ar800036s. PubMed DOI PMC

Ilardi E. A.; Stivala C. E.; Zakarian A. Hexafluoroisopropanol as a Unique Solvent for Stereoselective Iododesilylation of Vinylsilanes. Org. Lett. 2008, 10, 1727–1730. 10.1021/ol800341z. PubMed DOI

Sidera M.; Costa A. M.; Vilarrasa J. Iododesilylation of TIPS-, TBDPS-, and TBS-Substituted Alkenes in Connection with the Synthesis of Amphidinolides B/D. Org. Lett. 2011, 13, 4934–4937. 10.1021/ol2020187. PubMed DOI

Szudkowska-Frątczak J.; Zaranek M.; Hreczycho G.; Kubicki M.; Grabarkiewicz T.; Pawluć P. A Silicon-Assisted Synthesis of (E)-β-Haloenamides from N-Vinylamides. Appl. Organomet. Chem. 2015, 29, 270–275. 10.1002/aoc.3284. DOI

Mennie K. M.; Vara B. A.; Levi S. M. Reductive sp3–sp2 Coupling Reactions Enable Late-Stage Modification of Pharmaceuticals. Org. Lett. 2020, 22, 556–559. 10.1021/acs.orglett.9b04320. PubMed DOI

Zhang P.; Le C. “C.”; MacMillan D. W. C. Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling. J. Am. Chem. Soc. 2016, 138, 8084–8087. 10.1021/jacs.6b04818. PubMed DOI PMC

Vaz B.; Otero L.; Álvarez R.; de Lera Á. R. Total Synthesis of Enantiopure Pyrrhoxanthin: Alternative Methods for the Stereoselective Preparation of 4-Alkylidenebutenolides. Chem. - Eur. J. 2013, 19, 13065–13074. 10.1002/chem.201301873. PubMed DOI

Yao T.; Larock R. C. Synthesis of Isocoumarins and α-Pyrones via Electrophilic Cyclization. J. Org. Chem. 2003, 68, 5936–5942. 10.1021/jo034308v. PubMed DOI

Barton D. H. R.; Zard S. Z. A New Synthesis of Pyrroles from Nitroalkenes. J. Chem. Soc., Chem. Commun. 1985, 1098–1100. 10.1039/c39850001098. DOI

Ishiyama T.; Takagi J.; Yonekawa Y.; Hartwig J. F.; Miyaura N. Iridium-Catalyzed Direct Borylation of Five-Membered Heteroarenes by Bis(Pinacolato)Diboron: Regioselective, Stoichiometric, and Room Temperature Reactions. Adv. Synth. Catal. 2003, 345, 1103–1106. 10.1002/adsc.200303058. DOI

Mkhalid I. A. I.; Barnard J. H.; Marder T. B.; Murphy J. M.; Hartwig J. F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. 10.1021/cr900206p. PubMed DOI

Madea D.; Mujawar T.; Dvořák A.; Pospíšilová K.; Muchová L.; Čubáková P.; Kloz M.; Švenda J.; Vítek L.; Klán P. Photochemistry of (Z)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. J. Org. Chem. 2022, 87, 3089–3103. 10.1021/acs.joc.1c02870. PubMed DOI

Boger D. L.; Baldino C. M. Singlet Oxygen Mediated Oxidative Decarboxylation of Pyrrole-2-Carboxylic Acids. J. Org. Chem. 1991, 56, 6942–6944. 10.1021/jo00024a045. DOI

Beruter J.; Colombo J.-P.; Schlunegger U. P. Isolation and Identification of the Urinary Pigment Uroerythrin. Eur. J. Biochem. 1975, 56, 239–244. 10.1111/j.1432-1033.1975.tb02226.x. PubMed DOI

Morita Y.; Takahashi H.; Kamihata H.; Yamamoto Y.; Hara K.; Iwasaka T. Urinary Excretion of Biopyrrins, Oxidative Metabolites of Bilirubin, Increases after Spasm Provocation Tests in Patients with Coronary Spastic Angina. Int. J. Cardiol. 2001, 80, 243–250. 10.1016/S0167-5273(01)00517-4. PubMed DOI

Hokamaki J.; Kawano H.; Yoshimura M.; Soejima H.; Miyamoto S.; Kajiwara I.; Kojima S.; Sakamoto T.; Sugiyama S.; Hirai N.; Shimomura H.; Nagayoshi Y.; Tsujita K.; Shioji I.; Sasaki S.; Ogawa H. Urinary Biopyrrins Levels Are Elevated in Relation to Severity of Heart Failure. J. Am. Coll. Cardiol. 2004, 43, 1880–1885. 10.1016/j.jacc.2004.01.028. PubMed DOI

Vitek L.; Kraslova I.; Muchova L.; Novotny L.; Yamaguchi T. Urinary Excretion of Oxidative Metabolites of Bilirubin in Subjects with Gilbert Syndrome. J. Gastroenterol. Hepatol. 2007, 22, 841–845. 10.1111/j.1440-1746.2006.04564.x. PubMed DOI

Chiba T.; Tatematsu S.; Nakao M.; Furue M. Urinary Biopyrrin: A Potential Inflammatory Marker of Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2014, 112, 182–183. 10.1016/j.anai.2013.12.011. PubMed DOI

Kudo K.; Inoue T.; Sonoda N.; Ogawa Y.; Inoguchi T. Relationship between Serum Bilirubin Levels, Urinary Biopyrrin Levels, and Retinopathy in Patients with Diabetes. PLoS One 2021, 16, e024340710.1371/journal.pone.0243407. PubMed DOI PMC

Tomat E.; Curtis C. J. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals. Acc. Chem. Res. 2021, 54, 4584–4594. 10.1021/acs.accounts.1c00613. PubMed DOI

Stoll M. S.; Vicker N.; Gray C. H.; Bonnett R. Concerning the Structure of Photobilirubin II. Biochem. J. 1982, 201, 179–188. 10.1042/bj2010179. PubMed DOI PMC

McDonagh A. F.; Palma L. A.; Lightner D. A. Phototherapy for Neonatal Jaundice. Stereospecific and Regioselective Photoisomerization of Bilirubin Bound to Human Serum Albumin and NMR Characterization of Intramolecularly Cyclized Photoproducts. J. Am. Chem. Soc. 1982, 104, 6867–6869. 10.1021/ja00388a104. DOI

Ennever J. F.; Sobel M.; Mcdonagh A. F.; Speck W. T. Phototherapy for Neonatal Jaundice: In Vitro Comparison of Light Sources. Pediatr. Res. 1984, 18, 667–670. 10.1203/00006450-198407000-00021. PubMed DOI

Bonnett R.; loannou S. Phototherapy and the Chemistry of Bilirubin. Mol. Aspects Med. 1987, 9, 457–471. 10.1016/0098-2997(87)90008-2. PubMed DOI

Ennever J. F.; Dresing T. J. Quantum Yields For the Cyclization and Configurational Isomerization of 4E, 15Z-Bilirubin. Photochem. Photobiol. 1991, 53, 25–32. 10.1111/j.1751-1097.1991.tb08463.x. PubMed DOI

Itoh S.; Okada H.; Kuboi T.; Kusaka T. Phototherapy for Neonatal Hyperbilirubinemia. Pediatr. Int. 2017, 59, 959–966. 10.1111/ped.13332. PubMed DOI

Madea D.; Mahvidi S.; Chalupa D.; Mujawar T.; Dvořák A.; Muchová L.; Janoš J.; Slavíček P.; Švenda J.; Vítek L.; Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J. Org. Chem. 2020, 85, 13015–13028. 10.1021/acs.joc.0c01673. PubMed DOI

Kaplan D.; Navon G. Nuclear Magnetic Resonance Studies of the Conformation of Bilirubin and Its Derivatives in Solution. J. Chem. Soc., Perkin Trans. 1981, 2, 1374–1383. 10.1039/p29810001374. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...