Bilirubin: translational perspectives
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40973744
DOI
10.1038/s41390-025-04432-z
PII: 10.1038/s41390-025-04432-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bilirubin, an old tetrapyrrolic compound that had occurred on Earth early on, is the final product of the catabolic heme pathway in the intravascular bed. Data from recent decades revealed its enormous bioactivity in a human body, including antioxidant, anti-inflammatory, immunosuppressive, antiproliferative, and even cell signaling activities that translate into beneficial effects of mildly elevated serum bilirubin concentrations resulting in prevention or amelioration of progression of many diseases of civilization. Furthermore, recent advances in bilirubin research have changed our understanding of bilirubin metabolism in the neonatal period, with discoveries of bilirubin reductase of bacterial origin in the intestinal lumen with direct pathophysiological and clinical implications. Similarly, our knowledge of the pathophysiology of neonatal jaundice phototherapy has improved substantially, although we are still at the beginning of the path to understand all the pathophysiological aspects and reveal related clinical implications. BULLET POINTS: Recent advances in our understanding of bilirubin metabolism with clear clinical implications, as well as other, so far putative, translational impacts. Demonstration of the beneficial biological potential of bilirubin, its evolutionary and ontogenetic functions, its possible role in chronobiology, and its correlation with increased fitness in elite athletes (a sort of gain of function). Discussion on the protective role of physiological neonatal jaundice. Inspiration for further basic and clinical research in specific fields of bilirubin metabolism.
Zobrazit více v PubMed
Stocker, R., Yamamoto, Y., Mcdonagh, A. F., Glazer, A. N. & Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046, https://doi.org/10.1126/science.3029864 (1987). PubMed DOI
Jangi, S., Otterbein, L. & Robson, S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 45, 2843–2851, https://doi.org/10.1016/j.biocel.2013.09.014 (2013). PubMed DOI
Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832, https://doi.org/10.1038/s41591-019-0675-0 (2019). PubMed DOI PMC
Vitek, L., Hinds, T. D. Jr., Stec, D. E. & Tiribelli, C. The physiology of bilirubin: health and disease equilibrium. Trends Mol. Med. 29, 315–328, https://doi.org/10.1016/j.molmed.2023.01.007 (2023). PubMed DOI PMC
Jayanti, S., Vítek, L., Tiribelli, C. & Gazzin, S. The role of bilirubin and other “yellow players” in neurodegenerative diseases. Antioxidants 9, 900, https://doi.org/10.3390/antiox9090900 (2020). PubMed DOI PMC
Vitek, L. Bilirubin as a signaling molecule. Med. Res. Rev. 40, 1335–1351, https://doi.org/10.1002/med.21660 (2020). PubMed DOI
Vitek, L. & Tiribelli, C. Bilirubin: the yellow hormone?. J. Hepatol. 75, 1485–1490, https://doi.org/10.1016/j.jhep.2021.06.010 (2021). PubMed DOI
Vitek, L. & Tiribelli, C. Gilbert’s syndrome revisited. J. Hepatol. 79, 1049–1055, https://doi.org/10.1016/j.jhep.2023.06.004 (2023). PubMed DOI
Vitek, L. Bilirubin and atherosclerotic diseases. Physiol. Res. 66, S11–S20, https://doi.org/10.33549/physiolres.933581 (2017). PubMed DOI
Woronyczova, J. et al. Serum bilirubin concentrations and the prevalence of Gilbert syndrome in elite athletes. Sports Med. Open 1–10, https://doi.org/10.1186/s40798-022-00463-6 (2022).
Flack, K. D., Vítek, L., Fry, C. S., Stec, D. E. & Hinds, T. D. Cutting edge concepts: does bilirubin enhance exercise performance?. Front. Sports Act. Living 4, 1040687. https://doi.org/10.3389/fspor.2022.1040687 (2023). PubMed DOI PMC
Oren, D. A. Humoral phototransduction: blood is a messenger. Neuroscientist 2, 207–210, https://doi.org/10.1177/107385849600200408 (1996). DOI
Campbell, S. S. & Murphy, P. J. Extraocular circadian phototransduction in humans. Science 279, 396–399, https://doi.org/10.1126/science.279.5349.396 (1998). PubMed DOI
Oren, D. A. & Terman, M. Tweaking the human circadian clock with light. Science 279, 333–334, https://doi.org/10.1126/science.279.5349.333 (1998). PubMed DOI
Oren, D. A. Bilirubin, REM sleep, and phototransduction of environmental time cues. A hypothesis. Chronobiol. Int. 14, 319–329, https://doi.org/10.3109/07420529709001423 (1997). PubMed DOI
Oren, D. A., Desan, P. H., Boutros, N., Anand, A. & Charney, D. S. Effects of light on low nocturnal bilirubin in winter depression: a preliminary report. Biol. Psychiatry 51, 422–425, https://doi.org/10.1016/s0006-3223(01)01254-9 (2002). PubMed DOI
Makos, B. K. & Youson, J. H. Serum levels of bilirubin and biliverdin in the sea lamprey, Petromyzon-Marinus L, before and after their biliary atresia. Comp. Biochem. Physiol. 87, 761–764, https://doi.org/10.1016/0300-9629(87)90396-3 (1987). DOI
Montorzi, M., Dziedzic, T. S. & Falchuk, K. H. Biliverdin during Xenopus laevis oogenesis and early embryogenesis. Biochemistry 41, 10115–10122, https://doi.org/10.1021/bi020204n (2002). PubMed DOI
Mansfield, C., Fukaya, T. & Yajima, A. Bilirubin helps to overcome the two-cell block in mouse oocyte cultures. J. Assist Reprod. Genet 11, 510–514, https://doi.org/10.1007/BF02216031 (1994). PubMed DOI
Xi, H. et al. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: a promising strategy for assisted reproduction techniques. Int. J. Pharm. X 8, 100268. https://doi.org/10.1016/j.ijpx.2024.100268 (2024). PubMed DOI PMC
Dammeyer, T. & Frankenberg-Dinkel, N. Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J. Biol. Chem. 281, 27081–27089, https://doi.org/10.1074/jbc.M605154200 (2006). PubMed DOI
Schluchter, W. M. & Glazer, A. N. Characterization of cyanobacterial biliverdin reductase - conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J. Biol. Chem. 272, 13562–13569, https://doi.org/10.1074/jbc.272.21.13562 (1997). PubMed DOI
Konickova, R. et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann. Hepatol. 13, 273–283 (2014). PubMed DOI
Vankova, K. et al. Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxid. Med. Cell. Longev. 2018, 4069167. https://doi.org/10.1155/2018/4069167 (2018). PubMed DOI PMC
Zucker, S. D., Horn, P. S. & Sherman, K. E. Serum bilirubin levels in the US population: gender effect and inverse correlation with colorectal cancer. Hepatology 40, 827–835, https://doi.org/10.1002/hep.20407 (2004). PubMed DOI
Vitek, L. et al. Association between plasma bilirubin and mortality. Ann. Hepatol. 18, 379–385, https://doi.org/10.1016/j.aohep.2019.02.001 (2019). PubMed DOI
Jiraskova, A. et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int. J. Cancer 131, 1549–1555, https://doi.org/10.1002/ijc.27412 (2012). PubMed DOI
Yi, F., Tao, S. & Wu, H. Bilirubin metabolism in relation to cancer. Front. Oncol. 15, 1570288. https://doi.org/10.3389/fonc.2025.1570288 (2025). PubMed DOI PMC
Ishikawa, S. et al. Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett. 584, 770–774, https://doi.org/10.1016/j.febslet.2009.12.041 (2010). PubMed DOI
Samiullah, S., Roberts, J. R. & Chousalkar, K. Eggshell color in brown-egg laying hens - a review. Poult. Sci. 94, 2566–2575, https://doi.org/10.3382/ps/pev202 (2015). PubMed DOI
Najib-Farah, M. D. Defensive role of bilirubinemia in pneumococcal infection. Lancet 229, 505–506 (1937). DOI
Hansen, R. et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci. Rep. 8, 6470. https://doi.org/10.1038/s41598-018-24811-3 (2018). PubMed DOI PMC
Figueiredo, A. et al. A metabolite-based resistance mechanism against malaria. Science 388, eadq6741. https://doi.org/10.1126/science.adq6741 (2025). PubMed DOI
Kloehn, J. & Soldati-Favre, D. Rethinking jaundice. Science 388, 1132–1133, https://doi.org/10.1126/science.ady7161 (2025). PubMed DOI
Hall, B. et al. Discovery of the gut microbial enzyme responsible for bilirubin reduction to urobilinogen. bioRxiv https://doi.org/10.1101/2023.02.07.527579 (2023).
Vitek, L. et al. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice. J. Pediatr. Gastroenterol. Nutr. 30, 294–298, https://doi.org/10.1097/00005176-200003000-00015 (2000). PubMed DOI
Vitek, L., Zelenka, J., Zadinova, M. & Malina, J. The impact of intestinal microflora on serum bilirubin levels. J. Hepatol. 42, 238–243, https://doi.org/10.1016/j.jhep.2004.10.012 (2005). PubMed DOI
Chen, Z. et al. Probiotics supplementation therapy for pathological neonatal jaundice: a systematic review and meta-analysis. Front. Pharm. 8, 432, https://doi.org/10.3389/fphar.2017.00432 (2017). DOI
Jiayi, C. et al. Probiotics’ effects on gut microbiota in jaundiced neonates: a randomized controlled trial protocol. Front. Pediatr. 12 https://doi.org/10.3389/fped.2024.1296517 (2024).
Vitek, L. & Schwertner, H. A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 43, 1–57, https://doi.org/10.1016/s0065-2423(06)43001-8 (2007). PubMed DOI
Belanger, S., Lavoie, J. C. & Chessex, P. Influence of bilirubin on the antioxidant capacity of plasma in newborn infants. Biol. Neonate 71, 233–238, https://doi.org/10.1159/000244422 (1997). PubMed DOI
Chaudhari, H., Gawli, C., Kumar, A. & Patil, C. R. Oxidative stress and inflammatory alterations during phototherapy of neonatal icterus: systematic review and meta-analysis. J. Popul Ther. Clin. Pharm. 29, 871–885, https://doi.org/10.53555/jptcp.v29i04.3420 (2022). DOI
Vreman, H. J. et al. The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production. Pediatr. Res. 85, 865–873, https://doi.org/10.1038/s41390-019-0310-2 (2019). PubMed DOI
Ebbesen, F., Madsen, P. H., Rodrigo-Domingo, M. & Donneborg, M. L. Bilirubin isomers during LED phototherapy of hyperbilirubinemic neonates, blue-green (~478 nm) vs blue. Pediatr. Res. https://doi.org/10.1038/s41390-024-03493-w (2024).
Ebbesen, F., Rodrigo-Domingo, M., Moeller, A. M., Vreman, H. J. & Donneborg, M. L. Effect of blue LED phototherapy centered at 478 nm versus 459 nm in hyperbilirubinemic neonates: a randomized study. Pediatr. Res. 89, 598–603, https://doi.org/10.1038/s41390-020-0911-9 (2021). PubMed DOI
Vitek, L. Risk of childhood cancer in infants treated with phototherapy for neonatal jaundice. Pediatr. Res. https://doi.org/10.1038/s41390-024-03315-z (2024).
Jasprova, J. et al. The biological effects of bilirubin photoisomers. PLoS One 11, e0148126, https://doi.org/10.1371/journal.pone.0148126 (2016). PubMed DOI PMC
Capkova, N. et al. The effects of bilirubin and lumirubin on the differentiation of human pluripotent cell-derived neural stem cells. Antioxidants 10, https://doi.org/10.3390/antiox10101532 (2021).
Jasprova, J. et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 8, 7444. https://doi.org/10.1038/s41598-018-25684-2 (2018). PubMed DOI PMC
Dvorak, A. et al. The effects of bilirubin and lumirubin on metabolic and oxidative stress markers. Front. Pharm. 12, 567001. https://doi.org/10.3389/fphar.2021.567001 (2021). DOI
Mujawar, T., Sevelda, P., Madea, D., Klan, P. & Svenda, J. A platform for the synthesis of oxidation products of bilirubin. J. Am. Chem. Soc. 146, 1603–1611, https://doi.org/10.1021/jacs.3c11778 (2024). PubMed DOI PMC