The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases

. 2020 Sep 22 ; 9 (9) : . [epub] 20200922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32971784

Grantová podpora
RVO-VFN64165/2020 and NV18-07-00342 Czech Ministry of Health - LV

Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.

Zobrazit více v PubMed

Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI

Gazzin S., Masutti F., Vítek L., Tiribelli C. The molecular basis of jaundice: An old symptom revisited. Liver Int. 2016;37:1094–1102. doi: 10.1111/liv.13351. PubMed DOI

Vítek L., Ostrow J.D. Bilirubin Chemistry and Metabolism; Harmful and Protective Aspects. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/69920/article. PubMed

Le Pichon J.-B., Riordan S.M., Watchko J., Shapiro S.M. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs) Curr. Pediatr. Rev. 2017;13:199–209. doi: 10.2174/1573396313666170815100214. PubMed DOI

Strauss K.A., Robinson D.L., Vreman H.J., Puffenberger E.G., Hart G., Morton D.H. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur. J. Pediatr. 2006;165:306–319. doi: 10.1007/s00431-005-0055-2. PubMed DOI

Watchko J.F., Tiribelli C. Bilirubin-Induced Neurologic Damage—Mechanisms and Management Approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI

Diamond I.D., Schmid R.S. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Investig. 1966;45:678–689. doi: 10.1172/JCI105383. PubMed DOI PMC

Wennberg R.P., Ahlfors C.E., Bhutani V.K., Johnson L.H., Shapiro S.M. Toward Understanding Kernicterus: A Challenge to Improve the Management of Jaundiced Newborns. Pediatrics. 2006;117:474–485. doi: 10.1542/peds.2005-0395. PubMed DOI

Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–1046. doi: 10.1126/science.3029864. PubMed DOI

Baranano D.E., Rao M., Ferris C.D., Snyder S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA. 2002;99:16093–16098. doi: 10.1073/pnas.252626999. PubMed DOI PMC

Abraham N.G., Kappas A. Pharmacological and Clinical Aspects of Heme Oxygenase. Pharmacol. Rev. 2008;60:79–127. doi: 10.1124/pr.107.07104. PubMed DOI

Gozzelino R. The Pathophysiology of Heme in the Brain. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/135089/article.

Maines M.D. New Insights into Biliverdin Reductase Functions: Linking Heme Metabolism to Cell Signaling. Physiology. 2005;20:382–389. doi: 10.1152/physiol.00029.2005. PubMed DOI

Nitti M., Piras S., Brondolo L., Marinari U.M., Pronzato M.A., Furfaro A.L. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int. J. Mol. Sci. 2018;19:2260. doi: 10.3390/ijms19082260. PubMed DOI PMC

Ryter S.W., Alam J., Choi A.M.K. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol. Rev. 2006;86:583–650. doi: 10.1152/physrev.00011.2005. PubMed DOI

Schipper H.M., Song W., Tavitian A., Cressatti M. The sinister face of heme oxygenase-1 in brain aging and disease. Prog. Neurobiol. 2019;172:40–70. doi: 10.1016/j.pneurobio.2018.06.008. PubMed DOI

Wagner K.-H., Wallner M., Mölzer C., Gazzin S., Bulmer A.C., Tiribelli C., Vitek L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015;129:1–25. doi: 10.1042/CS20140566. PubMed DOI

Chen J., Tu Y., Moon C., Nagata E., Ronnett G.V. Heme oxygenase-1 and heme oxygenase-2 have distinct roles in the proliferation and survival of olfactory receptor neurons mediated by cGMP and bilirubin, respectively. J. Neurochem. 2003;85:1247–1261. doi: 10.1046/j.1471-4159.2003.01776.x. PubMed DOI

Park J.-S., Nam E., Lee H.-K., Lim M.H., Rhee H.-W. In Cellulo Mapping of Subcellular Localized Bilirubin. ACS Chem. Biol. 2016;11:2177–2185. doi: 10.1021/acschembio.6b00017. PubMed DOI

Takeda T., Mu A., Tai T.T., Kitajima S., Taketani S. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage. Sci. Rep. 2015;5:10488. doi: 10.1038/srep10488. PubMed DOI PMC

Funahashi A., Komatsu M., Furukawa T., Yoshizono Y., Yoshizono H., Orikawa Y., Takumi S., Shiozaki K., Hayashi S., Kaminishi Y., et al. Eel green fluorescent protein is associated with resistance to oxidative stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016;181–182:35–39. doi: 10.1016/j.cbpc.2015.12.009. PubMed DOI

Kumagai A., Ando R., Miyatake H., Greimel P., Kobayashi T., Hirabayashi Y., Shimogori T., Miyawaki A. A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell. 2013;153:1602–1611. doi: 10.1016/j.cell.2013.05.038. PubMed DOI

Vítek L., Schwertner H.A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 2007;43:1–57. doi: 10.1016/s0065-2423(06)43001-8. PubMed DOI

Chiabrando D., Fiorito V., Petrillo S., Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front. Neurosci. 2018;12:712. doi: 10.3389/fnins.2018.00712. PubMed DOI PMC

Yang F., Shan Y., Tang Z., Wu X., Bi C., Zhang Y., Gao Y., Liu H. The Neuroprotective Effect of Hemin and the Related Mechanism in Sevoflurane Exposed Neonatal Rats. Front. Neurosci. 2019;13:537. doi: 10.3389/fnins.2019.00537. PubMed DOI PMC

Yang F., Zhang Y., Tang Z., Shan Y., Wu X., Liu H. Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway. Life Sci. 2020;242:117151. doi: 10.1016/j.lfs.2019.117151. PubMed DOI

Ye F., Li X., Liu Y., Chang W., Liu W., Yuan J., Chen J. Hemin provides protection against lead neurotoxicity through heme oxygenase 1/carbon monoxide activation. J. Appl. Toxicol. 2018;38:1353–1364. doi: 10.1002/jat.3646. PubMed DOI

Dang T.N., Robinson S.R., Dringen R., Bishop G.M. Uptake, metabolism and toxicity of hemin in cultured neurons. Neurochem. Int. 2011;58:804–811. doi: 10.1016/j.neuint.2011.03.006. PubMed DOI

Barone E., Di Domenico F., Mancuso C., Butterfield D.A. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: It’s time for reconciliation. Neurobiol. Dis. 2014;62:144–159. doi: 10.1016/j.nbd.2013.09.018. PubMed DOI PMC

Bulters D., Gaastra B., Zolnourian A., Alexander S., Ren D., Blackburn S.L., Borsody M., Doré S., Galea J., Iihara K., et al. Haemoglobin scavenging in intracranial bleeding: Biology and clinical implications. Nat. Rev. Neurol. 2018;14:416–432. doi: 10.1038/s41582-018-0020-0. PubMed DOI

Van Acker Z.P., Luyckx E., Dewilde S. Neuroglobin Expression in the Brain: A Story of Tissue Homeostasis Preservation. Mol. Neurobiol. 2019;56:2101–2122. doi: 10.1007/s12035-018-1212-8. PubMed DOI

Khan A., Jamwal S., Bijjem K.R.V., Prakash A., Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015;287:66–77. doi: 10.1016/j.neuroscience.2014.12.018. PubMed DOI

Chen J. Heme oxygenase in neuroprotection: From mechanisms to therapeutic implications. Rev. Neurosci. 2014;25:269–280. doi: 10.1515/revneuro-2013-0046. PubMed DOI

Jazwa J.A., Cuadrado C.A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets. 2010;11:1517–1531. doi: 10.2174/1389450111009011517. PubMed DOI

Ahmad A.S., Zhuang H., Doré S. Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience. 2006;141:1703–1708. doi: 10.1016/j.neuroscience.2006.05.035. PubMed DOI

Colín-González A.L., Orozco-Ibarra M., Chánez-Cárdenas M.E., Rangel-López E., Santamaría A., Pedraza-Chaverri J., Barrera-Oviedo D., Maldonado P.D. Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience. 2013;231:91–101. doi: 10.1016/j.neuroscience.2012.11.031. PubMed DOI

Ku B.M., Joo Y., Mun J., Roh G.S., Kang S.S., Cho G.J., Choi W.S., Kim H.J. Heme oxygenase protects hippocampal neurons from ethanol-induced neurotoxicity. Neurosci. Lett. 2006;405:168–171. doi: 10.1016/j.neulet.2006.06.052. PubMed DOI

Orozco-Ibarra M., Estrada-Sánchez A.M., Massieu L., Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: Role of CO and bilirubin. Int. J. Biochem. Cell Biol. 2009;41:1304–1314. doi: 10.1016/j.biocel.2008.11.003. PubMed DOI

Sferrazzo G., Di Rosa M., Barone E., Li Volti G., Musso N., Tibullo D., Barbagallo I. Heme Oxygenase-1 in Central Nervous System Malignancies. J. Clin. Med. 2020;9:1562. doi: 10.3390/jcm9051562. PubMed DOI PMC

Barone E., Di Domenico F., Sultana R., Coccia R., Mancuso C., Perluigi M., Butterfield D.A. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic. Biol. Med. 2012;52:2292–2301. doi: 10.1016/j.freeradbiomed.2012.03.020. PubMed DOI PMC

Chang E.F., Wong R.J., Vreman H.J., Igarashi T., Galo E., Sharp F.R., Stevenson D.K., Noble-Haeusslein L.J. Heme Oxygenase-2 Protects against Lipid Peroxidation-Mediated Cell Loss and Impaired Motor Recovery after Traumatic Brain Injury. J. Neurosci. 2003;23:3689–3696. doi: 10.1523/JNEUROSCI.23-09-03689.2003. PubMed DOI PMC

Doré S., Snyder S.H. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann. N. Y. Acad. Sci. 1999;890:167–172. doi: 10.1111/j.1749-6632.1999.tb07991.x. PubMed DOI

Doré S., Goto S., Sampei K., Blackshaw S., Hester L.D., Ingi T., Sawa A., Traystman R.J., Koehler R.C., Snyder S.H. Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience. 2000;99:587–592. doi: 10.1016/S0306-4522(00)00216-5. PubMed DOI

Doré S., Takahashi M., Ferris C.D., Hester L.D., Guastella D., Snyder S.H. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA. 1999;96:2445–2450. doi: 10.1073/pnas.96.5.2445. PubMed DOI PMC

Andrade V.M., Aschner M., Marreilha dos Santos A.P. Neurotoxicity of Metal Mixtures. In: Aschner M., Costa L.G., editors. Neurotoxicity of Metals. Springer International Publishing; Cham, Switzerland: 2017. pp. 227–265. Advances in Neurobiology.

Schipper H.M. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res. Rev. 2004;3:265–301. doi: 10.1016/j.arr.2004.02.001. PubMed DOI

Zhang J., Piantadosi C.A. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J. Clin. Investig. 1992;90:1193–1199. doi: 10.1172/JCI115980. PubMed DOI PMC

Stockard-Sullivan J.E., Korsak R.A., Webber D.S., Edmond J. Mild carbon monoxide exposure and auditory function in the developing rat. J. Neurosci. Res. 2003;74:644–654. doi: 10.1002/jnr.10808. PubMed DOI

Webber D.S., Korsak R.A., Sininger L.K., Sampogna S.L., Edmond J. Mild carbon monoxide exposure impairs the developing auditory system of the rat. J. Neurosci. Res. 2003;74:655–665. doi: 10.1002/jnr.10809. PubMed DOI

Deguchi K., Hayashi T., Nagotani S., Sehara Y., Zhang H., Tsuchiya A., Ohta Y., Tomiyama K., Morimoto N., Miyazaki M., et al. Reduction of cerebral infarction in rats by biliverdin associated with amelioration of oxidative stress. Brain Res. 2008;1188:1–8. doi: 10.1016/j.brainres.2007.07.104. PubMed DOI

Zou Z.-Y., Liu J., Chang C., Li J.-J., Luo J., Jin Y., Ma Z., Wang T.-H., Shao J.-L. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats. Int. J. Mol. Med. 2019;43:1356–1372. doi: 10.3892/ijmm.2019.4064. PubMed DOI PMC

Rice A.C., Shapiro S.M. Biliverdin-induced brainstem auditory evoked potential abnormalities in the jaundiced Gunn rat. Brain Res. 2006;1107:215–221. doi: 10.1016/j.brainres.2006.06.005. PubMed DOI

Cunningham O., Gore M.G., Mantle T.J. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B) Biochem. J. 2000;345:393–399. doi: 10.1042/bj3450393. PubMed DOI PMC

Shalloe F., Elliott G., Ennis O., Mantle T.J. Evidence that biliverdin-IXβ reductase and flavin reductase are identical. Biochem. J. 1996;316:385–387. doi: 10.1042/bj3160385. PubMed DOI PMC

Atukeren P., Oner S., Baran O., Kemerdere R., Eren B., Cakatay U., Tanriverdi T. Oxidant and anti-oxidant status in common brain tumors: Correlation to TP53 and human biliverdin reductase. Clin. Neurol. Neurosurg. 2017;158:72–76. doi: 10.1016/j.clineuro.2017.05.003. PubMed DOI

Liu Y., Liu J., Tetzlaff W., Paty D.W., Cynader M.S. Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radic. Biol. Med. 2006;40:960–967. doi: 10.1016/j.freeradbiomed.2005.07.021. PubMed DOI

Barone E., Di Domenico F., Cenini G., Sultana R., Cini C., Preziosi P., Perluigi M., Mancuso C., Butterfield D.A. Biliverdin reductase--a protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochim. Biophys. Acta. 2011;1812:480–487. doi: 10.1016/j.bbadis.2011.01.005. PubMed DOI PMC

Di Domenico F., Barone E., Mancuso C., Perluigi M., Cocciolo A., Mecocci P., Butterfield D.A., Coccia R. HO-1/BVR-a system analysis in plasma from probable Alzheimer’s disease and mild cognitive impairment subjects: A potential biochemical marker for the prediction of the disease. J. Alzheimers Dis. 2012;32:277–289. doi: 10.3233/JAD-2012-121045. PubMed DOI

Zhang Y., Ding Y., Lu T., Zhang Y., Xu N., Yu L., McBride D.W., Flores J.J., Tang J., Zhang J.H. Bliverdin reductase-A improves neurological function in a germinal matrix hemorrhage rat model. Neurobiol. Dis. 2018;110:122–132. doi: 10.1016/j.nbd.2017.11.017. PubMed DOI PMC

Mueller C., Zhou W., VanMeter A., Heiby M., Magaki S., Ross M.M., Espina V., Schrag M., Dickson C., Liotta L.A., et al. The Heme Degradation Pathway is a Promising Serum Biomarker Source for the Early Detection of Alzheimer’s Disease. J. Alzheimer’s Dis. 2010;19:1081–1091. doi: 10.3233/JAD-2010-1303. PubMed DOI PMC

Matic L.P., Jesus Iglesias M., Vesterlund M., Lengquist M., Hong M.-G., Saieed S., Sanchez-Rivera L., Berg M., Razuvaev A., Kronqvist M., et al. Novel Multiomics Profiling of Human Carotid Atherosclerotic Plaques and Plasma Reveals Biliverdin Reductase B as a Marker of Intraplaque Hemorrhage. JACC Basic Transl. Sci. 2018;3:464–480. doi: 10.1016/j.jacbts.2018.04.001. PubMed DOI PMC

Liu Y., Zhu B., Wang X., Luo L., Li P., Paty D.W., Cynader M.S. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: Implications for the role of oxidative stress in the development of multiple sclerosis. J. Neuroimmunol. 2003;139:27–35. doi: 10.1016/S0165-5728(03)00132-2. PubMed DOI

Yu M., Su D., Yang Y., Qin L., Hu C., Liu R., Zhou Y., Yang C., Yang X., Wang G., et al. D-T7 Peptide-Modified PEGylated Bilirubin Nanoparticles Loaded with Cediranib and Paclitaxel for Antiangiogenesis and Chemotherapy of Glioma. ACS Appl. Mater. Interfaces. 2019;11:176–186. doi: 10.1021/acsami.8b16219. PubMed DOI

Oda E., Kawai R. A possible cross-sectional association of serum total bilirubin with coronary heart disease and stroke in a Japanese health screening population. Heart Vessels. 2012;27:29–36. doi: 10.1007/s00380-011-0123-7. PubMed DOI

Thakkar M., Edelenbos J., Doré S. Bilirubin and Ischemic Stroke: Rendering the Current Paradigm to Better Understand the Protective Effects of Bilirubin. Mol. Neurobiol. 2019;56:5483–5496. doi: 10.1007/s12035-018-1440-y. PubMed DOI

Hung S.-Y., Liou H.-C., Kang K.-H., Wu R.-M., Wen C.-C., Fu W.-M. Over-expression of Heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol. Pharmacol. 2008;74:1564–1575. doi: 10.1124/mol.108.048611. PubMed DOI

Lee H., Choi Y.K. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int. J. Mol. Sci. 2019;20:78. doi: 10.3390/ijms20010078. PubMed DOI PMC

Zhong K., Wang X., Ma X., Ji X., Sang S., Shao S., Zhao Y., Xiang Y., Li J., Wang G., et al. Association between serum bilirubin and asymptomatic intracranial atherosclerosis: Results from a population-based study. Neurol. Sci. 2020;41:1531–1538. doi: 10.1007/s10072-020-04268-x. PubMed DOI

Yang F.-C., Riordan S.M., Winter M., Gan L., Smith P.G., Vivian J.L., Shapiro S.M., Stanford J.A. Fate of Neural Progenitor Cells Transplanted into Jaundiced and Nonjaundiced Rat Brains. Cell Transpl. 2017;26:605–611. doi: 10.3727/096368917X694840. PubMed DOI PMC

Loftspring M.C., Johnson H.L., Feng R., Johnson A.J., Clark J.F. Unconjugated Bilirubin Contributes to Early Inflammation and Edema after Intracerebral Hemorrhage. J. Cereb. Blood Flow Metab. 2010;31:1133–1142. doi: 10.1038/jcbfm.2010.203. PubMed DOI PMC

Marques J.G., Pedro I., Ouakinin S. Unconjugated bilirubin and acute psychosis: A five years retrospective observational and controlled study in patients with schizophrenia, schizoaffective and bipolar disorders. Int. J. Psychiatry Clin. Pract. 2019;23:281–285. doi: 10.1080/13651501.2019.1638940. PubMed DOI

Bin-Nun A., Mimouni F.B., Kasirer Y., Schors I., Schimmel M.S., Kaplan M., Hammerman C. Might Bilirubin Serve as a Natural Antioxidant in Response to Neonatal Encephalopathy? Am. J. Perinatol. 2018;35:1107–1112. doi: 10.1055/s-0038-1641746. PubMed DOI

Dani C., Poggi C., Fancelli C., Pratesi S. Changes in bilirubin in infants with hypoxic–ischemic encephalopathy. Eur. J. Pediatr. 2018;177:1795–1801. doi: 10.1007/s00431-018-3245-4. PubMed DOI

Fereshtehnejad S.M., Poorsattar Bejeh Mir K., Poorsattar Bejeh Mir A., Mohagheghi P. Evaluation of the possible antioxidative role of bilirubin protecting from free radical related illnesses in neonates. Acta Med. Iran. 2012;50:153–163. PubMed

Fujiwara R., Haag M., Schaeffeler E., Nies A.T., Zanger U.M., Schwab M. Systemic regulation of bilirubin homeostasis: Potential benefits of hyperbilirubinemia. Hepatology. 2018;67:1609–1619. doi: 10.1002/hep.29599. PubMed DOI

Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: Role of glial cells and inflammation. Front. Pharmacol. 2012;3:88. doi: 10.3389/fphar.2012.00088. PubMed DOI PMC

Jašprová J., Dal Ben M., Hurný D., Hwang S., Žížalová K., Kotek J., Wong R.J., Stevenson D.K., Gazzin S., Tiribelli C., et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 2018;8:7444. doi: 10.1038/s41598-018-25684-2. PubMed DOI PMC

Luan H., Liu L.-F., Tang Z., Mok V.C.T., Li M., Cai Z. Elevated excretion of biopyrrin as a new marker for idiopathic Parkinson’s disease. Parkinsonism Relat. Disord. 2015;21:1371–1372. doi: 10.1016/j.parkreldis.2015.09.009. PubMed DOI

Alexander J., Marcel R., Niklas L., Andreas S.R., Diana F., Karl-Heinz H., Anna S., Marvin R., Milena G., Charline S., et al. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage. Circ. Res. 2019;124:e101–e114. doi: 10.1161/CIRCRESAHA.118.314160. PubMed DOI

Clark J.F., Loftspring M., Wurster W.L., Pyne-Geithman G.J. Chemical and biochemical oxidations in spinal fluid after subarachnoid hemorrhage. Front. Biosci. 2008;13:1806–1812. doi: 10.2741/2801. PubMed DOI

Righy C., Bozza M.T., Oliveira M.F., Bozza F.A. Molecular, Cellular and Clinical Aspects of Intracerebral Hemorrhage: Are the Enemies Within? Curr. Neuropharmacol. 2016;14:392–402. doi: 10.2174/1570159X14666151230110058. PubMed DOI PMC

Vaya J., Song W., Khatib S., Geng G., Schipper H.M. Effects of heme oxygenase-1 expression on sterol homeostasis in rat astroglia. Free Radic. Biol. Med. 2007;42:864–871. doi: 10.1016/j.freeradbiomed.2006.12.022. PubMed DOI

Lin W.-P., Xiong G.-P., Lin Q., Chen X.-W., Zhang L.-Q., Shi J.-X., Ke Q.-F., Lin J.-H. Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J. Neuroinflamm. 2016;13:52. doi: 10.1186/s12974-016-0521-y. PubMed DOI PMC

Takahashi M., Doré S., Ferris C.D., Tomita T., Sawa A., Wolosker H., Borchelt D.R., Iwatsubo T., Kim S.-H., Thinakaran G., et al. Amyloid Precursor Proteins Inhibit Heme Oxygenase Activity and Augment Neurotoxicity in Alzheimer’s Disease. Neuron. 2000;28:461–473. doi: 10.1016/S0896-6273(00)00125-2. PubMed DOI

Chen J., Tu Y., Connolly E.C., Ronnett G.V. Heme oxygenase-2 protects against glutathione depletion-induced neuronal apoptosis mediated by bilirubin and cyclic GMP. Curr. Neurovasc. Res. 2005;2:121–131. doi: 10.2174/1567202053586767. PubMed DOI

Cuadrado A., Rojo A.I. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr. Pharm. Des. 2008;14:429–442. doi: 10.2174/138161208783597407. PubMed DOI

Hettiarachchi N., Dallas M., Al-Owais M., Griffiths H., Hooper N., Scragg J., Boyle J., Peers C. Heme oxygenase-1 protects against Alzheimer’s amyloid-β(1-42)-induced toxicity via carbon monoxide production. Cell Death Dis. 2014;5:e1569. doi: 10.1038/cddis.2014.529. PubMed DOI PMC

Hettiarachchi N.T., Boyle J.P., Dallas M.L., Al-Owais M.M., Scragg J.L., Peers C. Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes. Cell Death Dis. 2017;8:e2884. doi: 10.1038/cddis.2017.276. PubMed DOI PMC

Lin S.-H., Song W., Cressatti M., Zukor H., Wang E., Schipper H.M. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: Implications for chronic brain disorders. Glia. 2015;63:1270–1284. doi: 10.1002/glia.22823. PubMed DOI

Mancuso C., Barone E., Guido P., Miceli F., Di Domenico F., Perluigi M., Santangelo R., Preziosi P. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci. Lett. 2012;518:101–105. doi: 10.1016/j.neulet.2012.04.062. PubMed DOI

Gibbs P.E.M., Maines M.D. Biliverdin inhibits activation of NF-κB: Reversal of inhibition by human biliverdin reductase. Int. J. Cancer. 2007;121:2567–2574. doi: 10.1002/ijc.22978. PubMed DOI

Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:1–9. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC

Bisht K., Wegiel B., Tampe J., Neubauer O., Wagner K.-H., Otterbein L.E., Bulmer A.C. Biliverdin modulates the expression of C5aR in response to endotoxin in part via mTOR signaling. Biochem. Biophys. Res. Commun. 2014;449:94–99. doi: 10.1016/j.bbrc.2014.04.150. PubMed DOI PMC

Nakao A., Murase N., Ho C., Toyokawa H., Billiar T.R., Kanno S. Biliverdin Administration Prevents the Formation of Intimal Hyperplasia Induced by Vascular Injury. Circulation. 2005;112:587–591. doi: 10.1161/CIRCULATIONAHA.104.509778. PubMed DOI

Wegiel B., Baty C.J., Gallo D., Csizmadia E., Scott J.R., Akhavan A., Chin B.Y., Kaczmarek E., Alam J., Bach F.H., et al. Cell Surface Biliverdin Reductase Mediates Biliverdin-induced Anti-inflammatory Effects via Phosphatidylinositol 3-Kinase and Akt. J. Biol. Chem. 2009;284:21369–21378. doi: 10.1074/jbc.M109.027433. PubMed DOI PMC

Wegiel B., Gallo D., Csizmadia E., Roger T., Kaczmarek E., Harris C., Zuckerbraun B.S., Otterbein L.E. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc. Natl. Acad. Sci. USA. 2011;108:18849–18854. doi: 10.1073/pnas.1108571108. PubMed DOI PMC

Gurba P.E., Zand R. Bilirubin binding to myelin basic protein, histones and its inhibition in vitro of cerebellar protein synthesis. Biochem. Biophys. Res. Commun. 1974;58:1142–1147. doi: 10.1016/S0006-291X(74)80262-7. PubMed DOI

Pei J.J., Braak E. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 1999;58:1010–1019. doi: 10.1097/00005072-199909000-00011. PubMed DOI

Medina M., Garrido J.J., Wandosell F.G. Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Front. Mol. Neurosci. 2011;4:24. doi: 10.3389/fnmol.2011.00024. PubMed DOI PMC

Miralem T., Lerner-Marmarosh N., Gibbs P.E.M., Jenkins J.L., Heimiller C., Maines M.D. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: A novel mechanism of Akt activation. FASEB J. 2016;30:2926–2944. doi: 10.1096/fj.201600330RR. PubMed DOI PMC

Sharma N., Tramutola A., Lanzillotta C., Arena A., Blarzino C., Cassano T., Butterfield D.A., Di Domenico F., Perluigi M., Barone E. Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer’s disease. Neurobiol. Dis. 2019;125:176–189. doi: 10.1016/j.nbd.2019.02.003. PubMed DOI

Kim S.J., Shin M.J., Kim D.W., Yeo H.J., Yeo E.J., Choi Y.J., Sohn E.J., Han K.H., Park J., Lee K.W., et al. Tat-Biliverdin Reductase A Exerts a Protective Role in Oxidative Stress-Induced Hippocampal Neuronal Cell Damage by Regulating the Apoptosis and MAPK Signaling. Int. J. Mol. Sci. 2020;21:2672. doi: 10.3390/ijms21082672. PubMed DOI PMC

Triani F., Tramutola A., Di Domenico F., Sharma N., Butterfield D.A., Head E., Perluigi M., Barone E. Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018;1864:3181–3194. doi: 10.1016/j.bbadis.2018.07.005. PubMed DOI

Mancuso C. Bilirubin and brain: A pharmacological approach. Neuropharmacology. 2017;118:113–123. doi: 10.1016/j.neuropharm.2017.03.013. PubMed DOI

Barone E., Di Domenico F., Cassano T., Arena A., Tramutola A., Lavecchia M.A., Coccia R., Butterfield D.A., Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic. Biol. Med. 2016;91:127–142. doi: 10.1016/j.freeradbiomed.2015.12.012. PubMed DOI

Morris G., Puri B.K., Walker A.J., Berk M., Walder K., Bortolasci C.C., Marx W., Carvalho A.F., Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;95:109708. doi: 10.1016/j.pnpbp.2019.109708. PubMed DOI

Liu Y., Li P., Lu J., Xiong W., Oger J., Tetzlaff W., Cynader M. Bilirubin Possesses Powerful Immunomodulatory Activity and Suppresses Experimental Autoimmune Encephalomyelitis. J. Immunol. 2008;181:1887–1897. doi: 10.4049/jimmunol.181.3.1887. PubMed DOI

Vianello E., Zampieri S., Marcuzzo T., Tordini F., Bottin C., Dardis A., Zanconati F., Tiribelli C., Gazzin S. Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci. Rep. 2018;8:13690. doi: 10.1038/s41598-018-32106-w. PubMed DOI PMC

Qaisiya M., Brischetto C., Jašprová J., Vitek L., Tiribelli C., Bellarosa C. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch. Toxicol. 2017;91:1847–1858. doi: 10.1007/s00204-016-1835-3. PubMed DOI

Qaisiya M., Coda Zabetta C.D., Bellarosa C., Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell. Signal. 2014;26:512–520. doi: 10.1016/j.cellsig.2013.11.029. PubMed DOI

Nguyen N.T., Hanieh H., Nakahama T., Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int. Immunol. 2013;25:335–343. doi: 10.1093/intimm/dxt011. PubMed DOI

Phelan D., Winter G.M., Rogers W.J., Lam J.C., Denison M.S. Activation of the Ah Receptor Signal Transduction Pathway by Bilirubin and Biliverdin. Arch. Biochem. Biophys. 1998;357:155–163. doi: 10.1006/abbi.1998.0814. PubMed DOI

Vítek V.L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020;40:1335–1351. doi: 10.1002/med.21660. PubMed DOI

Datla Srinivasa R., Dusting Gregory J., Mori Trevor A., Taylor Caroline J., Croft Kevin D. Jiang Fan Induction of Heme Oxygenase-1 In Vivo Suppresses NADPH Oxidase–Derived Oxidative Stress. Hypertension. 2007;50:636–642. doi: 10.1161/HYPERTENSIONAHA.107.092296. PubMed DOI

Peng F., Deng X., Yu Y., Chen X., Shen L., Zhong X., Qiu W., Jiang Y., Zhang J., Hu X. Serum bilirubin concentrations and multiple sclerosis. J. Clin. Neurosci. 2011;18:1355–1359. doi: 10.1016/j.jocn.2011.02.023. PubMed DOI

Gennuso F., Fernetti C., Tirolo C., Testa N., L’Episcopo F., Caniglia S., Morale M.C., Ostrow J.D., Pascolo L., Tiribelli C., et al. Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1) Proc. Natl. Acad. Sci. USA. 2004;101:2470–2475. doi: 10.1073/pnas.0308452100. PubMed DOI PMC

Rodrigues C.M.P., Solá S., Brito M.A., Brites D., Moura J.J.G. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J. Hepatol. 2002;36:335–341. doi: 10.1016/S0168-8278(01)00279-3. PubMed DOI

Rodrigues C.M.P., Solá S., Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology. 2002;35:1186–1195. doi: 10.1053/jhep.2002.32967. PubMed DOI

Fernandes A., Falcão A.S., Silva R.F.M., Gordo A.C., Gama M.J., Brito M.A., Brites D. Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J. Neurochem. 2006;96:1667–1679. doi: 10.1111/j.1471-4159.2006.03680.x. PubMed DOI

Fernandes A., Falcão A.S., Silva R.F.M., Brito M.A., Brites D. MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur. J. Neurosci. 2007;25:1058–1068. doi: 10.1111/j.1460-9568.2007.05340.x. PubMed DOI

Chang F.-Y., Lee C.-C., Huang C.-C., Hsu K.-S. Unconjugated Bilirubin Exposure Impairs Hippocampal Long-Term Synaptic Plasticity. PLoS ONE. 2009;4:e5876. doi: 10.1371/journal.pone.0005876. PubMed DOI PMC

Grojean S., Koziel V., Vert P., Daval J.L. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 2000;166:334–341. doi: 10.1006/exnr.2000.7518. PubMed DOI

Zhang L., Liu W., Tanswell A.K., Luo X. The Effects of Bilirubin on Evoked Potentials and Long-Term Potentiation in Rat Hippocampus In Vivo. Pediatric Res. 2003;53:939–944. doi: 10.1203/01.PDR.0000061563.63230.86. PubMed DOI

Mancuso C., Capone C., Ranieri S.C., Fusco S., Calabrese V., Eboli M.L., Preziosi P., Galeotti T., Pani G. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J. Neurosci. Res. 2008;86:2235–2249. doi: 10.1002/jnr.21665. PubMed DOI

Gazzin S., Berengeno A.L., Strazielle N., Fazzari F., Raseni A., Ostrow J.D., Wennberg R., Ghersi-Egea J.-F., Tiribelli C. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat. PLoS ONE. 2011;6:e16165. doi: 10.1371/journal.pone.0016165. PubMed DOI PMC

Rawat V., Bortolussi G., Gazzin S., Tiribelli C., Muro A.F. Bilirubin-Induced Oxidative Stress Leads to DNA Damage in the Cerebellum of Hyperbilirubinemic Neonatal Mice and Activates DNA Double-Strand Break Repair Pathways in Human Cells. Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/1801243. PubMed DOI PMC

Robert M.C., Furlan G., Rosso N., Gambaro S.E., Apitsionak F., Vianello E., Tiribelli C., Gazzin S. Alterations in the Cell Cycle in the Cerebellum of Hyperbilirubinemic Gunn Rat: A Possible Link with Apoptosis? PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0079073. PubMed DOI PMC

Neis V.B., Rosa P.B., Moretti M., Rodrigues A.L.S. Involvement of Heme Oxygenase-1 in Neuropsychiatric and Neurodegenerative Diseases. Curr. Pharm. Des. 2018;24:2283–2302. doi: 10.2174/1381612824666180717160623. PubMed DOI

Schipper H.M. Heme oxygenase expression in human central nervous system disorders. Free Radic. Biol. Med. 2004;37:1995–2011. doi: 10.1016/j.freeradbiomed.2004.09.015. PubMed DOI

González-Reyes S., Orozco-Ibarra M., Guzmán-Beltrán S., Molina-Jijón E., Massieu L., Pedraza-Chaverri J. Neuroprotective role of heme-oxygenase 1 against iodoacetate-induced toxicity in rat cerebellar granule neurons: Role of bilirubin. Free Radic. Res. 2009;43:214–223. doi: 10.1080/10715760802676670. PubMed DOI

Schipper H.M. Heme oxygenase-1: Role in brain aging and neurodegeneration. Exp. Gerontol. 2000;35:821–830. doi: 10.1016/S0531-5565(00)00148-0. PubMed DOI

Doré S., Sampei K., Goto S., Alkayed N.J., Guastella D., Blackshaw S., Gallagher M., Traystman R.J., Hurn P.D., Koehler R.C., et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol. Med. 1999;5:656–663. PubMed PMC

Nam J., Lee Y., Yang Y., Jeong S., Kim W., Yoo J.-W., Moon J.-O., Lee C., Chung H.Y., Kim M.-S., et al. Is it worth expending energy to convert biliverdin into bilirubin? Free Radic. Biol. Med. 2018;124:232–240. doi: 10.1016/j.freeradbiomed.2018.06.010. PubMed DOI

Mancuso C., Barone E. The Heme Oxygenase/Biliverdin Reductase Pathway in Drug Research and Development. [(accessed on 27 July 2020)]; Available online: https://www.eurekaselect.com/70167/article.

Maines M.D. The Heme Oxygenase System: A Regulator of Second Messenger Gases. Annu. Rev. Pharmacol. Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. PubMed DOI

McDonagh A.F., Palma L.A., Schmid R. Reduction of biliverdin and placental transfer of bilirubin and biliverdin in the pregnant guinea pig. Biochem. J. 1981;194:273–282. doi: 10.1042/bj1940273. PubMed DOI PMC

Itoh S., Kondo M., Imai T., Kusaka T., Isobe K., Onishi S. Relationships between serum (ZZ)-bilirubin, its subfractions and biliverdin concentrations in infants at 1-month check-ups. Ann. Clin. Biochem. 2001;38:323–328. doi: 10.1258/0004563011900821. PubMed DOI

Niedzielska E., Smaga I., Gawlik M., Moniczewski A., Stankowicz P., Pera J., Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016;53:4094–4125. doi: 10.1007/s12035-015-9337-5. PubMed DOI PMC

Wei-Wei C., Zhang X., Wen-Juan H. Role of neuroinflammation in neurodegenerative diseases (Review) Mol. Med. Rep. 2016;13:3391–3396. doi: 10.3892/mmr.2016.4948. PubMed DOI PMC

Azam S., Jakaria M., Kim I.-S., Kim J., Haque M.E., Choi D.-K. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.01000. PubMed DOI PMC

Cao C.-X., Yang Q.-W., Lv F.-L., Cui J., Fu H.-B., Wang J.-Z. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem. Biophys. Res. Commun. 2007;353:509–514. doi: 10.1016/j.bbrc.2006.12.057. PubMed DOI

Lotz M., Ebert S., Esselmann H., Iliev A.I., Prinz M., Wiazewicz N., Wiltfang J., Gerber J., Nau R. Amyloid beta peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J. Neurochem. 2005;94:289–298. doi: 10.1111/j.1471-4159.2005.03188.x. PubMed DOI

Mellanby R.J., Cambrook H., Turner D.G., O’Connor R.A., Leech M.D., Kurschus F.C., MacDonald A.S., Arnold B., Anderton S.M. TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2012;9:248. doi: 10.1186/1742-2094-9-248. PubMed DOI PMC

Minoretti P., Gazzaruso C., Vito C.D., Emanuele E., Bianchi M., Coen E., Reino M., Geroldi D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett. 2006;391:147–149. doi: 10.1016/j.neulet.2005.08.047. PubMed DOI

Noelker C., Morel L., Lescot T., Osterloh A., Alvarez-Fischer D., Breloer M., Henze C., Depboylu C., Skrzydelski D., Michel P.P., et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci. Rep. 2013;3:1393. doi: 10.1038/srep01393. PubMed DOI PMC

Walter S., Letiembre M., Liu Y., Heine H., Penke B., Hao W., Bode B., Manietta N., Walter J., Schulz-Schüffer W., et al. Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer’s Disease. CPB. 2007;20:947–956. doi: 10.1159/000110455. PubMed DOI

Ager R.R., Fonseca M.I., Chu S.-H., Sanderson S.D., Taylor S.M., Woodruff T.M., Tenner A.J. Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease. J. Neurochem. 2010;113:389–401. doi: 10.1111/j.1471-4159.2010.06595.x. PubMed DOI PMC

An X., Xi W., Gu C., Huang X. Complement protein C5a enhances the β-amyloid-induced neuro-inflammatory response in microglia in Alzheimer’s disease. Med. Sci. (Paris) 2018;34:116–120. doi: 10.1051/medsci/201834f120. PubMed DOI

Nizami S., Hall-Roberts H., Warrier S., Cowley S.A., Daniel E.D. Microglial inflammation and phagocytosis in Alzheimer’s disease: Potential therapeutic targets. Br. J. Pharmacol. 2019;176:3515–3532. doi: 10.1111/bph.14618. PubMed DOI PMC

Kaur H., Hughes M.N., Green C.J., Naughton P., Foresti R., Motterlini R. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett. 2003;543:113–119. doi: 10.1016/S0014-5793(03)00420-4. PubMed DOI

Gonzalez-Sanchez E., Perez M.J., Nytofte N.S., Briz O., Monte M.J., Lozano E., Serrano M.A., Marin J.J.G. Protective role of biliverdin against bile acid-induced oxidative stress in liver cells. Free Radic. Biol. Med. 2016;97:466–477. doi: 10.1016/j.freeradbiomed.2016.06.016. PubMed DOI

Blumenthal S.G., Stucker T., Rasmussen R.D., Ikeda R.M., Ruebner B.H., Bergstrom D.E., Hanson F.W. Changes in bilirubins in human prenatal development. Biochem. J. 1980;186:693–700. doi: 10.1042/bj1860693. PubMed DOI PMC

Komuro A., Tobe T., Nakano Y., Yamaguchi T., Tomita M. Cloning and characterization of the cDNA encoding human biliverdin-IX alpha reductase. Biochim. Biophys. Acta. 1996;1309:89–99. doi: 10.1016/S0167-4781(96)00099-1. PubMed DOI

Kapitulnik J., Maines M.D. Pleiotropic functions of biliverdin reductase: Cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol. Sci. 2009;30:129–137. doi: 10.1016/j.tips.2008.12.003. PubMed DOI

O’Brien L., Hosick P.A., John K., Stec D.E., Hinds T.D. Biliverdin reductase isozymes in metabolism. Trends Endocrinol. Metab. 2015;26:212–220. doi: 10.1016/j.tem.2015.02.001. PubMed DOI PMC

Tudor C., Lerner-Marmarosh N., Engelborghs Y., Gibbs P.E.M., Maines M.D. Biliverdin reductase is a transporter of haem into the nucleus and is essential for regulation of HO-1 gene expression by haematin. Biochem. J. 2008;413:405–416. doi: 10.1042/BJ20080018. PubMed DOI PMC

Derada Troletti C., de Goede P., Kamermans A., de Vries H.E. Molecular alterations of the blood–brain barrier under inflammatory conditions: The role of endothelial to mesenchymal transition. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016;1862:452–460. doi: 10.1016/j.bbadis.2015.10.010. PubMed DOI

Galaris D., Pantopoulos K. Oxidative Stress and Iron Homeostasis: Mechanistic and Health Aspects. Crit. Rev. Clin. Lab. Sci. 2008;45:1–23. doi: 10.1080/10408360701713104. PubMed DOI

Loboda A., Jazwa A., Grochot-Przeczek A., Rutkowski A.J., Cisowski J., Agarwal A., Jozkowicz A., Dulak J. Heme Oxygenase-1 and the Vascular Bed: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2008;10:1767–1812. doi: 10.1089/ars.2008.2043. PubMed DOI

Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC

Barone E., Di Domenico F., Cenini G., Sultana R., Coccia R., Preziosi P., Perluigi M., Mancuso C., Butterfield D.A. Oxidative and Nitrosative Modifications of Biliverdin Reductase-A in the Brain of Subjects with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2011;25:623–633. doi: 10.3233/JAD-2011-110092. PubMed DOI

Lerner-Marmarosh N., Shen J., Torno M.D., Kravets A., Hu Z., Maines M.D. Human biliverdin reductase: A member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc. Natl. Acad. Sci. USA. 2005;102:7109–7114. doi: 10.1073/pnas.0502173102. PubMed DOI PMC

Gibbs P.E.M., Lerner-Marmarosh N., Poulin A., Farah E., Maines M.D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. FASEB J. 2014;28:2478–2491. doi: 10.1096/fj.13-247015. PubMed DOI PMC

Rivera E.J., Goldin A., Fulmer N., Tavares R., Wands J.R., de la Monte S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimers Dis. 2005;8:247–268. doi: 10.3233/JAD-2005-8304. PubMed DOI

Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., de la Monte S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI

Talbot K., Wang H.-Y., Kazi H., Han L.-Y., Bakshi K.P., Stucky A., Fuino R.L., Kawaguchi K.R., Samoyedny A.J., Wilson R.S., et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012;122:1316–1338. doi: 10.1172/JCI59903. PubMed DOI PMC

Barone E., Tramutola A., Triani F., Calcagnini S., Di Domenico F., Ripoli C., Gaetani S., Grassi C., Butterfield D.A., Cassano T., et al. Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Mol. Neurobiol. 2019;56:2922–2943. doi: 10.1007/s12035-018-1231-5. PubMed DOI

Stocker R. Antioxidant Activities of Bile Pigments. Antioxid. Redox Signal. 2004;6:841–849. doi: 10.1089/ars.2004.6.841. PubMed DOI

Sedlak T.W., Saleh M., Higginson D.S., Paul B.D., Juluri K.R., Snyder S.H. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. USA. 2009;106:5171–5176. doi: 10.1073/pnas.0813132106. PubMed DOI PMC

Vasavda C., Kothari R., Malla A.P., Tokhunts R., Lin A., Ji M., Ricco C., Xu R., Saavedra H.G., Sbodio J.I., et al. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem. Biol. 2019;26:1450–1460.e7. doi: 10.1016/j.chembiol.2019.07.006. PubMed DOI PMC

Jayanti S., Moretti R., Tiribelli C., Gazzin S. Bilirubin and inflammation in neurodegenerative and other neurological diseases. Neuroimmunol. Neuroinflamm. 2020;7:92–108. doi: 10.20517/2347-8659.2019.14. DOI

Lee Y., Lee S., Lee D.Y., Yu B., Miao W., Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew. Chem. Int. Ed. 2016;55:10676–10680. doi: 10.1002/anie.201604858. PubMed DOI

Aycicek A., Erel O. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J. Pediatr. 2007;83:319–322. doi: 10.2223/JPED.1645. PubMed DOI

Araújo A.R., Rosso N., Bedogni G., Tiribelli C., Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018;38(Suppl. 1):47–51. doi: 10.1111/liv.13643. PubMed DOI

Bush H., Golabi P., Younossi Z.M. Pediatric Non-Alcoholic Fatty Liver Disease. Children (Basel) 2017;4:48. doi: 10.3390/children4060048. PubMed DOI PMC

Moretti R., Caruso P., Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann. Hepatol. 2019;18:563–570. doi: 10.1016/j.aohep.2019.04.007. PubMed DOI

Lombardi R., Fargion S., Fracanzani A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig. Liver Dis. 2019;51:1214–1222. doi: 10.1016/j.dld.2019.05.015. PubMed DOI

Satoh A., Brace C.S., Ben-Josef G., West T., Wozniak D.F., Holtzman D.M., Herzog E.D., Imai S. SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. J. Neurosci. 2010;30:10220–10232. doi: 10.1523/JNEUROSCI.1385-10.2010. PubMed DOI PMC

Moraes D.S., Moreira D.C., Andrade J.M.O., Santos S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep. 2020;9:46–51. doi: 10.1016/j.ibror.2020.06.004. PubMed DOI PMC

Radak Z., Suzuki K., Posa A., Petrovszky Z., Koltai E., Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020;35:101467. doi: 10.1016/j.redox.2020.101467. PubMed DOI PMC

Jang B.K. Elevated serum bilirubin levels are inversely associated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2012;18:357–359. doi: 10.3350/cmh.2012.18.4.357. PubMed DOI PMC

Kumar R., Rastogi A., Maras J.S., Sarin S.K. Unconjugated hyperbilirubinemia in patients with non-alcoholic fatty liver disease: A favorable endogenous response. Clin. Biochem. 2012;45:272–274. doi: 10.1016/j.clinbiochem.2011.11.017. PubMed DOI

Lin L.-Y., Kuo H.-K., Hwang J.-J., Lai L.-P., Chiang F.-T., Tseng C.-D., Lin J.-L. Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis. 2009;203:563–568. doi: 10.1016/j.atherosclerosis.2008.07.021. PubMed DOI

Puri K., Nobili V., Melville K., Corte C.D., Sartorelli M.R., Lopez R., Feldstein A.E., Alkhouri N. Serum bilirubin level is inversely associated with nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 2013;57:114–118. doi: 10.1097/MPG.0b013e318291fefe. PubMed DOI

Herskovits A.Z., Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81:471–483. doi: 10.1016/j.neuron.2014.01.028. PubMed DOI PMC

Chandrasekaran K., Salimian M., Konduru S.R., Choi J., Kumar P., Long A., Klimova N., Ho C.-Y., Kristian T., Russell J.W. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain. 2019;142:3737–3752. doi: 10.1093/brain/awz324. PubMed DOI PMC

Nassir F., Ibdah J.A. Sirtuins and nonalcoholic fatty liver disease. World J. Gastroenterol. 2016;22:10084–10092. doi: 10.3748/wjg.v22.i46.10084. PubMed DOI PMC

Vítek L., Majer F., Muchová L., Zelenka J., Jirásková A., Branný P., Malina J., Ubik K. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora. J. Chromatogr. B. 2006;833:149–157. doi: 10.1016/j.jchromb.2006.01.032. PubMed DOI

Sedlak T., Snyder S. Bilirubin Benefits: Cellular Protection by a Biliverdin Reductase Antioxidant Cycle. Pediatrics. 2004;113:1776–1782. doi: 10.1542/peds.113.6.1776. PubMed DOI

Jasprova J., Dal Ben M., Vianello E., Goncharova I., Urbanova M., Vyroubalova K., Gazzin S., Tiribelli C., Sticha M., Cerna M., et al. The Biological Effects of Bilirubin Photoisomers. PLoS ONE. 2016;11:e0148126. doi: 10.1371/journal.pone.0148126. PubMed DOI PMC

Garcia E., Aguilar-Cevallos J., Silva-Garcia R., Ibarra A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. [(accessed on 27 July 2020)]; Available online: https://www.hindawi.com/journals/mi/2016/9476020/ PubMed PMC

Kempuraj D., Thangavel R., Natteru P., Selvakumar G., Saeed D., Zahoor H., Zaheer S., Iyer S., Zaheer A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine. 2016;1:1003. PubMed PMC

Dietzschold B., Richt J.A., editors. Protective and Pathological Immune Responses in the CNS. Springer; Berlin/Heidelberg, Germany: 2002. Current Topics in Microbiology and Immunology.

Hirota H. Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J. Exp. Med. 1996;183:2627–2634. doi: 10.1084/jem.183.6.2627. PubMed DOI PMC

Hagman S., Mäkinen A., Ylä-Outinen L., Huhtala H., Elovaara I., Narkilahti S. Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J. Neuroimmunol. 2019;331:36–45. doi: 10.1016/j.jneuroim.2018.07.010. PubMed DOI

Vodret S., Bortolussi G., Jašprová J., Vitek L., Muro A.F. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 (-/-) mouse model. J. Neuroinflamm. 2017;14:64. doi: 10.1186/s12974-017-0838-1. PubMed DOI PMC

Vodret S., Bortolussi G., Iaconcig A., Martinelli E., Tiribelli C., Muro A.F. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav. Immun. 2018;70:166–178. doi: 10.1016/j.bbi.2018.02.011. PubMed DOI

Shimoharada K., Inoue S., Nakahara M., Kanzaki N., Shimizu S., Kang D., Hamasaki N., Kinoshita S. Urine Concentration of Biopyrrins: A New Marker for Oxidative Stress in Vivo. Clin. Chem. 1998;44:2554–2555. doi: 10.1093/clinchem/44.12.2554a. PubMed DOI

Vítek L., Kráslová I., Muchová L., Novotný L., Yamaguchi T. Urinary excretion of oxidative metabolites of bilirubin in subjects with Gilbert syndrome. J. Gastroenterol. Hepatol. 2007;22:841–845. doi: 10.1111/j.1440-1746.2006.04564.x. PubMed DOI

Jašprová J., Dvořák A., Vecka M., Leníček M., Lacina O., Valášková P., Zapadlo M., Plavka R., Klán P., Vítek L. A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC

Ndayisaba A., Kaindlstorfer C., Wenning G.K. Iron in Neurodegeneration—Cause or Consequence? Front. Neurosci. 2019;13:180. doi: 10.3389/fnins.2019.00180. PubMed DOI PMC

Li J.-J., Zou Z.-Y., Liu J., Xiong L.-L., Jiang H.-Y., Wang T.-H., Shao J.-L. Biliverdin administration ameliorates cerebral ischemia reperfusion injury in rats and is associated with proinflammatory factor downregulation. Exp. Ther. Med. 2017;14:671–679. doi: 10.3892/etm.2017.4549. PubMed DOI PMC

Lu X., Gu R., Hu W., Sun Z., Wang G., Wang L., Xu Y. Upregulation of heme oxygenase-1 protected against brain damage induced by transient cerebral ischemia-reperfusion injury in rats. Exp. Ther. Med. 2018;15:4629–4636. doi: 10.3892/etm.2018.6049. PubMed DOI PMC

Pehar M., Vargas M.R., Cassina P., Barbeito A.G., Beckman J.S., Barbeito L. Complexity of Astrocyte-Motor Neuron Interactions in Amyotrophic Lateral Sclerosis. NDD. 2005;2:139–146. doi: 10.1159/000089619. PubMed DOI

van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008;45:1729–1737. doi: 10.1016/j.freeradbiomed.2008.09.023. PubMed DOI

Parfenova H., Leffler C.W. Cerebroprotective functions of HO-2. Curr. Pharm. Des. 2008;14:443–453. doi: 10.2174/138161208783597380. PubMed DOI PMC

Gandini N.A., Fermento M.E., Salomón D.G., Obiol D.J., Andrés N.C., Zenklusen J.C., Arevalo J., Blasco J., López Romero A., Facchinetti M.M., et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumor Biol. 2014;35:2803–2815. doi: 10.1007/s13277-013-1373-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...