Bilirubin: translational perspectives

. 2025 Sep 19 ; () : . [epub] 20250919

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40973744
Odkazy

PubMed 40973744
DOI 10.1038/s41390-025-04432-z
PII: 10.1038/s41390-025-04432-z
Knihovny.cz E-zdroje

Bilirubin, an old tetrapyrrolic compound that had occurred on Earth early on, is the final product of the catabolic heme pathway in the intravascular bed. Data from recent decades revealed its enormous bioactivity in a human body, including antioxidant, anti-inflammatory, immunosuppressive, antiproliferative, and even cell signaling activities that translate into beneficial effects of mildly elevated serum bilirubin concentrations resulting in prevention or amelioration of progression of many diseases of civilization. Furthermore, recent advances in bilirubin research have changed our understanding of bilirubin metabolism in the neonatal period, with discoveries of bilirubin reductase of bacterial origin in the intestinal lumen with direct pathophysiological and clinical implications. Similarly, our knowledge of the pathophysiology of neonatal jaundice phototherapy has improved substantially, although we are still at the beginning of the path to understand all the pathophysiological aspects and reveal related clinical implications. BULLET POINTS: Recent advances in our understanding of bilirubin metabolism with clear clinical implications, as well as other, so far putative, translational impacts. Demonstration of the beneficial biological potential of bilirubin, its evolutionary and ontogenetic functions, its possible role in chronobiology, and its correlation with increased fitness in elite athletes (a sort of gain of function). Discussion on the protective role of physiological neonatal jaundice. Inspiration for further basic and clinical research in specific fields of bilirubin metabolism.

Zobrazit více v PubMed

Stocker, R., Yamamoto, Y., Mcdonagh, A. F., Glazer, A. N. & Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046, https://doi.org/10.1126/science.3029864 (1987). PubMed DOI

Jangi, S., Otterbein, L. & Robson, S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 45, 2843–2851, https://doi.org/10.1016/j.biocel.2013.09.014 (2013). PubMed DOI

Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832, https://doi.org/10.1038/s41591-019-0675-0 (2019). PubMed DOI PMC

Vitek, L., Hinds, T. D. Jr., Stec, D. E. & Tiribelli, C. The physiology of bilirubin: health and disease equilibrium. Trends Mol. Med. 29, 315–328, https://doi.org/10.1016/j.molmed.2023.01.007 (2023). PubMed DOI PMC

Jayanti, S., Vítek, L., Tiribelli, C. & Gazzin, S. The role of bilirubin and other “yellow players” in neurodegenerative diseases. Antioxidants 9, 900, https://doi.org/10.3390/antiox9090900 (2020). PubMed DOI PMC

Vitek, L. Bilirubin as a signaling molecule. Med. Res. Rev. 40, 1335–1351, https://doi.org/10.1002/med.21660 (2020). PubMed DOI

Vitek, L. & Tiribelli, C. Bilirubin: the yellow hormone?. J. Hepatol. 75, 1485–1490, https://doi.org/10.1016/j.jhep.2021.06.010 (2021). PubMed DOI

Vitek, L. & Tiribelli, C. Gilbert’s syndrome revisited. J. Hepatol. 79, 1049–1055, https://doi.org/10.1016/j.jhep.2023.06.004 (2023). PubMed DOI

Vitek, L. Bilirubin and atherosclerotic diseases. Physiol. Res. 66, S11–S20, https://doi.org/10.33549/physiolres.933581 (2017). PubMed DOI

Woronyczova, J. et al. Serum bilirubin concentrations and the prevalence of Gilbert syndrome in elite athletes. Sports Med. Open 1–10, https://doi.org/10.1186/s40798-022-00463-6 (2022).

Flack, K. D., Vítek, L., Fry, C. S., Stec, D. E. & Hinds, T. D. Cutting edge concepts: does bilirubin enhance exercise performance?. Front. Sports Act. Living 4, 1040687. https://doi.org/10.3389/fspor.2022.1040687 (2023). PubMed DOI PMC

Oren, D. A. Humoral phototransduction: blood is a messenger. Neuroscientist 2, 207–210, https://doi.org/10.1177/107385849600200408 (1996). DOI

Campbell, S. S. & Murphy, P. J. Extraocular circadian phototransduction in humans. Science 279, 396–399, https://doi.org/10.1126/science.279.5349.396 (1998). PubMed DOI

Oren, D. A. & Terman, M. Tweaking the human circadian clock with light. Science 279, 333–334, https://doi.org/10.1126/science.279.5349.333 (1998). PubMed DOI

Oren, D. A. Bilirubin, REM sleep, and phototransduction of environmental time cues. A hypothesis. Chronobiol. Int. 14, 319–329, https://doi.org/10.3109/07420529709001423 (1997). PubMed DOI

Oren, D. A., Desan, P. H., Boutros, N., Anand, A. & Charney, D. S. Effects of light on low nocturnal bilirubin in winter depression: a preliminary report. Biol. Psychiatry 51, 422–425, https://doi.org/10.1016/s0006-3223(01)01254-9 (2002). PubMed DOI

Makos, B. K. & Youson, J. H. Serum levels of bilirubin and biliverdin in the sea lamprey, Petromyzon-Marinus L, before and after their biliary atresia. Comp. Biochem. Physiol. 87, 761–764, https://doi.org/10.1016/0300-9629(87)90396-3 (1987). DOI

Montorzi, M., Dziedzic, T. S. & Falchuk, K. H. Biliverdin during Xenopus laevis oogenesis and early embryogenesis. Biochemistry 41, 10115–10122, https://doi.org/10.1021/bi020204n (2002). PubMed DOI

Mansfield, C., Fukaya, T. & Yajima, A. Bilirubin helps to overcome the two-cell block in mouse oocyte cultures. J. Assist Reprod. Genet 11, 510–514, https://doi.org/10.1007/BF02216031 (1994). PubMed DOI

Xi, H. et al. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: a promising strategy for assisted reproduction techniques. Int. J. Pharm. X 8, 100268. https://doi.org/10.1016/j.ijpx.2024.100268 (2024). PubMed DOI PMC

Dammeyer, T. & Frankenberg-Dinkel, N. Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J. Biol. Chem. 281, 27081–27089, https://doi.org/10.1074/jbc.M605154200 (2006). PubMed DOI

Schluchter, W. M. & Glazer, A. N. Characterization of cyanobacterial biliverdin reductase - conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J. Biol. Chem. 272, 13562–13569, https://doi.org/10.1074/jbc.272.21.13562 (1997). PubMed DOI

Konickova, R. et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann. Hepatol. 13, 273–283 (2014). PubMed DOI

Vankova, K. et al. Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxid. Med. Cell. Longev. 2018, 4069167. https://doi.org/10.1155/2018/4069167 (2018). PubMed DOI PMC

Zucker, S. D., Horn, P. S. & Sherman, K. E. Serum bilirubin levels in the US population: gender effect and inverse correlation with colorectal cancer. Hepatology 40, 827–835, https://doi.org/10.1002/hep.20407 (2004). PubMed DOI

Vitek, L. et al. Association between plasma bilirubin and mortality. Ann. Hepatol. 18, 379–385, https://doi.org/10.1016/j.aohep.2019.02.001 (2019). PubMed DOI

Jiraskova, A. et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int. J. Cancer 131, 1549–1555, https://doi.org/10.1002/ijc.27412 (2012). PubMed DOI

Yi, F., Tao, S. & Wu, H. Bilirubin metabolism in relation to cancer. Front. Oncol. 15, 1570288. https://doi.org/10.3389/fonc.2025.1570288 (2025). PubMed DOI PMC

Ishikawa, S. et al. Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett. 584, 770–774, https://doi.org/10.1016/j.febslet.2009.12.041 (2010). PubMed DOI

Samiullah, S., Roberts, J. R. & Chousalkar, K. Eggshell color in brown-egg laying hens - a review. Poult. Sci. 94, 2566–2575, https://doi.org/10.3382/ps/pev202 (2015). PubMed DOI

Najib-Farah, M. D. Defensive role of bilirubinemia in pneumococcal infection. Lancet 229, 505–506 (1937). DOI

Hansen, R. et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci. Rep. 8, 6470. https://doi.org/10.1038/s41598-018-24811-3 (2018). PubMed DOI PMC

Figueiredo, A. et al. A metabolite-based resistance mechanism against malaria. Science 388, eadq6741. https://doi.org/10.1126/science.adq6741 (2025). PubMed DOI

Kloehn, J. & Soldati-Favre, D. Rethinking jaundice. Science 388, 1132–1133, https://doi.org/10.1126/science.ady7161 (2025). PubMed DOI

Hall, B. et al. Discovery of the gut microbial enzyme responsible for bilirubin reduction to urobilinogen. bioRxiv https://doi.org/10.1101/2023.02.07.527579 (2023).

Vitek, L. et al. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice. J. Pediatr. Gastroenterol. Nutr. 30, 294–298, https://doi.org/10.1097/00005176-200003000-00015 (2000). PubMed DOI

Vitek, L., Zelenka, J., Zadinova, M. & Malina, J. The impact of intestinal microflora on serum bilirubin levels. J. Hepatol. 42, 238–243, https://doi.org/10.1016/j.jhep.2004.10.012 (2005). PubMed DOI

Chen, Z. et al. Probiotics supplementation therapy for pathological neonatal jaundice: a systematic review and meta-analysis. Front. Pharm. 8, 432, https://doi.org/10.3389/fphar.2017.00432 (2017). DOI

Jiayi, C. et al. Probiotics’ effects on gut microbiota in jaundiced neonates: a randomized controlled trial protocol. Front. Pediatr. 12 https://doi.org/10.3389/fped.2024.1296517 (2024).

Vitek, L. & Schwertner, H. A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 43, 1–57, https://doi.org/10.1016/s0065-2423(06)43001-8 (2007). PubMed DOI

Belanger, S., Lavoie, J. C. & Chessex, P. Influence of bilirubin on the antioxidant capacity of plasma in newborn infants. Biol. Neonate 71, 233–238, https://doi.org/10.1159/000244422 (1997). PubMed DOI

Chaudhari, H., Gawli, C., Kumar, A. & Patil, C. R. Oxidative stress and inflammatory alterations during phototherapy of neonatal icterus: systematic review and meta-analysis. J. Popul Ther. Clin. Pharm. 29, 871–885, https://doi.org/10.53555/jptcp.v29i04.3420 (2022). DOI

Vreman, H. J. et al. The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production. Pediatr. Res. 85, 865–873, https://doi.org/10.1038/s41390-019-0310-2 (2019). PubMed DOI

Ebbesen, F., Madsen, P. H., Rodrigo-Domingo, M. & Donneborg, M. L. Bilirubin isomers during LED phototherapy of hyperbilirubinemic neonates, blue-green (~478 nm) vs blue. Pediatr. Res. https://doi.org/10.1038/s41390-024-03493-w (2024).

Ebbesen, F., Rodrigo-Domingo, M., Moeller, A. M., Vreman, H. J. & Donneborg, M. L. Effect of blue LED phototherapy centered at 478 nm versus 459 nm in hyperbilirubinemic neonates: a randomized study. Pediatr. Res. 89, 598–603, https://doi.org/10.1038/s41390-020-0911-9 (2021). PubMed DOI

Vitek, L. Risk of childhood cancer in infants treated with phototherapy for neonatal jaundice. Pediatr. Res. https://doi.org/10.1038/s41390-024-03315-z (2024).

Jasprova, J. et al. The biological effects of bilirubin photoisomers. PLoS One 11, e0148126, https://doi.org/10.1371/journal.pone.0148126 (2016). PubMed DOI PMC

Capkova, N. et al. The effects of bilirubin and lumirubin on the differentiation of human pluripotent cell-derived neural stem cells. Antioxidants 10, https://doi.org/10.3390/antiox10101532 (2021).

Jasprova, J. et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 8, 7444. https://doi.org/10.1038/s41598-018-25684-2 (2018). PubMed DOI PMC

Dvorak, A. et al. The effects of bilirubin and lumirubin on metabolic and oxidative stress markers. Front. Pharm. 12, 567001. https://doi.org/10.3389/fphar.2021.567001 (2021). DOI

Mujawar, T., Sevelda, P., Madea, D., Klan, P. & Svenda, J. A platform for the synthesis of oxidation products of bilirubin. J. Am. Chem. Soc. 146, 1603–1611, https://doi.org/10.1021/jacs.3c11778 (2024). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...