The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RVO-VFN64165/2020 and NV18-07-00342
Czech Ministry of Health - LV
PubMed
32971784
PubMed Central
PMC7555389
DOI
10.3390/antiox9090900
PII: antiox9090900
Knihovny.cz E-zdroje
- Klíčová slova
- bilirubin, bilirubin oxidation products, biliverdin, biliverdin reductase, central nervous system (CNS), heme, heme oxygenase, neurodegenerative diseases, yellow players,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Faculty of Medicine Universitas Hasanuddin Makassar 90245 Indonesia
Molecular Biomedicine Ph D Program University of Trieste 34127 Trieste Italy
Zobrazit více v PubMed
Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI
Gazzin S., Masutti F., Vítek L., Tiribelli C. The molecular basis of jaundice: An old symptom revisited. Liver Int. 2016;37:1094–1102. doi: 10.1111/liv.13351. PubMed DOI
Vítek L., Ostrow J.D. Bilirubin Chemistry and Metabolism; Harmful and Protective Aspects. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/69920/article. PubMed
Le Pichon J.-B., Riordan S.M., Watchko J., Shapiro S.M. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs) Curr. Pediatr. Rev. 2017;13:199–209. doi: 10.2174/1573396313666170815100214. PubMed DOI
Strauss K.A., Robinson D.L., Vreman H.J., Puffenberger E.G., Hart G., Morton D.H. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur. J. Pediatr. 2006;165:306–319. doi: 10.1007/s00431-005-0055-2. PubMed DOI
Watchko J.F., Tiribelli C. Bilirubin-Induced Neurologic Damage—Mechanisms and Management Approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI
Diamond I.D., Schmid R.S. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Investig. 1966;45:678–689. doi: 10.1172/JCI105383. PubMed DOI PMC
Wennberg R.P., Ahlfors C.E., Bhutani V.K., Johnson L.H., Shapiro S.M. Toward Understanding Kernicterus: A Challenge to Improve the Management of Jaundiced Newborns. Pediatrics. 2006;117:474–485. doi: 10.1542/peds.2005-0395. PubMed DOI
Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–1046. doi: 10.1126/science.3029864. PubMed DOI
Baranano D.E., Rao M., Ferris C.D., Snyder S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA. 2002;99:16093–16098. doi: 10.1073/pnas.252626999. PubMed DOI PMC
Abraham N.G., Kappas A. Pharmacological and Clinical Aspects of Heme Oxygenase. Pharmacol. Rev. 2008;60:79–127. doi: 10.1124/pr.107.07104. PubMed DOI
Gozzelino R. The Pathophysiology of Heme in the Brain. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/135089/article.
Maines M.D. New Insights into Biliverdin Reductase Functions: Linking Heme Metabolism to Cell Signaling. Physiology. 2005;20:382–389. doi: 10.1152/physiol.00029.2005. PubMed DOI
Nitti M., Piras S., Brondolo L., Marinari U.M., Pronzato M.A., Furfaro A.L. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int. J. Mol. Sci. 2018;19:2260. doi: 10.3390/ijms19082260. PubMed DOI PMC
Ryter S.W., Alam J., Choi A.M.K. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol. Rev. 2006;86:583–650. doi: 10.1152/physrev.00011.2005. PubMed DOI
Schipper H.M., Song W., Tavitian A., Cressatti M. The sinister face of heme oxygenase-1 in brain aging and disease. Prog. Neurobiol. 2019;172:40–70. doi: 10.1016/j.pneurobio.2018.06.008. PubMed DOI
Wagner K.-H., Wallner M., Mölzer C., Gazzin S., Bulmer A.C., Tiribelli C., Vitek L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015;129:1–25. doi: 10.1042/CS20140566. PubMed DOI
Chen J., Tu Y., Moon C., Nagata E., Ronnett G.V. Heme oxygenase-1 and heme oxygenase-2 have distinct roles in the proliferation and survival of olfactory receptor neurons mediated by cGMP and bilirubin, respectively. J. Neurochem. 2003;85:1247–1261. doi: 10.1046/j.1471-4159.2003.01776.x. PubMed DOI
Park J.-S., Nam E., Lee H.-K., Lim M.H., Rhee H.-W. In Cellulo Mapping of Subcellular Localized Bilirubin. ACS Chem. Biol. 2016;11:2177–2185. doi: 10.1021/acschembio.6b00017. PubMed DOI
Takeda T., Mu A., Tai T.T., Kitajima S., Taketani S. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage. Sci. Rep. 2015;5:10488. doi: 10.1038/srep10488. PubMed DOI PMC
Funahashi A., Komatsu M., Furukawa T., Yoshizono Y., Yoshizono H., Orikawa Y., Takumi S., Shiozaki K., Hayashi S., Kaminishi Y., et al. Eel green fluorescent protein is associated with resistance to oxidative stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016;181–182:35–39. doi: 10.1016/j.cbpc.2015.12.009. PubMed DOI
Kumagai A., Ando R., Miyatake H., Greimel P., Kobayashi T., Hirabayashi Y., Shimogori T., Miyawaki A. A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell. 2013;153:1602–1611. doi: 10.1016/j.cell.2013.05.038. PubMed DOI
Vítek L., Schwertner H.A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 2007;43:1–57. doi: 10.1016/s0065-2423(06)43001-8. PubMed DOI
Chiabrando D., Fiorito V., Petrillo S., Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front. Neurosci. 2018;12:712. doi: 10.3389/fnins.2018.00712. PubMed DOI PMC
Yang F., Shan Y., Tang Z., Wu X., Bi C., Zhang Y., Gao Y., Liu H. The Neuroprotective Effect of Hemin and the Related Mechanism in Sevoflurane Exposed Neonatal Rats. Front. Neurosci. 2019;13:537. doi: 10.3389/fnins.2019.00537. PubMed DOI PMC
Yang F., Zhang Y., Tang Z., Shan Y., Wu X., Liu H. Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway. Life Sci. 2020;242:117151. doi: 10.1016/j.lfs.2019.117151. PubMed DOI
Ye F., Li X., Liu Y., Chang W., Liu W., Yuan J., Chen J. Hemin provides protection against lead neurotoxicity through heme oxygenase 1/carbon monoxide activation. J. Appl. Toxicol. 2018;38:1353–1364. doi: 10.1002/jat.3646. PubMed DOI
Dang T.N., Robinson S.R., Dringen R., Bishop G.M. Uptake, metabolism and toxicity of hemin in cultured neurons. Neurochem. Int. 2011;58:804–811. doi: 10.1016/j.neuint.2011.03.006. PubMed DOI
Barone E., Di Domenico F., Mancuso C., Butterfield D.A. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: It’s time for reconciliation. Neurobiol. Dis. 2014;62:144–159. doi: 10.1016/j.nbd.2013.09.018. PubMed DOI PMC
Bulters D., Gaastra B., Zolnourian A., Alexander S., Ren D., Blackburn S.L., Borsody M., Doré S., Galea J., Iihara K., et al. Haemoglobin scavenging in intracranial bleeding: Biology and clinical implications. Nat. Rev. Neurol. 2018;14:416–432. doi: 10.1038/s41582-018-0020-0. PubMed DOI
Van Acker Z.P., Luyckx E., Dewilde S. Neuroglobin Expression in the Brain: A Story of Tissue Homeostasis Preservation. Mol. Neurobiol. 2019;56:2101–2122. doi: 10.1007/s12035-018-1212-8. PubMed DOI
Khan A., Jamwal S., Bijjem K.R.V., Prakash A., Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015;287:66–77. doi: 10.1016/j.neuroscience.2014.12.018. PubMed DOI
Chen J. Heme oxygenase in neuroprotection: From mechanisms to therapeutic implications. Rev. Neurosci. 2014;25:269–280. doi: 10.1515/revneuro-2013-0046. PubMed DOI
Jazwa J.A., Cuadrado C.A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets. 2010;11:1517–1531. doi: 10.2174/1389450111009011517. PubMed DOI
Ahmad A.S., Zhuang H., Doré S. Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience. 2006;141:1703–1708. doi: 10.1016/j.neuroscience.2006.05.035. PubMed DOI
Colín-González A.L., Orozco-Ibarra M., Chánez-Cárdenas M.E., Rangel-López E., Santamaría A., Pedraza-Chaverri J., Barrera-Oviedo D., Maldonado P.D. Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience. 2013;231:91–101. doi: 10.1016/j.neuroscience.2012.11.031. PubMed DOI
Ku B.M., Joo Y., Mun J., Roh G.S., Kang S.S., Cho G.J., Choi W.S., Kim H.J. Heme oxygenase protects hippocampal neurons from ethanol-induced neurotoxicity. Neurosci. Lett. 2006;405:168–171. doi: 10.1016/j.neulet.2006.06.052. PubMed DOI
Orozco-Ibarra M., Estrada-Sánchez A.M., Massieu L., Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: Role of CO and bilirubin. Int. J. Biochem. Cell Biol. 2009;41:1304–1314. doi: 10.1016/j.biocel.2008.11.003. PubMed DOI
Sferrazzo G., Di Rosa M., Barone E., Li Volti G., Musso N., Tibullo D., Barbagallo I. Heme Oxygenase-1 in Central Nervous System Malignancies. J. Clin. Med. 2020;9:1562. doi: 10.3390/jcm9051562. PubMed DOI PMC
Barone E., Di Domenico F., Sultana R., Coccia R., Mancuso C., Perluigi M., Butterfield D.A. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic. Biol. Med. 2012;52:2292–2301. doi: 10.1016/j.freeradbiomed.2012.03.020. PubMed DOI PMC
Chang E.F., Wong R.J., Vreman H.J., Igarashi T., Galo E., Sharp F.R., Stevenson D.K., Noble-Haeusslein L.J. Heme Oxygenase-2 Protects against Lipid Peroxidation-Mediated Cell Loss and Impaired Motor Recovery after Traumatic Brain Injury. J. Neurosci. 2003;23:3689–3696. doi: 10.1523/JNEUROSCI.23-09-03689.2003. PubMed DOI PMC
Doré S., Snyder S.H. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann. N. Y. Acad. Sci. 1999;890:167–172. doi: 10.1111/j.1749-6632.1999.tb07991.x. PubMed DOI
Doré S., Goto S., Sampei K., Blackshaw S., Hester L.D., Ingi T., Sawa A., Traystman R.J., Koehler R.C., Snyder S.H. Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience. 2000;99:587–592. doi: 10.1016/S0306-4522(00)00216-5. PubMed DOI
Doré S., Takahashi M., Ferris C.D., Hester L.D., Guastella D., Snyder S.H. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA. 1999;96:2445–2450. doi: 10.1073/pnas.96.5.2445. PubMed DOI PMC
Andrade V.M., Aschner M., Marreilha dos Santos A.P. Neurotoxicity of Metal Mixtures. In: Aschner M., Costa L.G., editors. Neurotoxicity of Metals. Springer International Publishing; Cham, Switzerland: 2017. pp. 227–265. Advances in Neurobiology.
Schipper H.M. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res. Rev. 2004;3:265–301. doi: 10.1016/j.arr.2004.02.001. PubMed DOI
Zhang J., Piantadosi C.A. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J. Clin. Investig. 1992;90:1193–1199. doi: 10.1172/JCI115980. PubMed DOI PMC
Stockard-Sullivan J.E., Korsak R.A., Webber D.S., Edmond J. Mild carbon monoxide exposure and auditory function in the developing rat. J. Neurosci. Res. 2003;74:644–654. doi: 10.1002/jnr.10808. PubMed DOI
Webber D.S., Korsak R.A., Sininger L.K., Sampogna S.L., Edmond J. Mild carbon monoxide exposure impairs the developing auditory system of the rat. J. Neurosci. Res. 2003;74:655–665. doi: 10.1002/jnr.10809. PubMed DOI
Deguchi K., Hayashi T., Nagotani S., Sehara Y., Zhang H., Tsuchiya A., Ohta Y., Tomiyama K., Morimoto N., Miyazaki M., et al. Reduction of cerebral infarction in rats by biliverdin associated with amelioration of oxidative stress. Brain Res. 2008;1188:1–8. doi: 10.1016/j.brainres.2007.07.104. PubMed DOI
Zou Z.-Y., Liu J., Chang C., Li J.-J., Luo J., Jin Y., Ma Z., Wang T.-H., Shao J.-L. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats. Int. J. Mol. Med. 2019;43:1356–1372. doi: 10.3892/ijmm.2019.4064. PubMed DOI PMC
Rice A.C., Shapiro S.M. Biliverdin-induced brainstem auditory evoked potential abnormalities in the jaundiced Gunn rat. Brain Res. 2006;1107:215–221. doi: 10.1016/j.brainres.2006.06.005. PubMed DOI
Cunningham O., Gore M.G., Mantle T.J. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B) Biochem. J. 2000;345:393–399. doi: 10.1042/bj3450393. PubMed DOI PMC
Shalloe F., Elliott G., Ennis O., Mantle T.J. Evidence that biliverdin-IXβ reductase and flavin reductase are identical. Biochem. J. 1996;316:385–387. doi: 10.1042/bj3160385. PubMed DOI PMC
Atukeren P., Oner S., Baran O., Kemerdere R., Eren B., Cakatay U., Tanriverdi T. Oxidant and anti-oxidant status in common brain tumors: Correlation to TP53 and human biliverdin reductase. Clin. Neurol. Neurosurg. 2017;158:72–76. doi: 10.1016/j.clineuro.2017.05.003. PubMed DOI
Liu Y., Liu J., Tetzlaff W., Paty D.W., Cynader M.S. Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radic. Biol. Med. 2006;40:960–967. doi: 10.1016/j.freeradbiomed.2005.07.021. PubMed DOI
Barone E., Di Domenico F., Cenini G., Sultana R., Cini C., Preziosi P., Perluigi M., Mancuso C., Butterfield D.A. Biliverdin reductase--a protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochim. Biophys. Acta. 2011;1812:480–487. doi: 10.1016/j.bbadis.2011.01.005. PubMed DOI PMC
Di Domenico F., Barone E., Mancuso C., Perluigi M., Cocciolo A., Mecocci P., Butterfield D.A., Coccia R. HO-1/BVR-a system analysis in plasma from probable Alzheimer’s disease and mild cognitive impairment subjects: A potential biochemical marker for the prediction of the disease. J. Alzheimers Dis. 2012;32:277–289. doi: 10.3233/JAD-2012-121045. PubMed DOI
Zhang Y., Ding Y., Lu T., Zhang Y., Xu N., Yu L., McBride D.W., Flores J.J., Tang J., Zhang J.H. Bliverdin reductase-A improves neurological function in a germinal matrix hemorrhage rat model. Neurobiol. Dis. 2018;110:122–132. doi: 10.1016/j.nbd.2017.11.017. PubMed DOI PMC
Mueller C., Zhou W., VanMeter A., Heiby M., Magaki S., Ross M.M., Espina V., Schrag M., Dickson C., Liotta L.A., et al. The Heme Degradation Pathway is a Promising Serum Biomarker Source for the Early Detection of Alzheimer’s Disease. J. Alzheimer’s Dis. 2010;19:1081–1091. doi: 10.3233/JAD-2010-1303. PubMed DOI PMC
Matic L.P., Jesus Iglesias M., Vesterlund M., Lengquist M., Hong M.-G., Saieed S., Sanchez-Rivera L., Berg M., Razuvaev A., Kronqvist M., et al. Novel Multiomics Profiling of Human Carotid Atherosclerotic Plaques and Plasma Reveals Biliverdin Reductase B as a Marker of Intraplaque Hemorrhage. JACC Basic Transl. Sci. 2018;3:464–480. doi: 10.1016/j.jacbts.2018.04.001. PubMed DOI PMC
Liu Y., Zhu B., Wang X., Luo L., Li P., Paty D.W., Cynader M.S. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: Implications for the role of oxidative stress in the development of multiple sclerosis. J. Neuroimmunol. 2003;139:27–35. doi: 10.1016/S0165-5728(03)00132-2. PubMed DOI
Yu M., Su D., Yang Y., Qin L., Hu C., Liu R., Zhou Y., Yang C., Yang X., Wang G., et al. D-T7 Peptide-Modified PEGylated Bilirubin Nanoparticles Loaded with Cediranib and Paclitaxel for Antiangiogenesis and Chemotherapy of Glioma. ACS Appl. Mater. Interfaces. 2019;11:176–186. doi: 10.1021/acsami.8b16219. PubMed DOI
Oda E., Kawai R. A possible cross-sectional association of serum total bilirubin with coronary heart disease and stroke in a Japanese health screening population. Heart Vessels. 2012;27:29–36. doi: 10.1007/s00380-011-0123-7. PubMed DOI
Thakkar M., Edelenbos J., Doré S. Bilirubin and Ischemic Stroke: Rendering the Current Paradigm to Better Understand the Protective Effects of Bilirubin. Mol. Neurobiol. 2019;56:5483–5496. doi: 10.1007/s12035-018-1440-y. PubMed DOI
Hung S.-Y., Liou H.-C., Kang K.-H., Wu R.-M., Wen C.-C., Fu W.-M. Over-expression of Heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol. Pharmacol. 2008;74:1564–1575. doi: 10.1124/mol.108.048611. PubMed DOI
Lee H., Choi Y.K. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int. J. Mol. Sci. 2019;20:78. doi: 10.3390/ijms20010078. PubMed DOI PMC
Zhong K., Wang X., Ma X., Ji X., Sang S., Shao S., Zhao Y., Xiang Y., Li J., Wang G., et al. Association between serum bilirubin and asymptomatic intracranial atherosclerosis: Results from a population-based study. Neurol. Sci. 2020;41:1531–1538. doi: 10.1007/s10072-020-04268-x. PubMed DOI
Yang F.-C., Riordan S.M., Winter M., Gan L., Smith P.G., Vivian J.L., Shapiro S.M., Stanford J.A. Fate of Neural Progenitor Cells Transplanted into Jaundiced and Nonjaundiced Rat Brains. Cell Transpl. 2017;26:605–611. doi: 10.3727/096368917X694840. PubMed DOI PMC
Loftspring M.C., Johnson H.L., Feng R., Johnson A.J., Clark J.F. Unconjugated Bilirubin Contributes to Early Inflammation and Edema after Intracerebral Hemorrhage. J. Cereb. Blood Flow Metab. 2010;31:1133–1142. doi: 10.1038/jcbfm.2010.203. PubMed DOI PMC
Marques J.G., Pedro I., Ouakinin S. Unconjugated bilirubin and acute psychosis: A five years retrospective observational and controlled study in patients with schizophrenia, schizoaffective and bipolar disorders. Int. J. Psychiatry Clin. Pract. 2019;23:281–285. doi: 10.1080/13651501.2019.1638940. PubMed DOI
Bin-Nun A., Mimouni F.B., Kasirer Y., Schors I., Schimmel M.S., Kaplan M., Hammerman C. Might Bilirubin Serve as a Natural Antioxidant in Response to Neonatal Encephalopathy? Am. J. Perinatol. 2018;35:1107–1112. doi: 10.1055/s-0038-1641746. PubMed DOI
Dani C., Poggi C., Fancelli C., Pratesi S. Changes in bilirubin in infants with hypoxic–ischemic encephalopathy. Eur. J. Pediatr. 2018;177:1795–1801. doi: 10.1007/s00431-018-3245-4. PubMed DOI
Fereshtehnejad S.M., Poorsattar Bejeh Mir K., Poorsattar Bejeh Mir A., Mohagheghi P. Evaluation of the possible antioxidative role of bilirubin protecting from free radical related illnesses in neonates. Acta Med. Iran. 2012;50:153–163. PubMed
Fujiwara R., Haag M., Schaeffeler E., Nies A.T., Zanger U.M., Schwab M. Systemic regulation of bilirubin homeostasis: Potential benefits of hyperbilirubinemia. Hepatology. 2018;67:1609–1619. doi: 10.1002/hep.29599. PubMed DOI
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: Role of glial cells and inflammation. Front. Pharmacol. 2012;3:88. doi: 10.3389/fphar.2012.00088. PubMed DOI PMC
Jašprová J., Dal Ben M., Hurný D., Hwang S., Žížalová K., Kotek J., Wong R.J., Stevenson D.K., Gazzin S., Tiribelli C., et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 2018;8:7444. doi: 10.1038/s41598-018-25684-2. PubMed DOI PMC
Luan H., Liu L.-F., Tang Z., Mok V.C.T., Li M., Cai Z. Elevated excretion of biopyrrin as a new marker for idiopathic Parkinson’s disease. Parkinsonism Relat. Disord. 2015;21:1371–1372. doi: 10.1016/j.parkreldis.2015.09.009. PubMed DOI
Alexander J., Marcel R., Niklas L., Andreas S.R., Diana F., Karl-Heinz H., Anna S., Marvin R., Milena G., Charline S., et al. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage. Circ. Res. 2019;124:e101–e114. doi: 10.1161/CIRCRESAHA.118.314160. PubMed DOI
Clark J.F., Loftspring M., Wurster W.L., Pyne-Geithman G.J. Chemical and biochemical oxidations in spinal fluid after subarachnoid hemorrhage. Front. Biosci. 2008;13:1806–1812. doi: 10.2741/2801. PubMed DOI
Righy C., Bozza M.T., Oliveira M.F., Bozza F.A. Molecular, Cellular and Clinical Aspects of Intracerebral Hemorrhage: Are the Enemies Within? Curr. Neuropharmacol. 2016;14:392–402. doi: 10.2174/1570159X14666151230110058. PubMed DOI PMC
Vaya J., Song W., Khatib S., Geng G., Schipper H.M. Effects of heme oxygenase-1 expression on sterol homeostasis in rat astroglia. Free Radic. Biol. Med. 2007;42:864–871. doi: 10.1016/j.freeradbiomed.2006.12.022. PubMed DOI
Lin W.-P., Xiong G.-P., Lin Q., Chen X.-W., Zhang L.-Q., Shi J.-X., Ke Q.-F., Lin J.-H. Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J. Neuroinflamm. 2016;13:52. doi: 10.1186/s12974-016-0521-y. PubMed DOI PMC
Takahashi M., Doré S., Ferris C.D., Tomita T., Sawa A., Wolosker H., Borchelt D.R., Iwatsubo T., Kim S.-H., Thinakaran G., et al. Amyloid Precursor Proteins Inhibit Heme Oxygenase Activity and Augment Neurotoxicity in Alzheimer’s Disease. Neuron. 2000;28:461–473. doi: 10.1016/S0896-6273(00)00125-2. PubMed DOI
Chen J., Tu Y., Connolly E.C., Ronnett G.V. Heme oxygenase-2 protects against glutathione depletion-induced neuronal apoptosis mediated by bilirubin and cyclic GMP. Curr. Neurovasc. Res. 2005;2:121–131. doi: 10.2174/1567202053586767. PubMed DOI
Cuadrado A., Rojo A.I. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr. Pharm. Des. 2008;14:429–442. doi: 10.2174/138161208783597407. PubMed DOI
Hettiarachchi N., Dallas M., Al-Owais M., Griffiths H., Hooper N., Scragg J., Boyle J., Peers C. Heme oxygenase-1 protects against Alzheimer’s amyloid-β(1-42)-induced toxicity via carbon monoxide production. Cell Death Dis. 2014;5:e1569. doi: 10.1038/cddis.2014.529. PubMed DOI PMC
Hettiarachchi N.T., Boyle J.P., Dallas M.L., Al-Owais M.M., Scragg J.L., Peers C. Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes. Cell Death Dis. 2017;8:e2884. doi: 10.1038/cddis.2017.276. PubMed DOI PMC
Lin S.-H., Song W., Cressatti M., Zukor H., Wang E., Schipper H.M. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: Implications for chronic brain disorders. Glia. 2015;63:1270–1284. doi: 10.1002/glia.22823. PubMed DOI
Mancuso C., Barone E., Guido P., Miceli F., Di Domenico F., Perluigi M., Santangelo R., Preziosi P. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci. Lett. 2012;518:101–105. doi: 10.1016/j.neulet.2012.04.062. PubMed DOI
Gibbs P.E.M., Maines M.D. Biliverdin inhibits activation of NF-κB: Reversal of inhibition by human biliverdin reductase. Int. J. Cancer. 2007;121:2567–2574. doi: 10.1002/ijc.22978. PubMed DOI
Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:1–9. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Bisht K., Wegiel B., Tampe J., Neubauer O., Wagner K.-H., Otterbein L.E., Bulmer A.C. Biliverdin modulates the expression of C5aR in response to endotoxin in part via mTOR signaling. Biochem. Biophys. Res. Commun. 2014;449:94–99. doi: 10.1016/j.bbrc.2014.04.150. PubMed DOI PMC
Nakao A., Murase N., Ho C., Toyokawa H., Billiar T.R., Kanno S. Biliverdin Administration Prevents the Formation of Intimal Hyperplasia Induced by Vascular Injury. Circulation. 2005;112:587–591. doi: 10.1161/CIRCULATIONAHA.104.509778. PubMed DOI
Wegiel B., Baty C.J., Gallo D., Csizmadia E., Scott J.R., Akhavan A., Chin B.Y., Kaczmarek E., Alam J., Bach F.H., et al. Cell Surface Biliverdin Reductase Mediates Biliverdin-induced Anti-inflammatory Effects via Phosphatidylinositol 3-Kinase and Akt. J. Biol. Chem. 2009;284:21369–21378. doi: 10.1074/jbc.M109.027433. PubMed DOI PMC
Wegiel B., Gallo D., Csizmadia E., Roger T., Kaczmarek E., Harris C., Zuckerbraun B.S., Otterbein L.E. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc. Natl. Acad. Sci. USA. 2011;108:18849–18854. doi: 10.1073/pnas.1108571108. PubMed DOI PMC
Gurba P.E., Zand R. Bilirubin binding to myelin basic protein, histones and its inhibition in vitro of cerebellar protein synthesis. Biochem. Biophys. Res. Commun. 1974;58:1142–1147. doi: 10.1016/S0006-291X(74)80262-7. PubMed DOI
Pei J.J., Braak E. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 1999;58:1010–1019. doi: 10.1097/00005072-199909000-00011. PubMed DOI
Medina M., Garrido J.J., Wandosell F.G. Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Front. Mol. Neurosci. 2011;4:24. doi: 10.3389/fnmol.2011.00024. PubMed DOI PMC
Miralem T., Lerner-Marmarosh N., Gibbs P.E.M., Jenkins J.L., Heimiller C., Maines M.D. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: A novel mechanism of Akt activation. FASEB J. 2016;30:2926–2944. doi: 10.1096/fj.201600330RR. PubMed DOI PMC
Sharma N., Tramutola A., Lanzillotta C., Arena A., Blarzino C., Cassano T., Butterfield D.A., Di Domenico F., Perluigi M., Barone E. Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer’s disease. Neurobiol. Dis. 2019;125:176–189. doi: 10.1016/j.nbd.2019.02.003. PubMed DOI
Kim S.J., Shin M.J., Kim D.W., Yeo H.J., Yeo E.J., Choi Y.J., Sohn E.J., Han K.H., Park J., Lee K.W., et al. Tat-Biliverdin Reductase A Exerts a Protective Role in Oxidative Stress-Induced Hippocampal Neuronal Cell Damage by Regulating the Apoptosis and MAPK Signaling. Int. J. Mol. Sci. 2020;21:2672. doi: 10.3390/ijms21082672. PubMed DOI PMC
Triani F., Tramutola A., Di Domenico F., Sharma N., Butterfield D.A., Head E., Perluigi M., Barone E. Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018;1864:3181–3194. doi: 10.1016/j.bbadis.2018.07.005. PubMed DOI
Mancuso C. Bilirubin and brain: A pharmacological approach. Neuropharmacology. 2017;118:113–123. doi: 10.1016/j.neuropharm.2017.03.013. PubMed DOI
Barone E., Di Domenico F., Cassano T., Arena A., Tramutola A., Lavecchia M.A., Coccia R., Butterfield D.A., Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic. Biol. Med. 2016;91:127–142. doi: 10.1016/j.freeradbiomed.2015.12.012. PubMed DOI
Morris G., Puri B.K., Walker A.J., Berk M., Walder K., Bortolasci C.C., Marx W., Carvalho A.F., Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;95:109708. doi: 10.1016/j.pnpbp.2019.109708. PubMed DOI
Liu Y., Li P., Lu J., Xiong W., Oger J., Tetzlaff W., Cynader M. Bilirubin Possesses Powerful Immunomodulatory Activity and Suppresses Experimental Autoimmune Encephalomyelitis. J. Immunol. 2008;181:1887–1897. doi: 10.4049/jimmunol.181.3.1887. PubMed DOI
Vianello E., Zampieri S., Marcuzzo T., Tordini F., Bottin C., Dardis A., Zanconati F., Tiribelli C., Gazzin S. Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci. Rep. 2018;8:13690. doi: 10.1038/s41598-018-32106-w. PubMed DOI PMC
Qaisiya M., Brischetto C., Jašprová J., Vitek L., Tiribelli C., Bellarosa C. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch. Toxicol. 2017;91:1847–1858. doi: 10.1007/s00204-016-1835-3. PubMed DOI
Qaisiya M., Coda Zabetta C.D., Bellarosa C., Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell. Signal. 2014;26:512–520. doi: 10.1016/j.cellsig.2013.11.029. PubMed DOI
Nguyen N.T., Hanieh H., Nakahama T., Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int. Immunol. 2013;25:335–343. doi: 10.1093/intimm/dxt011. PubMed DOI
Phelan D., Winter G.M., Rogers W.J., Lam J.C., Denison M.S. Activation of the Ah Receptor Signal Transduction Pathway by Bilirubin and Biliverdin. Arch. Biochem. Biophys. 1998;357:155–163. doi: 10.1006/abbi.1998.0814. PubMed DOI
Vítek V.L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020;40:1335–1351. doi: 10.1002/med.21660. PubMed DOI
Datla Srinivasa R., Dusting Gregory J., Mori Trevor A., Taylor Caroline J., Croft Kevin D. Jiang Fan Induction of Heme Oxygenase-1 In Vivo Suppresses NADPH Oxidase–Derived Oxidative Stress. Hypertension. 2007;50:636–642. doi: 10.1161/HYPERTENSIONAHA.107.092296. PubMed DOI
Peng F., Deng X., Yu Y., Chen X., Shen L., Zhong X., Qiu W., Jiang Y., Zhang J., Hu X. Serum bilirubin concentrations and multiple sclerosis. J. Clin. Neurosci. 2011;18:1355–1359. doi: 10.1016/j.jocn.2011.02.023. PubMed DOI
Gennuso F., Fernetti C., Tirolo C., Testa N., L’Episcopo F., Caniglia S., Morale M.C., Ostrow J.D., Pascolo L., Tiribelli C., et al. Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1) Proc. Natl. Acad. Sci. USA. 2004;101:2470–2475. doi: 10.1073/pnas.0308452100. PubMed DOI PMC
Rodrigues C.M.P., Solá S., Brito M.A., Brites D., Moura J.J.G. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J. Hepatol. 2002;36:335–341. doi: 10.1016/S0168-8278(01)00279-3. PubMed DOI
Rodrigues C.M.P., Solá S., Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology. 2002;35:1186–1195. doi: 10.1053/jhep.2002.32967. PubMed DOI
Fernandes A., Falcão A.S., Silva R.F.M., Gordo A.C., Gama M.J., Brito M.A., Brites D. Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J. Neurochem. 2006;96:1667–1679. doi: 10.1111/j.1471-4159.2006.03680.x. PubMed DOI
Fernandes A., Falcão A.S., Silva R.F.M., Brito M.A., Brites D. MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur. J. Neurosci. 2007;25:1058–1068. doi: 10.1111/j.1460-9568.2007.05340.x. PubMed DOI
Chang F.-Y., Lee C.-C., Huang C.-C., Hsu K.-S. Unconjugated Bilirubin Exposure Impairs Hippocampal Long-Term Synaptic Plasticity. PLoS ONE. 2009;4:e5876. doi: 10.1371/journal.pone.0005876. PubMed DOI PMC
Grojean S., Koziel V., Vert P., Daval J.L. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 2000;166:334–341. doi: 10.1006/exnr.2000.7518. PubMed DOI
Zhang L., Liu W., Tanswell A.K., Luo X. The Effects of Bilirubin on Evoked Potentials and Long-Term Potentiation in Rat Hippocampus In Vivo. Pediatric Res. 2003;53:939–944. doi: 10.1203/01.PDR.0000061563.63230.86. PubMed DOI
Mancuso C., Capone C., Ranieri S.C., Fusco S., Calabrese V., Eboli M.L., Preziosi P., Galeotti T., Pani G. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J. Neurosci. Res. 2008;86:2235–2249. doi: 10.1002/jnr.21665. PubMed DOI
Gazzin S., Berengeno A.L., Strazielle N., Fazzari F., Raseni A., Ostrow J.D., Wennberg R., Ghersi-Egea J.-F., Tiribelli C. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat. PLoS ONE. 2011;6:e16165. doi: 10.1371/journal.pone.0016165. PubMed DOI PMC
Rawat V., Bortolussi G., Gazzin S., Tiribelli C., Muro A.F. Bilirubin-Induced Oxidative Stress Leads to DNA Damage in the Cerebellum of Hyperbilirubinemic Neonatal Mice and Activates DNA Double-Strand Break Repair Pathways in Human Cells. Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/1801243. PubMed DOI PMC
Robert M.C., Furlan G., Rosso N., Gambaro S.E., Apitsionak F., Vianello E., Tiribelli C., Gazzin S. Alterations in the Cell Cycle in the Cerebellum of Hyperbilirubinemic Gunn Rat: A Possible Link with Apoptosis? PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0079073. PubMed DOI PMC
Neis V.B., Rosa P.B., Moretti M., Rodrigues A.L.S. Involvement of Heme Oxygenase-1 in Neuropsychiatric and Neurodegenerative Diseases. Curr. Pharm. Des. 2018;24:2283–2302. doi: 10.2174/1381612824666180717160623. PubMed DOI
Schipper H.M. Heme oxygenase expression in human central nervous system disorders. Free Radic. Biol. Med. 2004;37:1995–2011. doi: 10.1016/j.freeradbiomed.2004.09.015. PubMed DOI
González-Reyes S., Orozco-Ibarra M., Guzmán-Beltrán S., Molina-Jijón E., Massieu L., Pedraza-Chaverri J. Neuroprotective role of heme-oxygenase 1 against iodoacetate-induced toxicity in rat cerebellar granule neurons: Role of bilirubin. Free Radic. Res. 2009;43:214–223. doi: 10.1080/10715760802676670. PubMed DOI
Schipper H.M. Heme oxygenase-1: Role in brain aging and neurodegeneration. Exp. Gerontol. 2000;35:821–830. doi: 10.1016/S0531-5565(00)00148-0. PubMed DOI
Doré S., Sampei K., Goto S., Alkayed N.J., Guastella D., Blackshaw S., Gallagher M., Traystman R.J., Hurn P.D., Koehler R.C., et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol. Med. 1999;5:656–663. PubMed PMC
Nam J., Lee Y., Yang Y., Jeong S., Kim W., Yoo J.-W., Moon J.-O., Lee C., Chung H.Y., Kim M.-S., et al. Is it worth expending energy to convert biliverdin into bilirubin? Free Radic. Biol. Med. 2018;124:232–240. doi: 10.1016/j.freeradbiomed.2018.06.010. PubMed DOI
Mancuso C., Barone E. The Heme Oxygenase/Biliverdin Reductase Pathway in Drug Research and Development. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/70167/article.
Maines M.D. The Heme Oxygenase System: A Regulator of Second Messenger Gases. Annu. Rev. Pharmacol. Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. PubMed DOI
McDonagh A.F., Palma L.A., Schmid R. Reduction of biliverdin and placental transfer of bilirubin and biliverdin in the pregnant guinea pig. Biochem. J. 1981;194:273–282. doi: 10.1042/bj1940273. PubMed DOI PMC
Itoh S., Kondo M., Imai T., Kusaka T., Isobe K., Onishi S. Relationships between serum (ZZ)-bilirubin, its subfractions and biliverdin concentrations in infants at 1-month check-ups. Ann. Clin. Biochem. 2001;38:323–328. doi: 10.1258/0004563011900821. PubMed DOI
Niedzielska E., Smaga I., Gawlik M., Moniczewski A., Stankowicz P., Pera J., Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016;53:4094–4125. doi: 10.1007/s12035-015-9337-5. PubMed DOI PMC
Wei-Wei C., Zhang X., Wen-Juan H. Role of neuroinflammation in neurodegenerative diseases (Review) Mol. Med. Rep. 2016;13:3391–3396. doi: 10.3892/mmr.2016.4948. PubMed DOI PMC
Azam S., Jakaria M., Kim I.-S., Kim J., Haque M.E., Choi D.-K. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.01000. PubMed DOI PMC
Cao C.-X., Yang Q.-W., Lv F.-L., Cui J., Fu H.-B., Wang J.-Z. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem. Biophys. Res. Commun. 2007;353:509–514. doi: 10.1016/j.bbrc.2006.12.057. PubMed DOI
Lotz M., Ebert S., Esselmann H., Iliev A.I., Prinz M., Wiazewicz N., Wiltfang J., Gerber J., Nau R. Amyloid beta peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J. Neurochem. 2005;94:289–298. doi: 10.1111/j.1471-4159.2005.03188.x. PubMed DOI
Mellanby R.J., Cambrook H., Turner D.G., O’Connor R.A., Leech M.D., Kurschus F.C., MacDonald A.S., Arnold B., Anderton S.M. TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2012;9:248. doi: 10.1186/1742-2094-9-248. PubMed DOI PMC
Minoretti P., Gazzaruso C., Vito C.D., Emanuele E., Bianchi M., Coen E., Reino M., Geroldi D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett. 2006;391:147–149. doi: 10.1016/j.neulet.2005.08.047. PubMed DOI
Noelker C., Morel L., Lescot T., Osterloh A., Alvarez-Fischer D., Breloer M., Henze C., Depboylu C., Skrzydelski D., Michel P.P., et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci. Rep. 2013;3:1393. doi: 10.1038/srep01393. PubMed DOI PMC
Walter S., Letiembre M., Liu Y., Heine H., Penke B., Hao W., Bode B., Manietta N., Walter J., Schulz-Schüffer W., et al. Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer’s Disease. CPB. 2007;20:947–956. doi: 10.1159/000110455. PubMed DOI
Ager R.R., Fonseca M.I., Chu S.-H., Sanderson S.D., Taylor S.M., Woodruff T.M., Tenner A.J. Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease. J. Neurochem. 2010;113:389–401. doi: 10.1111/j.1471-4159.2010.06595.x. PubMed DOI PMC
An X., Xi W., Gu C., Huang X. Complement protein C5a enhances the β-amyloid-induced neuro-inflammatory response in microglia in Alzheimer’s disease. Med. Sci. (Paris) 2018;34:116–120. doi: 10.1051/medsci/201834f120. PubMed DOI
Nizami S., Hall-Roberts H., Warrier S., Cowley S.A., Daniel E.D. Microglial inflammation and phagocytosis in Alzheimer’s disease: Potential therapeutic targets. Br. J. Pharmacol. 2019;176:3515–3532. doi: 10.1111/bph.14618. PubMed DOI PMC
Kaur H., Hughes M.N., Green C.J., Naughton P., Foresti R., Motterlini R. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett. 2003;543:113–119. doi: 10.1016/S0014-5793(03)00420-4. PubMed DOI
Gonzalez-Sanchez E., Perez M.J., Nytofte N.S., Briz O., Monte M.J., Lozano E., Serrano M.A., Marin J.J.G. Protective role of biliverdin against bile acid-induced oxidative stress in liver cells. Free Radic. Biol. Med. 2016;97:466–477. doi: 10.1016/j.freeradbiomed.2016.06.016. PubMed DOI
Blumenthal S.G., Stucker T., Rasmussen R.D., Ikeda R.M., Ruebner B.H., Bergstrom D.E., Hanson F.W. Changes in bilirubins in human prenatal development. Biochem. J. 1980;186:693–700. doi: 10.1042/bj1860693. PubMed DOI PMC
Komuro A., Tobe T., Nakano Y., Yamaguchi T., Tomita M. Cloning and characterization of the cDNA encoding human biliverdin-IX alpha reductase. Biochim. Biophys. Acta. 1996;1309:89–99. doi: 10.1016/S0167-4781(96)00099-1. PubMed DOI
Kapitulnik J., Maines M.D. Pleiotropic functions of biliverdin reductase: Cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol. Sci. 2009;30:129–137. doi: 10.1016/j.tips.2008.12.003. PubMed DOI
O’Brien L., Hosick P.A., John K., Stec D.E., Hinds T.D. Biliverdin reductase isozymes in metabolism. Trends Endocrinol. Metab. 2015;26:212–220. doi: 10.1016/j.tem.2015.02.001. PubMed DOI PMC
Tudor C., Lerner-Marmarosh N., Engelborghs Y., Gibbs P.E.M., Maines M.D. Biliverdin reductase is a transporter of haem into the nucleus and is essential for regulation of HO-1 gene expression by haematin. Biochem. J. 2008;413:405–416. doi: 10.1042/BJ20080018. PubMed DOI PMC
Derada Troletti C., de Goede P., Kamermans A., de Vries H.E. Molecular alterations of the blood–brain barrier under inflammatory conditions: The role of endothelial to mesenchymal transition. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016;1862:452–460. doi: 10.1016/j.bbadis.2015.10.010. PubMed DOI
Galaris D., Pantopoulos K. Oxidative Stress and Iron Homeostasis: Mechanistic and Health Aspects. Crit. Rev. Clin. Lab. Sci. 2008;45:1–23. doi: 10.1080/10408360701713104. PubMed DOI
Loboda A., Jazwa A., Grochot-Przeczek A., Rutkowski A.J., Cisowski J., Agarwal A., Jozkowicz A., Dulak J. Heme Oxygenase-1 and the Vascular Bed: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2008;10:1767–1812. doi: 10.1089/ars.2008.2043. PubMed DOI
Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC
Barone E., Di Domenico F., Cenini G., Sultana R., Coccia R., Preziosi P., Perluigi M., Mancuso C., Butterfield D.A. Oxidative and Nitrosative Modifications of Biliverdin Reductase-A in the Brain of Subjects with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2011;25:623–633. doi: 10.3233/JAD-2011-110092. PubMed DOI
Lerner-Marmarosh N., Shen J., Torno M.D., Kravets A., Hu Z., Maines M.D. Human biliverdin reductase: A member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc. Natl. Acad. Sci. USA. 2005;102:7109–7114. doi: 10.1073/pnas.0502173102. PubMed DOI PMC
Gibbs P.E.M., Lerner-Marmarosh N., Poulin A., Farah E., Maines M.D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. FASEB J. 2014;28:2478–2491. doi: 10.1096/fj.13-247015. PubMed DOI PMC
Rivera E.J., Goldin A., Fulmer N., Tavares R., Wands J.R., de la Monte S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimers Dis. 2005;8:247–268. doi: 10.3233/JAD-2005-8304. PubMed DOI
Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., de la Monte S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI
Talbot K., Wang H.-Y., Kazi H., Han L.-Y., Bakshi K.P., Stucky A., Fuino R.L., Kawaguchi K.R., Samoyedny A.J., Wilson R.S., et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012;122:1316–1338. doi: 10.1172/JCI59903. PubMed DOI PMC
Barone E., Tramutola A., Triani F., Calcagnini S., Di Domenico F., Ripoli C., Gaetani S., Grassi C., Butterfield D.A., Cassano T., et al. Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Mol. Neurobiol. 2019;56:2922–2943. doi: 10.1007/s12035-018-1231-5. PubMed DOI
Stocker R. Antioxidant Activities of Bile Pigments. Antioxid. Redox Signal. 2004;6:841–849. doi: 10.1089/ars.2004.6.841. PubMed DOI
Sedlak T.W., Saleh M., Higginson D.S., Paul B.D., Juluri K.R., Snyder S.H. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. USA. 2009;106:5171–5176. doi: 10.1073/pnas.0813132106. PubMed DOI PMC
Vasavda C., Kothari R., Malla A.P., Tokhunts R., Lin A., Ji M., Ricco C., Xu R., Saavedra H.G., Sbodio J.I., et al. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem. Biol. 2019;26:1450–1460.e7. doi: 10.1016/j.chembiol.2019.07.006. PubMed DOI PMC
Jayanti S., Moretti R., Tiribelli C., Gazzin S. Bilirubin and inflammation in neurodegenerative and other neurological diseases. Neuroimmunol. Neuroinflamm. 2020;7:92–108. doi: 10.20517/2347-8659.2019.14. DOI
Lee Y., Lee S., Lee D.Y., Yu B., Miao W., Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew. Chem. Int. Ed. 2016;55:10676–10680. doi: 10.1002/anie.201604858. PubMed DOI
Aycicek A., Erel O. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J. Pediatr. 2007;83:319–322. doi: 10.2223/JPED.1645. PubMed DOI
Araújo A.R., Rosso N., Bedogni G., Tiribelli C., Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018;38(Suppl. 1):47–51. doi: 10.1111/liv.13643. PubMed DOI
Bush H., Golabi P., Younossi Z.M. Pediatric Non-Alcoholic Fatty Liver Disease. Children (Basel) 2017;4:48. doi: 10.3390/children4060048. PubMed DOI PMC
Moretti R., Caruso P., Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann. Hepatol. 2019;18:563–570. doi: 10.1016/j.aohep.2019.04.007. PubMed DOI
Lombardi R., Fargion S., Fracanzani A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig. Liver Dis. 2019;51:1214–1222. doi: 10.1016/j.dld.2019.05.015. PubMed DOI
Satoh A., Brace C.S., Ben-Josef G., West T., Wozniak D.F., Holtzman D.M., Herzog E.D., Imai S. SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. J. Neurosci. 2010;30:10220–10232. doi: 10.1523/JNEUROSCI.1385-10.2010. PubMed DOI PMC
Moraes D.S., Moreira D.C., Andrade J.M.O., Santos S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep. 2020;9:46–51. doi: 10.1016/j.ibror.2020.06.004. PubMed DOI PMC
Radak Z., Suzuki K., Posa A., Petrovszky Z., Koltai E., Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020;35:101467. doi: 10.1016/j.redox.2020.101467. PubMed DOI PMC
Jang B.K. Elevated serum bilirubin levels are inversely associated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2012;18:357–359. doi: 10.3350/cmh.2012.18.4.357. PubMed DOI PMC
Kumar R., Rastogi A., Maras J.S., Sarin S.K. Unconjugated hyperbilirubinemia in patients with non-alcoholic fatty liver disease: A favorable endogenous response. Clin. Biochem. 2012;45:272–274. doi: 10.1016/j.clinbiochem.2011.11.017. PubMed DOI
Lin L.-Y., Kuo H.-K., Hwang J.-J., Lai L.-P., Chiang F.-T., Tseng C.-D., Lin J.-L. Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis. 2009;203:563–568. doi: 10.1016/j.atherosclerosis.2008.07.021. PubMed DOI
Puri K., Nobili V., Melville K., Corte C.D., Sartorelli M.R., Lopez R., Feldstein A.E., Alkhouri N. Serum bilirubin level is inversely associated with nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 2013;57:114–118. doi: 10.1097/MPG.0b013e318291fefe. PubMed DOI
Herskovits A.Z., Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81:471–483. doi: 10.1016/j.neuron.2014.01.028. PubMed DOI PMC
Chandrasekaran K., Salimian M., Konduru S.R., Choi J., Kumar P., Long A., Klimova N., Ho C.-Y., Kristian T., Russell J.W. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain. 2019;142:3737–3752. doi: 10.1093/brain/awz324. PubMed DOI PMC
Nassir F., Ibdah J.A. Sirtuins and nonalcoholic fatty liver disease. World J. Gastroenterol. 2016;22:10084–10092. doi: 10.3748/wjg.v22.i46.10084. PubMed DOI PMC
Vítek L., Majer F., Muchová L., Zelenka J., Jirásková A., Branný P., Malina J., Ubik K. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora. J. Chromatogr. B. 2006;833:149–157. doi: 10.1016/j.jchromb.2006.01.032. PubMed DOI
Sedlak T., Snyder S. Bilirubin Benefits: Cellular Protection by a Biliverdin Reductase Antioxidant Cycle. Pediatrics. 2004;113:1776–1782. doi: 10.1542/peds.113.6.1776. PubMed DOI
Jasprova J., Dal Ben M., Vianello E., Goncharova I., Urbanova M., Vyroubalova K., Gazzin S., Tiribelli C., Sticha M., Cerna M., et al. The Biological Effects of Bilirubin Photoisomers. PLoS ONE. 2016;11:e0148126. doi: 10.1371/journal.pone.0148126. PubMed DOI PMC
Garcia E., Aguilar-Cevallos J., Silva-Garcia R., Ibarra A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. [(accessed on 27 July 2020)]; Available online: https://www.hindawi.com/journals/mi/2016/9476020/ PubMed PMC
Kempuraj D., Thangavel R., Natteru P., Selvakumar G., Saeed D., Zahoor H., Zaheer S., Iyer S., Zaheer A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine. 2016;1:1003. PubMed PMC
Dietzschold B., Richt J.A., editors. Protective and Pathological Immune Responses in the CNS. Springer; Berlin/Heidelberg, Germany: 2002. Current Topics in Microbiology and Immunology.
Hirota H. Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J. Exp. Med. 1996;183:2627–2634. doi: 10.1084/jem.183.6.2627. PubMed DOI PMC
Hagman S., Mäkinen A., Ylä-Outinen L., Huhtala H., Elovaara I., Narkilahti S. Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J. Neuroimmunol. 2019;331:36–45. doi: 10.1016/j.jneuroim.2018.07.010. PubMed DOI
Vodret S., Bortolussi G., Jašprová J., Vitek L., Muro A.F. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 (-/-) mouse model. J. Neuroinflamm. 2017;14:64. doi: 10.1186/s12974-017-0838-1. PubMed DOI PMC
Vodret S., Bortolussi G., Iaconcig A., Martinelli E., Tiribelli C., Muro A.F. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav. Immun. 2018;70:166–178. doi: 10.1016/j.bbi.2018.02.011. PubMed DOI
Shimoharada K., Inoue S., Nakahara M., Kanzaki N., Shimizu S., Kang D., Hamasaki N., Kinoshita S. Urine Concentration of Biopyrrins: A New Marker for Oxidative Stress in Vivo. Clin. Chem. 1998;44:2554–2555. doi: 10.1093/clinchem/44.12.2554a. PubMed DOI
Vítek L., Kráslová I., Muchová L., Novotný L., Yamaguchi T. Urinary excretion of oxidative metabolites of bilirubin in subjects with Gilbert syndrome. J. Gastroenterol. Hepatol. 2007;22:841–845. doi: 10.1111/j.1440-1746.2006.04564.x. PubMed DOI
Jašprová J., Dvořák A., Vecka M., Leníček M., Lacina O., Valášková P., Zapadlo M., Plavka R., Klán P., Vítek L. A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC
Ndayisaba A., Kaindlstorfer C., Wenning G.K. Iron in Neurodegeneration—Cause or Consequence? Front. Neurosci. 2019;13:180. doi: 10.3389/fnins.2019.00180. PubMed DOI PMC
Li J.-J., Zou Z.-Y., Liu J., Xiong L.-L., Jiang H.-Y., Wang T.-H., Shao J.-L. Biliverdin administration ameliorates cerebral ischemia reperfusion injury in rats and is associated with proinflammatory factor downregulation. Exp. Ther. Med. 2017;14:671–679. doi: 10.3892/etm.2017.4549. PubMed DOI PMC
Lu X., Gu R., Hu W., Sun Z., Wang G., Wang L., Xu Y. Upregulation of heme oxygenase-1 protected against brain damage induced by transient cerebral ischemia-reperfusion injury in rats. Exp. Ther. Med. 2018;15:4629–4636. doi: 10.3892/etm.2018.6049. PubMed DOI PMC
Pehar M., Vargas M.R., Cassina P., Barbeito A.G., Beckman J.S., Barbeito L. Complexity of Astrocyte-Motor Neuron Interactions in Amyotrophic Lateral Sclerosis. NDD. 2005;2:139–146. doi: 10.1159/000089619. PubMed DOI
van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008;45:1729–1737. doi: 10.1016/j.freeradbiomed.2008.09.023. PubMed DOI
Parfenova H., Leffler C.W. Cerebroprotective functions of HO-2. Curr. Pharm. Des. 2008;14:443–453. doi: 10.2174/138161208783597380. PubMed DOI PMC
Gandini N.A., Fermento M.E., Salomón D.G., Obiol D.J., Andrés N.C., Zenklusen J.C., Arevalo J., Blasco J., López Romero A., Facchinetti M.M., et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumor Biol. 2014;35:2803–2815. doi: 10.1007/s13277-013-1373-z. PubMed DOI