Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
38254662
PubMed Central
PMC10813662
DOI
10.3390/biom14010063
PII: biom14010063
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, MAFLD, NRF2, Parkinson’s disease, bilirubin, cancer, heme-oxygenase, herbal medicine, neurodegeneration, nutraceuticals,
- MeSH
- Bilirubin MeSH
- Biliverdine MeSH
- Adult MeSH
- Heme MeSH
- Heme Oxygenase (Decyclizing) MeSH
- Liver MeSH
- Humans MeSH
- Brain Diseases * MeSH
- Health Promotion * MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bilirubin MeSH
- Biliverdine MeSH
- Heme MeSH
- Heme Oxygenase (Decyclizing) MeSH
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
See more in PubMed
Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI
Wagner K.-H., Wallner M., Mölzer C., Gazzin S., Bulmer A.C., Tiribelli C., Vitek L. Looking to the Horizon: The Role of Bilirubin in the Development and Prevention of Age-Related Chronic Diseases. Clin. Sci. 2015;129:1–25. doi: 10.1042/CS20140566. PubMed DOI
Vitek L., Bellarosa C., Tiribelli C. Induction of Mild Hyperbilirubinemia: Hype or Real Therapeutic Opportunity? Clin. Pharmacol. Ther. 2019;106:568–575. doi: 10.1002/cpt.1341. PubMed DOI
Creeden J.F., Gordon D.M., Stec D.E., Hinds T.D. Bilirubin as a Metabolic Hormone: The Physiological Relevance of Low Levels. Am. J. Physiol.-Endocrinol. Metab. 2020;320:E191–E207. doi: 10.1152/ajpendo.00405.2020. PubMed DOI PMC
Jayanti S., Dalla Verde C., Tiribelli C., Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int. J. Mol. Sci. 2023;24:11478. doi: 10.3390/ijms241411478. PubMed DOI PMC
Llido J.P., Jayanti S., Tiribelli C., Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants. 2023;12:1525. doi: 10.3390/antiox12081525. PubMed DOI PMC
Ostrow J.D., Vitek L. Bilirubin Chemistry and Metabolism; Harmful and Protective Aspects. Curr. Pharm. Design. 2009;15:2869–2883. PubMed
Ryter S.W., Otterbein L.E. Carbon Monoxide in Biology and Medicine. BioEssays. 2004;26:270–280. doi: 10.1002/bies.20005. PubMed DOI
Wegiel B., Otterbein L. Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase. Front. Pharmacol. 2012;3:47. doi: 10.3389/fphar.2012.00047. PubMed DOI PMC
Gazzin S., Masutti F., Vítek L., Tiribelli C. The Molecular Basis of Jaundice: An Old Symptom Revisited. Liver Int. 2016;37:1094–1102. doi: 10.1111/liv.13351. PubMed DOI
Vítek L. Bilirubin and Atherosclerotic Diseases. Physiol. Res. 2017;66:S11–S20. doi: 10.33549/physiolres.933581. PubMed DOI
Vítek L. Bilirubin as a Signaling Molecule. Med. Res. Rev. 2020;40:1335–1351. doi: 10.1002/med.21660. PubMed DOI
Vítek L. The Protective Role of the Heme Catabolic Pathway in Hepatic Disorders. Antioxid. Redox Signal. 2021;35:734–752. doi: 10.1089/ars.2021.0080. PubMed DOI
Vítek L. Carbon Monoxide in Drug Discovery. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2022. Biliverdin and Bilirubin as Parallel Products of CO Formation; pp. 175–194. DOI
Ryter S.W., Alam J., Choi A.M.K. Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol. Rev. 2006;86:583–650. doi: 10.1152/physrev.00011.2005. PubMed DOI
Wilks A., Knör G., Wu H., Zheng Y., Liu J., Zhang H., Chen H., Buchberger T., Lamparter T., Estes S., et al. Heme Oxygenase: Evolution, Structure, and Mechanism. Antioxid. Redox Signal. 2002;4:603–614. doi: 10.1089/15230860260220102. PubMed DOI
Maines M.D. THE HEME OXYGENASE SYSTEM: A Regulator of Second Messenger Gases. Annu. Rev. Pharmacol. Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. PubMed DOI
Morse D., Choi A.M.K. Heme Oxygenase-1. Am. J. Respir. Cell Mol. Biol. 2002;27:8–16. doi: 10.1165/ajrcmb.27.1.4862. PubMed DOI
Funes S.C., Rios M., Fernández-Fierro A., Covián C., Bueno S.M., Riedel C.A., Mackern-Oberti J.P., Kalergis A.M. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front. Immunol. 2020;11:1467. doi: 10.3389/fimmu.2020.01467. PubMed DOI PMC
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC
Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC
da Costa R.M., Rodrigues D., Pereira C.A., Silva J.F., Alves J.V., Lobato N.S., Tostes R.C. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front. Pharmacol. 2019;10:382. doi: 10.3389/fphar.2019.00382. PubMed DOI PMC
Zhang D.D., Chapman E. The Role of Natural Products in Revealing NRF2 Function. Nat. Prod. Rep. 2020;37:797–826. doi: 10.1039/C9NP00061E. PubMed DOI PMC
Qader M., Xu J., Yang Y., Liu Y., Cao S. Natural Nrf2 Activators from Juices, Wines, Coffee, and Cocoa. Beverages. 2020;6:68. doi: 10.3390/beverages6040068. DOI
Zhang J., Xu H.-X., Zhu J.-Q., Dou Y.-X., Xian Y.-F., Lin Z.-X. Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment. Int. J. Biol. Sci. 2023;19:3029–3041. doi: 10.7150/ijbs.82401. PubMed DOI PMC
Robledinos-Antón N., Fernández-Ginés R., Manda G., Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid. Med. Cell Longev. 2019;2019:9372182. doi: 10.1155/2019/9372182. PubMed DOI PMC
Singh S., Nagalakshmi D., Sharma K.K., Ravichandiran V. Natural Antioxidants for Neuroinflammatory Disorders and Possible Involvement of Nrf2 Pathway: A Review. Heliyon. 2021;7:e06216. doi: 10.1016/j.heliyon.2021.e06216. PubMed DOI PMC
Moratilla-Rivera I., Sánchez M., Valdés-González J.A., Gómez-Serranillos M.P. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int. J. Mol. Sci. 2023;24:3748. doi: 10.3390/ijms24043748. PubMed DOI PMC
Puentes-Pardo J.D., Moreno-SanJuan S., Carazo Á., León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants. 2020;9:1214. doi: 10.3390/antiox9121214. PubMed DOI PMC
Song W., Zukor H., Lin S.-H., Hascalovici J., Liberman A., Tavitian A., Mui J., Vali H., Tong X.-K., Bhardwaj S.K., et al. Schizophrenia-Like Features in Transgenic Mice Overexpressing Human HO-1 in the Astrocytic Compartment. J. Neurosci. 2012;32:10841–10853. doi: 10.1523/JNEUROSCI.6469-11.2012. PubMed DOI PMC
Laskaris L.E., Di Biase M.A., Everall I., Chana G., Christopoulos A., Skafidas E., Cropley V.L., Pantelis C. Microglial Activation and Progressive Brain Changes in Schizophrenia. Br. J. Pharmacol. 2016;173:666–680. doi: 10.1111/bph.13364. PubMed DOI PMC
Zhuo C., Tian H., Song X., Jiang D., Chen G., Cai Z., Ping J., Cheng L., Zhou C., Chen C. Microglia and Cognitive Impairment in Schizophrenia: Translating Scientific Progress into Novel Therapeutic Interventions. Schizophrenia. 2023;9:42. doi: 10.1038/s41537-023-00370-z. PubMed DOI PMC
Li J., Wang Y., Yuan X., Kang Y., Song X. New Insight in the Cross-Talk between Microglia and Schizophrenia: From the Perspective of Neurodevelopment. Front. Psychiatry. 2023;14:1126632. doi: 10.3389/fpsyt.2023.1126632. PubMed DOI PMC
Fleiss B., Van Steenwinckel J., Bokobza C., Shearer I.K., Ross-Munro E., Gressens P. Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules. 2021;11:99. doi: 10.3390/biom11010099. PubMed DOI PMC
Schipper H.M., Song W., Tavitian A., Cressatti M. The Sinister Face of Heme Oxygenase-1 in Brain Aging and Disease. Progress. Neurobiol. 2019;172:40–70. doi: 10.1016/j.pneurobio.2018.06.008. PubMed DOI
Bereczki D., Balla J., Bereczki D. Heme Oxygenase-1: Clinical Relevance in Ischemic Stroke. Curr. Pharm. Des. 2018;24:2229–2235. doi: 10.2174/1381612824666180717101104. PubMed DOI PMC
Suntar I., Sureda A., Belwal T., Sanches Silva A., Vacca R.A., Tewari D., Sobarzo-Sánchez E., Nabavi S.F., Shirooie S., Dehpour A.R., et al. Natural Products, PGC-1 α, and Duchenne Muscular Dystrophy. Acta Pharm. Sin. B. 2020;10:734–745. doi: 10.1016/j.apsb.2020.01.001. PubMed DOI PMC
Bottari N.B., Reichert K.P., Fracasso M., Dutra A., Assmann C.E., Ulrich H., Schetinger M.R.C., Morsch V.M., Da Silva A.S. Neuroprotective Role of Resveratrol Mediated by Purinergic Signalling in Cerebral Cortex of Mice Infected by Toxoplasma Gondii. Parasitol. Res. 2020;119:2897–2905. doi: 10.1007/s00436-020-06795-0. PubMed DOI
Costa P., Gonçalves J., Baldissarelli J., Mann T., Abdalla F., Fiorenza A., Rosa M., Carvalho F., Gutierres J., Andrade C., et al. Curcumin Attenuates Memory Deficits and the Impairment of Cholinergic and Purinergic Signaling in Rats Chronically Exposed to Cadmium. Environ. Toxicol. 2015;32:70–83. doi: 10.1002/tox.22213. PubMed DOI
Zhang Y., Zhang Y., Jin X., Zhou X., Dong X., Yu W., Gao W. The Role of Astragaloside IV against Cerebral Ischemia/Reperfusion Injury: Suppression of Apoptosis via Promotion of P62-LC3-Autophagy. Molecules. 2019;24:1838. doi: 10.3390/molecules24091838. PubMed DOI PMC
Nitti M., Piras S., Brondolo L., Marinari U.M., Pronzato M.A., Furfaro A.L. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int. J. Mol. Sci. 2018;19:2260. doi: 10.3390/ijms19082260. PubMed DOI PMC
Dwyer B.E., Nishimura R.N., Lu S.Y. Differential Expression of Heme Oxygenase-1 in Cultured Cortical Neurons and Astrocytes Determined by the Aid of a New Heme Oxygenase Antibody. Response to Oxidative Stress. Brain Res. Mol. Brain Res. 1995;30:37–47. doi: 10.1016/0169-328X(94)00273-H. PubMed DOI
Cheng Q., Shen Y., Cheng Z., Shao Q., Wang C., Sun H., Zhang Q. Achyranthes Bidentata Polypeptide k Suppresses Neuroinflammation in BV2 Microglia through Nrf2-Dependent Mechanism. Ann. Transl. Med. 2019;7:575. doi: 10.21037/atm.2019.09.07. PubMed DOI PMC
Jayanti S., Vítek L., Tiribelli C., Gazzin S. The Role of Bilirubin and the Other “Yellow Players” in Neurodegenerative Diseases. Antioxidants. 2020;9:900. doi: 10.3390/antiox9090900. PubMed DOI PMC
Sahebnasagh A., Eghbali S., Saghafi F., Sureda A., Avan R. Neurohormetic Phytochemicals in the Pathogenesis of Neurodegenerative Diseases. Immun. Ageing. 2022;19:36. doi: 10.1186/s12979-022-00292-x. PubMed DOI PMC
Marino A., Battaglini M., Moles N., Ciofani G. Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases. ACS Omega. 2022;7:25974–25990. doi: 10.1021/acsomega.2c03291. PubMed DOI PMC
Huang J.-Y., Yuan Y.-H., Yan J.-Q., Wang Y.-N., Chu S.-F., Zhu C.-G., Guo Q.-L., Shi J.-G., Chen N.-H. 20C, a Bibenzyl Compound Isolated from Gastrodia Elata, Protects PC12 Cells against Rotenone-Induced Apoptosis via Activation of the Nrf2/ARE/HO-1 Signaling Pathway. Acta Pharmacol. Sin. 2016;37:731–740. doi: 10.1038/aps.2015.154. PubMed DOI PMC
Cordaro M., Modafferi S., D’Amico R., Fusco R., Genovese T., Peritore A.F., Gugliandolo E., Crupi R., Interdonato L., Di Paola D., et al. Natural Compounds Such as Hericium erinaceus and Coriolus versicolor Modulate Neuroinflammation, Oxidative Stress and Lipoxin A4 Expression in Rotenone-Induced Parkinson’s Disease in Mice. Biomedicines. 2022;10:2505. doi: 10.3390/biomedicines10102505. PubMed DOI PMC
Duan C., Wang H., Jiao D., Geng Y., Wu Q., Yan H., Li C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO-1 Pathway. Front. Pharmacol. 2022;13:889226. doi: 10.3389/fphar.2022.889226. PubMed DOI PMC
Trock B., Lanza E., Greenwald P. Dietary Fiber, Vegetables, and Colon Cancer: Critical Review and Meta-Analyses of the Epidemiologic Evidence. J. Natl. Cancer Inst. 1990;82:650–661. doi: 10.1093/jnci/82.8.650. PubMed DOI
Qaisiya M., Coda Zabetta C.D., Bellarosa C., Tiribelli C. Bilirubin Mediated Oxidative Stress Involves Antioxidant Response Activation via Nrf2 Pathway. Cell. Signal. 2014;26:512–520. doi: 10.1016/j.cellsig.2013.11.029. PubMed DOI
Kwon S.-H., Lee S.R., Park Y.J., Ra M., Lee Y., Pang C., Kim K.H. Suppression of 6-Hydroxydopamine-Induced Oxidative Stress by Hyperoside via Activation of Nrf2/HO-1 Signaling in Dopaminergic Neurons. Int. J. Mol. Sci. 2019;20:5832. doi: 10.3390/ijms20235832. PubMed DOI PMC
Zhang C., Li C., Chen S., Li Z., Jia X., Wang K., Bao J., Liang Y., Wang X., Chen M., et al. Berberine Protects against 6-OHDA-Induced Neurotoxicity in PC12 Cells and Zebrafish through Hormetic Mechanisms Involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 Pathways. Redox Biol. 2017;11:1–11. doi: 10.1016/j.redox.2016.10.019. PubMed DOI PMC
Li F., Wang X., Zhang Z., Gao P., Zhang X. Breviscapine Provides a Neuroprotective Effect after Traumatic Brain Injury by Modulating the Nrf2 Signaling Pathway. J. Cell Biochem. 2019;120:14899–14907. doi: 10.1002/jcb.28751. PubMed DOI
Lee D.-S., Cha B.-Y., Woo J.-T., Kim Y.-C., Jang J.-H. Acerogenin A from Acer nikoense Maxim Prevents Oxidative Stress-Induced Neuronal Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse Hippocampal HT22 Cell Line. Molecules. 2015;20:12545–12557. doi: 10.3390/molecules200712545. PubMed DOI PMC
Gu D.-M., Lu P.-H., Zhang K., Wang X., Sun M., Chen G.-Q., Wang Q. EGFR Mediates Astragaloside IV-Induced Nrf2 Activation to Protect Cortical Neurons against in vitro Ischemia/Reperfusion Damages. Biochem. Biophys. Res. Commun. 2015;457:391–397. doi: 10.1016/j.bbrc.2015.01.002. PubMed DOI
Li C., Yang F., Liu F., Li D., Yang T. NRF2/HO-1 Activation via ERK Pathway Involved in the Anti-Neuroinflammatory Effect of Astragaloside IV in LPS Induced Microglial Cells. Neurosci. Lett. 2018;666:104–110. doi: 10.1016/j.neulet.2017.12.039. PubMed DOI
Baluchnejadmojarad T., Kiasalari Z., Afshin-Majd S., Ghasemi Z., Roghani M. S-Allyl Cysteine Ameliorates Cognitive Deficits in Streptozotocin-Diabetic Rats via Suppression of Oxidative Stress, Inflammation, and Acetylcholinesterase. Eur. J. Pharmacol. 2017;794:69–76. doi: 10.1016/j.ejphar.2016.11.033. PubMed DOI
Feng S.-T., Wang Z.-Z., Yuan Y.-H., Sun H.-M., Chen N.-H., Zhang Y. Mangiferin: A Multipotent Natural Product Preventing Neurodegeneration in Alzheimer’s and Parkinson’s Disease Models. Pharmacol. Res. 2019;146:104336. doi: 10.1016/j.phrs.2019.104336. PubMed DOI
Siddique Y.H. Role of Luteolin in Overcoming Parkinson’s Disease. Biofactors. 2021;47:198–206. doi: 10.1002/biof.1706. PubMed DOI
Jin M., Park S.Y., Shen Q., Lai Y., Ou X., Mao Z., Lin D., Yu Y., Zhang W. Anti-Neuroinflammatory Effect of Curcumin on Pam3CSK4-Stimulated Microglial Cells. Int. J. Mol. Med. 2018;41:521–530. doi: 10.3892/ijmm.2017.3217. PubMed DOI
Dai W., Wang H., Fang J., Zhu Y., Zhou J., Wang X., Zhou Y., Zhou M. Curcumin Provides Neuroprotection in Model of Traumatic Brain Injury via the Nrf2-ARE Signaling Pathway. Brain Res. Bull. 2018;140:65–71. doi: 10.1016/j.brainresbull.2018.03.020. PubMed DOI
Dong W., Yang B., Wang L., Li B., Guo X., Zhang M., Jiang Z., Fu J., Pi J., Guan D., et al. Curcumin Plays Neuroprotective Roles against Traumatic Brain Injury Partly via Nrf2 Signaling. Toxicol. Appl. Pharmacol. 2018;346:28–36. doi: 10.1016/j.taap.2018.03.020. PubMed DOI
Yang B., Yin C., Zhou Y., Wang Q., Jiang Y., Bai Y., Qian H., Xing G., Wang S., Li F., et al. Curcumin Protects against Methylmercury-Induced Cytotoxicity in Primary Rat Astrocytes by Activating the Nrf2/ARE Pathway Independently of PKCδ. Toxicology. 2019;425:152248. doi: 10.1016/j.tox.2019.152248. PubMed DOI PMC
Liao D., Lv C., Cao L., Yao D., Wu Y., Long M., Liu N., Jiang P. Curcumin Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors via Restoring Changes in Oxidative Stress and the Activation of Nrf2 Signaling Pathway in Rats. Oxidative Med. Cell. Longev. 2020;2020:e9268083. doi: 10.1155/2020/9268083. PubMed DOI PMC
Santana-Martínez R.A., Silva-Islas C.A., Fernández-Orihuela Y.Y., Barrera-Oviedo D., Pedraza-Chaverri J., Hernández-Pando R., Maldonado P.D. The Therapeutic Effect of Curcumin in Quinolinic Acid-Induced Neurotoxicity in Rats Is Associated with BDNF, ERK1/2, Nrf2, and Antioxidant Enzymes. Antioxidants. 2019;8:388. doi: 10.3390/antiox8090388. PubMed DOI PMC
Huang T., Zhao J., Guo D., Pang H., Zhao Y., Song J. Curcumin Mitigates Axonal Injury and Neuronal Cell Apoptosis through the PERK/Nrf2 Signaling Pathway Following Diffuse Axonal Injury. NeuroReport. 2018;29:661. doi: 10.1097/WNR.0000000000001015. PubMed DOI PMC
Ikram M., Saeed K., Khan A., Muhammad T., Khan M.S., Jo M.G., Rehman S.U., Kim M.O. Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling. Nutrients. 2019;11:1082. doi: 10.3390/nu11051082. PubMed DOI PMC
Zhu H., Yan Y., Jiang Y., Meng X. Ellagic Acid and Its Anti-Aging Effects on Central Nervous System. Int. J. Mol. Sci. 2022;23:10937. doi: 10.3390/ijms231810937. PubMed DOI PMC
Park J.-Y., Sohn H.-Y., Koh Y.H., Jo C. Curcumin Activates Nrf2 through PKCδ-Mediated P62 Phosphorylation at Ser351. Sci. Rep. 2021;11:8430. doi: 10.1038/s41598-021-87225-8. PubMed DOI PMC
Li X., Wang Y., Wang C., Jing R., Mu L., Liu P., Hu Y. Antidepressant Mechanism of Kaixinsan and Its Active Compounds Based on Upregulation of Antioxidant Thioredoxin. Evid. -Based Complement. Altern. Med. 2022;2022:e7302442. doi: 10.1155/2022/7302442. PubMed DOI PMC
Wu J., Li Q., Wang X., Yu S., Li L., Wu X., Chen Y., Zhao J., Zhao Y. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. PLoS ONE. 2013;8:e59843. doi: 10.1371/journal.pone.0059843. PubMed DOI PMC
Pentón-Rol G., Marín-Prida J., McCarty M.F. C-Phycocyanin-Derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19-Induced Damage to the Nervous System. Curr. Neuropharmacol. 2021;19:2250–2275. doi: 10.2174/1570159X19666210408123807. PubMed DOI PMC
Vitek L., Hinds T.D., Stec D.E., Tiribelli C. The Physiology of Bilirubin: Health and Disease Equilibrium. Trends Mol. Med. 2023;29:315–328. doi: 10.1016/j.molmed.2023.01.007. PubMed DOI PMC
Wang L., Waltenberger B., Pferschy-Wenzig E.-M., Blunder M., Liu X., Malainer C., Blazevic T., Schwaiger S., Rollinger J.M., Heiss E.H., et al. Natural Product Agonists of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): A Review. Biochem. Pharmacol. 2014;92:73–89. doi: 10.1016/j.bcp.2014.07.018. PubMed DOI PMC
Rigano D., Sirignano C., Taglialatela-Scafati O. The Potential of Natural Products for Targeting PPARα. Acta Pharm. Sin. B. 2017;7:427–438. doi: 10.1016/j.apsb.2017.05.005. PubMed DOI PMC
Mölzer C., Wallner M., Kern C., Tosevska A., Schwarz U., Zadnikar R., Doberer D., Marculescu R., Wagner K.-H. Features of an Altered AMPK Metabolic Pathway in Gilbert’s Syndrome, and Its Role in Metabolic Health. Sci. Rep. 2016;6:30051. doi: 10.1038/srep30051. PubMed DOI PMC
Longhi M.S., Vuerich M., Kalbasi A., Kenison J.E., Yeste A., Csizmadia E., Vaughn B., Feldbrugge L., Mitsuhashi S., Wegiel B., et al. Bilirubin Suppresses Th17 Immunity in Colitis by Upregulating CD39. JCI Insight. 2017;2:e92791. doi: 10.1172/jci.insight.92791. PubMed DOI PMC
Correa-Costa M., Gallo D., Csizmadia E., Gomperts E., Lieberum J.-L., Hauser C.J., Ji X., Wang B., Câmara N.O.S., Robson S.C., et al. Carbon Monoxide Protects the Kidney through the Central Circadian Clock and CD39. Proc. Natl. Acad. Sci. USA. 2018;115:E2302–E2310. doi: 10.1073/pnas.1716747115. PubMed DOI PMC
McCarty M.F. Practical Prospects for Boosting Hepatic Production of the “pro-Longevity” Hormone FGF21. Horm. Mol. Biol. Clin. Investig. 2017;30:20150057. doi: 10.1515/hmbci-2015-0057. PubMed DOI
Hinds T.D., Stec D.E. Bilirubin, a Cardiometabolic Signaling Molecule. Hypertension. 2018;72:788–795. doi: 10.1161/HYPERTENSIONAHA.118.11130. PubMed DOI PMC
Rebollo-Hernanz M., Aguilera Y., Martín-Cabrejas M.A., Gonzalez de Mejia E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front. Nutr. 2022;9:866233. doi: 10.3389/fnut.2022.866233. PubMed DOI PMC
Rebollo-Hernanz M., Aguilera Y., Martin-Cabrejas M.A., Gonzalez de Mejia E. Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants. 2022;11:136. doi: 10.3390/antiox11010136. PubMed DOI PMC
Lanzillotta C., Zuliani I., Vasavda C., Snyder S.H., Paul B.D., Perluigi M., Di Domenico F.D., Barone E. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants. 2020;9:671. doi: 10.3390/antiox9080671. PubMed DOI PMC
Kim H.J., Joe Y., Kim S.-K., Park S.-U., Park J., Chen Y., Kim J., Ryu J., Cho G.J., Surh Y.-J., et al. Carbon Monoxide Protects against Hepatic Steatosis in Mice by Inducing Sestrin-2 via the PERK-eIF2α-ATF4 Pathway. Free Radic. Biol. Med. 2017;110:81–91. doi: 10.1016/j.freeradbiomed.2017.05.026. PubMed DOI
Huang S. Inhibition of PI3K/Akt/mTOR Signaling by Natural Products. Anticancer. Agents Med. Chem. 2013;13:967–970. doi: 10.2174/1871520611313070001. PubMed DOI PMC
Vakili O., Borji M., Saffari-Chaleshtori J., Shafiee S.M. Ameliorative Effects of Bilirubin on Cell Culture Model of Non-Alcoholic Fatty Liver Disease. Mol. Biol. Rep. 2023;50:4411–4422. doi: 10.1007/s11033-023-08339-y. PubMed DOI
Alcaín F.J., Villalba J.M. Sirtuin Activators. Expert. Opin. Ther. Pat. 2009;19:403–414. doi: 10.1517/13543770902762893. PubMed DOI
Zhang Z., Amorosa L.F., Petrova A., Coyle S., Macor M., Nair M., Lee L.Y., Haimovich B. TLR4 Counteracts BVRA Signaling in Human Leukocytes via Differential Regulation of AMPK, mTORC1 and mTORC2. Sci. Rep. 2019;9:7020. doi: 10.1038/s41598-019-43347-8. PubMed DOI PMC
Heidary Moghaddam R., Samimi Z., Asgary S., Mohammadi P., Hozeifi S., Hoseinzadeh-Chahkandak F., Xu S., Farzaei M.H. Natural AMPK Activators in Cardiovascular Disease Prevention. Front. Pharmacol. 2021;12:738420. doi: 10.3389/fphar.2021.738420. PubMed DOI PMC
Hinds T.D., Burns K.A., Hosick P.A., McBeth L., Nestor-Kalinoski A., Drummond H.A., AlAmodi A.A., Hankins M.W., Vanden Heuvel J.P., Stec D.E. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-Activated Receptor (PPAR) α. J. Biol. Chem. 2016;291:25179–25191. doi: 10.1074/jbc.M116.731703. PubMed DOI PMC
Duda P., Akula S.M., Abrams S.L., Steelman L.S., Martelli A.M., Cocco L., Ratti S., Candido S., Libra M., Montalto G., et al. Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells. 2020;9:1110. doi: 10.3390/cells9051110. PubMed DOI PMC
Song X., Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front. Neurosci. 2020;14:267. doi: 10.3389/fnins.2020.00267. PubMed DOI PMC
Gozzelino R. The Pathophysiology of Heme in the Brain. Curr. Alzheimer Res. 2016;13:174–184. doi: 10.2174/1567205012666150921103304. PubMed DOI
Schipper H.M. Brain Iron Deposition and the Free Radical-Mitochondrial Theory of Ageing. Ageing Res. Rev. 2004;3:265–301. doi: 10.1016/j.arr.2004.02.001. PubMed DOI
Ozen M., Kitase Y., Vasan V., Burkhardt C., Ramachandra S., Robinson S., Jantzie L.L. Chorioamnionitis Precipitates Perinatal Alterations of Heme-Oxygenase-1 (HO-1) Homeostasis in the Developing Rat Brain. Int. J. Mol. Sci. 2021;22:5773. doi: 10.3390/ijms22115773. PubMed DOI PMC
Kram H., Prokop G., Haller B., Gempt J., Wu Y., Schmidt-Graf F., Schlegel J., Conrad M., Liesche-Starnecker F. Glioblastoma Relapses Show Increased Markers of Vulnerability to Ferroptosis. Front. Oncol. 2022;12:841418. doi: 10.3389/fonc.2022.841418. PubMed DOI PMC
Hara E., Takahashi K., Tominaga T., Kumabe T., Kayama T., Suzuki H., Fujita H., Yoshimoto T., Shirato K., Shibahara S. Expression of Heme Oxygenase and Inducible Nitric Oxide Synthase mRNA in Human Brain Tumors. Biochem. Biophys. Res. Commun. 1996;224:153–158. doi: 10.1006/bbrc.1996.0999. PubMed DOI
Vandenbark A.A., Offner H., Matejuk S., Matejuk A. Microglia and Astrocyte Involvement in Neurodegeneration and Brain Cancer. J. Neuroinflammation. 2021;18:298. doi: 10.1186/s12974-021-02355-0. PubMed DOI PMC
Maas S.L.N., Abels E.R., Van De Haar L.L., Zhang X., Morsett L., Sil S., Guedes J., Sen P., Prabhakar S., Hickman S.E., et al. Glioblastoma Hijacks Microglial Gene Expression to Support Tumor Growth. J. Neuroinflammation. 2020;17:120. doi: 10.1186/s12974-020-01797-2. PubMed DOI PMC
Catalano M., Serpe C., Limatola C. Microglial Extracellular Vesicles as Modulators of Brain Microenvironment in Glioma. Int. J. Mol. Sci. 2022;23:13165. doi: 10.3390/ijms232113165. PubMed DOI PMC
Lanza M., Casili G., Campolo M., Paterniti I., Colarossi C., Mare M., Giuffrida R., Caffo M., Esposito E., Cuzzocrea S. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci. 2021;11:466. doi: 10.3390/brainsci11040466. PubMed DOI PMC
Haghshenas M.R., Saffarian A., Khademolhosseini A., Dehghanian A., Ghaderi A., Sotoodeh Jahromi A. Simultaneous Increase in Serum Levels of IL-37 and IL-18 Binding Protein In Low-Grade and High-Grade Brain Tumors. Asian Pac. J. Cancer Prev. 2022;23:2851–2856. doi: 10.31557/APJCP.2022.23.8.2851. PubMed DOI PMC
Stec D.E., John K., Trabbic C.J., Luniwal A., Hankins M.W., Baum J., Hinds T.D. Bilirubin Binding to PPARα Inhibits Lipid Accumulation. PLoS ONE. 2016;11:e0153427. doi: 10.1371/journal.pone.0153427. PubMed DOI PMC
Pepino M.Y., Kuda O., Samovski D., Abumrad N.A. Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism. Annu. Rev. Nutr. 2014;34:281–303. doi: 10.1146/annurev-nutr-071812-161220. PubMed DOI PMC
Lee J.H., Wada T., Febbraio M., He J., Matsubara T., Lee M.J., Gonzalez F.J., Xie W. A Novel Role for the Dioxin Receptor in Fatty Acid Metabolism and Hepatic Steatosis. Gastroenterology. 2010;139:653–663. doi: 10.1053/j.gastro.2010.03.033. PubMed DOI PMC
Phelan D., Winter G.M., Rogers W.J., Lam J.C., Denison M.S. Activation of the Ah Receptor Signal Transduction Pathway by Bilirubin and Biliverdin. Arch. Biochem. Biophys. 1998;357:155–163. doi: 10.1006/abbi.1998.0814. PubMed DOI
Gordon D.M., Blomquist T.M., Miruzzi S.A., McCullumsmith R., Stec D.E., Hinds T.D. RNA Sequencing in Human HepG2 Hepatocytes Reveals PPAR-α Mediates Transcriptome Responsiveness of Bilirubin. Physiol. Genom. 2019;51:234–240. doi: 10.1152/physiolgenomics.00028.2019. PubMed DOI PMC
Nakao A., Murase N., Ho C., Toyokawa H., Billiar T.R., Kanno S. Biliverdin Administration Prevents the Formation of Intimal Hyperplasia Induced by Vascular Injury. Circulation. 2005;112:587–591. doi: 10.1161/CIRCULATIONAHA.104.509778. PubMed DOI
Deguchi K., Hayashi T., Nagotani S., Sehara Y., Zhang H., Tsuchiya A., Ohta Y., Tomiyama K., Morimoto N., Miyazaki M., et al. Reduction of Cerebral Infarction in Rats by Biliverdin Associated with Amelioration of Oxidative Stress. Brain Res. 2008;1188:1–8. doi: 10.1016/j.brainres.2007.07.104. PubMed DOI
Zou Z.-Y., Liu J., Chang C., Li J.-J., Luo J., Jin Y., Ma Z., Wang T.-H., Shao J.-L. Biliverdin Administration Regulates the microRNA-mRNA Expressional Network Associated with Neuroprotection in Cerebral Ischemia Reperfusion Injury in Rats. Int. J. Mol. Med. 2019;43:1356–1372. doi: 10.3892/ijmm.2019.4064. PubMed DOI PMC
Triani F., Tramutola A., Di Domenico F., Sharma N., Butterfield D.A., Head E., Perluigi M., Barone E. Biliverdin Reductase-A Impairment Links Brain Insulin Resistance with Increased Aβ Production in an Animal Model of Aging: Implications for Alzheimer Disease. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2018;1864:3181–3194. doi: 10.1016/j.bbadis.2018.07.005. PubMed DOI
Barone E., Mancuso C., Di Domenico F., Sultana R., Murphy M.P., Head E., Butterfield D.A. Biliverdin Reductase-A: A Novel Drug Target for Atorvastatin in a Dog Pre-Clinical Model of Alzheimer Disease. J. Neurochem. 2012;120:135–146. doi: 10.1111/j.1471-4159.2011.07538.x. PubMed DOI
Gibbs P.E.M., Maines M.D. Biliverdin Inhibits Activation of NF-κB: Reversal of Inhibition by Human Biliverdin Reductase. Int. J. Cancer. 2007;121:2567–2574. doi: 10.1002/ijc.22978. PubMed DOI
Atukeren P., Oner S., Baran O., Kemerdere R., Eren B., Cakatay U., Tanriverdi T. Oxidant and Anti-Oxidant Status in Common Brain Tumors: Correlation to TP53 and Human Biliverdin Reductase. Clin. Neurol. Neurosurg. 2017;158:72–76. doi: 10.1016/j.clineuro.2017.05.003. PubMed DOI
Zaghloul N., Kurepa D., Bader M.Y., Nagy N., Ahmed M.N. Prophylactic Inhibition of NF-κB Expression in Microglia Leads to Attenuation of Hypoxic Ischemic Injury of the Immature Brain. J. Neuroinflammation. 2020;17:365. doi: 10.1186/s12974-020-02031-9. PubMed DOI PMC
Costa-De-Santana B.J.R., Manhães-De-Castro R., Gouveia H.J.C.B., Silva E.R., Araújo M.A.d.S., Lacerda D.C., Guzmán-Quevedo O., Torner L., Toscano A.E. Motor Deficits Are Associated with Increased Glial Cell Activation in the Hypothalamus and Cerebellum of Young Rats Subjected to Cerebral Palsy. Brain Res. 2023;1814:148447. doi: 10.1016/j.brainres.2023.148447. PubMed DOI
Mallard C., Davidson J.O., Tan S., Green C.R., Bennet L., Robertson N.J., Gunn A.J. Astrocytes and Microglia in Acute Cerebral Injury Underlying Cerebral Palsy Associated with Preterm Birth. Pediatr. Res. 2014;75:234–240. doi: 10.1038/pr.2013.188. PubMed DOI PMC
Hu C., Li H., Li J., Luo X., Hao Y. Microglia: Synaptic Modulator in Autism Spectrum Disorder. Front. Psychiatry. 2022;13:958661. doi: 10.3389/fpsyt.2022.958661. PubMed DOI PMC
Brégère C., Schwendele B., Radanovic B., Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev. Rep. 2022;18:474–522. doi: 10.1007/s12015-021-10213-y. PubMed DOI PMC
Zhang Y., Xie Y., Cheng Z., Zhang Y., Wang W., Guo B., Wu S. Mechanism of Action and Therapeutic Targeting of Microglia in Autism Spectrum Disorder. Adv. Neurol. 2022;1:167. doi: 10.36922/an.v1i3.167. DOI
Zhang F., Nance E., Alnasser Y., Kannan R., Kannan S. Microglial Migration and Interactions with Dendrimer Nanoparticles Are Altered in the Presence of Neuroinflammation. J. Neuroinflammation. 2016;13:65. doi: 10.1186/s12974-016-0529-3. PubMed DOI PMC
Davoli-Ferreira M., Thomson C.A., McCoy K.D. Microbiota and Microglia Interactions in ASD. Front. Immunol. 2021;12:676255. doi: 10.3389/fimmu.2021.676255. PubMed DOI PMC
Koyama R., Ikegaya Y. Microglia in the Pathogenesis of Autism Spectrum Disorders. Neurosci. Res. 2015;100:1–5. doi: 10.1016/j.neures.2015.06.005. PubMed DOI
Tsilioni I., Patel A.B., Pantazopoulos H., Berretta S., Conti P., Leeman S.E., Theoharides T.C. IL-37 Is Increased in Brains of Children with Autism Spectrum Disorder and Inhibits Human Microglia Stimulated by Neurotensin. Proc. Natl. Acad. Sci. USA. 2019;116:21659–21665. doi: 10.1073/pnas.1906817116. PubMed DOI PMC
Vítek L., Tiribelli C. Gilbert’s Syndrome Revisited. J. Hepatol. 2023;79:1049–1055. doi: 10.1016/j.jhep.2023.06.004. PubMed DOI
Sugatani J., Mizushima K., Osabe M., Yamakawa K., Kakizaki S., Takagi H., Mori M., Ikari A., Miwa M. Transcriptional Regulation of Human UGT1A1 Gene Expression through Distal and Proximal Promoter Motifs: Implication of Defects in the UGT1A1 Gene Promoter. Naunyn Schmiedebergs Arch. Pharmacol. 2008;377:597–605. doi: 10.1007/s00210-007-0226-y. PubMed DOI
Bock K.W., Köhle C. Contributions of the Ah Receptor to Bilirubin Homeostasis and Its Antioxidative and Atheroprotective Functions. Biol. Chem. 2010;391:645–653. doi: 10.1515/bc.2010.065. PubMed DOI
Xiao L., Zhang Z., Luo X. Roles of Xenobiotic Receptors in Vascular Pathophysiology. Circ. J. 2014;78:1520–1530. doi: 10.1253/circj.CJ-14-0343. PubMed DOI
Jayanti S., Moretti R., Tiribelli C., Gazzin S. Bilirubin Prevents the TH+ Dopaminergic Neuron Loss in a Parkinson’s Disease Model by Acting on TNF-α. Int. J. Mol. Sci. 2022;23:14276. doi: 10.3390/ijms232214276. PubMed DOI PMC
Hernandez J.P., Mota L.C., Baldwin W.S. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. Curr. Pharmacogenomics Person. Med. 2009;7:81–105. doi: 10.2174/187569209788654005. PubMed DOI PMC
Busbee P.B., Rouse M., Nagarkatti M., Nagarkatti P.S. Use of Natural AhR Ligands as Potential Therapeutic Modalities against Inflammatory Disorders. Nutr. Rev. 2013;71:353–369. doi: 10.1111/nure.12024. PubMed DOI PMC
Hong F., Pan S., Guo Y., Xu P., Zhai Y. PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules. 2019;24:2545. doi: 10.3390/molecules24142545. PubMed DOI PMC
Bragt M.C.E., Popeijus H.E. Peroxisome Proliferator-Activated Receptors and the Metabolic Syndrome. Physiol. Behav. 2008;94:187–197. doi: 10.1016/j.physbeh.2007.11.053. PubMed DOI
Duszka K., Gregor A., Guillou H., König J., Wahli W. Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells. 2020;9:1708. doi: 10.3390/cells9071708. PubMed DOI PMC
Potthoff M.J., Kliewer S.A., Mangelsdorf D.J. Endocrine Fibroblast Growth Factors 15/19 and 21: From Feast to Famine. Genes. Dev. 2012;26:312–324. doi: 10.1101/gad.184788.111. PubMed DOI PMC
Liu J., Dong H., Zhang Y., Cao M., Song L., Pan Q., Bulmer A., Adams D.B., Dong X., Wang H. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels. Sci. Rep. 2015;5:9886. doi: 10.1038/srep09886. PubMed DOI PMC
Dong H., Huang H., Yun X., Kim D., Yue Y., Wu H., Sutter A., Chavin K.D., Otterbein L.E., Adams D.B., et al. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice through Suppression of ER Stress and Chronic Inflammation. Endocrinology. 2014;155:818–828. doi: 10.1210/en.2013-1667. PubMed DOI PMC
Zhang F., Guan W., Fu Z., Zhou L., Guo W., Ma Y., Gong Y., Jiang W., Liang H., Zhou H. Relationship between Serum Indirect Bilirubin Level and Insulin Sensitivity: Results from Two Independent Cohorts of Obese Patients with Impaired Glucose Regulation and Type 2 Diabetes Mellitus in China. Int. J. Endocrinol. 2020;2020:5681296. doi: 10.1155/2020/5681296. PubMed DOI PMC
Lin L.-Y., Kuo H.-K., Hwang J.-J., Lai L.-P., Chiang F.-T., Tseng C.-D., Lin J.-L. Serum Bilirubin Is Inversely Associated with Insulin Resistance and Metabolic Syndrome among Children and Adolescents. Atherosclerosis. 2009;203:563–568. doi: 10.1016/j.atherosclerosis.2008.07.021. PubMed DOI
Shao X., Wang M., Wei X., Deng S., Fu N., Peng Q., Jiang Y., Ye L., Xie J., Lin Y. Peroxisome Proliferator-Activated Receptor-γ: Master Regulator of Adipogenesis and Obesity. Curr. Stem Cell Res. Ther. 2016;11:282–289. doi: 10.2174/1574888X10666150528144905. PubMed DOI
Wang L., Yin Y., Hou G., Kang J., Wang Q. Peroxisome Proliferator-Activated Receptor (PPARγ) Plays a Protective Role in Cigarette Smoking-Induced Inflammation via AMP-Activated Protein Kinase (AMPK) Signaling. Med. Sci. Monit. 2018;24:5168–5177. doi: 10.12659/MSM.909285. PubMed DOI PMC
He G., Sung Y.M., Digiovanni J., Fischer S.M. Thiazolidinediones Inhibit Insulin-like Growth Factor-i-Induced Activation of p70S6 Kinase and Suppress Insulin-like Growth Factor-I Tumor-Promoting Activity. Cancer Res. 2006;66:1873–1878. doi: 10.1158/0008-5472.CAN-05-3111. PubMed DOI
Hinds T.D., Hosick P.A., Chen S., Tukey R.H., Hankins M.W., Nestor-Kalinoski A., Stec D.E., Creeden J.F., Gordon D.M., Hipp J.A., et al. Mice with Hyperbilirubinemia Due to Gilbert’s Syndrome Polymorphism Are Resistant to Hepatic Steatosis by Decreased Serine 73 Phosphorylation of PPARα. Am. J. Physiol. Endocrinol. Metab. 2017;312:E244–E252. doi: 10.1152/ajpendo.00396.2016. PubMed DOI PMC
Viollet B., Guigas B., Leclerc J., Hébrard S., Lantier L., Mounier R., Andreelli F., Foretz M. AMP-Activated Protein Kinase in the Regulation of Hepatic Energy Metabolism: From Physiology to Therapeutic Perspectives. Acta Physiol. 2009;196:81–98. doi: 10.1111/j.1748-1716.2009.01970.x. PubMed DOI PMC
Lin S.-C., Hardie D.G. AMPK: Sensing Glucose as Well as Cellular Energy Status. Cell Metab. 2018;27:299–313. doi: 10.1016/j.cmet.2017.10.009. PubMed DOI
Stallone G., Infante B., Prisciandaro C., Grandaliano G. mTOR and Aging: An Old Fashioned Dress. Int. J. Mol. Sci. 2019;20:2774. doi: 10.3390/ijms20112774. PubMed DOI PMC
González A., Hall M.N., Lin S.-C., Hardie D.G. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020;31:472–492. doi: 10.1016/j.cmet.2020.01.015. PubMed DOI
Zelenka J., Dvořák A., Alán L., Zadinová M., Haluzík M., Vítek L. Hyperbilirubinemia Protects against Aging-Associated Inflammation and Metabolic Deterioration. Oxid. Med. Cell Longev. 2016;2016:6190609. doi: 10.1155/2016/6190609. PubMed DOI PMC
Liang H., Ward W.F., Shute R.J., Heesch M.W., Zak R.B., Kreiling J.L., Slivka D.R., Sun S., Li H., Chen J., et al. PGC-1alpha: A Key Regulator of Energy Metabolism. Adv. Physiol. Educ. 2006;30:145–151. doi: 10.1152/advan.00052.2006. PubMed DOI
Jiang W. Sirtuins: Novel Targets for Metabolic Disease in Drug Development. Biochem. Biophys. Res. Commun. 2008;373:341–344. doi: 10.1016/j.bbrc.2008.06.048. PubMed DOI
Cantó C., Auwerx J. PGC-1alpha, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure. Curr. Opin. Lipidol. 2009;20:98–105. doi: 10.1097/MOL.0b013e328328d0a4. PubMed DOI PMC
Shi Y.-H., Zhang X.-L., Ying P.-J., Wu Z.-Q., Lin L.-L., Chen W., Zheng G.-Q., Zhu W.-Z. Neuroprotective Effect of Astragaloside IV on Cerebral Ischemia/Reperfusion Injury Rats Through Sirt1/Mapt Pathway. Front. Pharmacol. 2021;12:639898. doi: 10.3389/fphar.2021.639898. PubMed DOI PMC
Antonioli L., Pacher P., Vizi E.S., Haskó G. CD39 and CD73 in Immunity and Inflammation. Trends Mol. Med. 2013;19:355–367. doi: 10.1016/j.molmed.2013.03.005. PubMed DOI PMC
Lee G.R., Shaefi S., Otterbein L.E. HO-1 and CD39: It Takes Two to Protect the Realm. Front. Immunol. 2019;10:1765. doi: 10.3389/fimmu.2019.01765. PubMed DOI PMC
Enjyoji K., Kotani K., Thukral C., Blumel B., Sun X., Wu Y., Imai M., Friedman D., Csizmadia E., Bleibel W., et al. Deletion of Cd39/Entpd1 Results in Hepatic Insulin Resistance. Diabetes. 2008;57:2311–2320. doi: 10.2337/db07-1265. PubMed DOI PMC
da Silva C.G., Jarzyna R., Specht A., Kaczmarek E. Extracellular Nucleotides and Adenosine Independently Activate AMP-Activated Protein Kinase in Endothelial Cells. Circ. Res. 2006;98:e39–e47. doi: 10.1161/01.RES.0000215436.92414.1d. PubMed DOI PMC
Wang P., Jia J., Zhang D. Purinergic Signalling in Liver Diseases: Pathological Functions and Therapeutic Opportunities. JHEP Rep. 2020;2:100165. doi: 10.1016/j.jhepr.2020.100165. PubMed DOI PMC
Wang S., Gao S., Zhou D., Qian X., Luan J., Lv X. The Role of the CD39-CD73-Adenosine Pathway in Liver Disease. J. Cell Physiol. 2021;236:851–862. doi: 10.1002/jcp.29932. PubMed DOI
Andersson C., Weeke P., Fosbøl E.L., Brendorp B., Køber L., Coutinho W., Sharma A.M., Van Gaal L., Finer N., James W.P.T., et al. Acute Effect of Weight Loss on Levels of Total Bilirubin in Obese, Cardiovascular High-Risk Patients: An Analysis from the Lead-in Period of the Sibutramine Cardiovascular Outcome Trial. Metabolism. 2009;58:1109–1115. doi: 10.1016/j.metabol.2009.04.003. PubMed DOI
Chen L., Duan Y., Wei H., Ning H., Bi C., Zhao Y., Qin Y., Li Y. Acetyl-CoA Carboxylase (ACC) as a Therapeutic Target for Metabolic Syndrome and Recent Developments in ACC1/2 Inhibitors. Expert. Opin. Investig. Drugs. 2019;28:917–930. doi: 10.1080/13543784.2019.1657825. PubMed DOI
Ahmad F., Woodgett J.R. Emerging Roles of GSK-3α in Pathophysiology: Emphasis on Cardio-Metabolic Disorders. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118616. doi: 10.1016/j.bbamcr.2019.118616. PubMed DOI
Beurel E., Grieco S.F., Jope R.S. Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacol. Ther. 2015;148:114–131. doi: 10.1016/j.pharmthera.2014.11.016. PubMed DOI PMC
Bösch F., Thomas M., Kogler P., Oberhuber R., Sucher R., Aigner F., Semsroth S., Wiedemann D., Yamashita K., Troppmair J., et al. Bilirubin Rinse of the Graft Ameliorates Ischemia Reperfusion Injury in Heart Transplantation. Transpl. Int. 2014;27:504–513. doi: 10.1111/tri.12278. PubMed DOI
Liu Z., Cao W. P38 Mitogen-Activated Protein Kinase: A Critical Node Linking Insulin Resistance and Cardiovascular Diseases in Type 2 Diabetes Mellitus. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:38–46. doi: 10.2174/187153009787582397. PubMed DOI
Šuk J., Jašprová J., Biedermann D., Petrásková L., Valentová K., Křen V., Muchová L., Vítek L. Isolated Silymarin Flavonoids Increase Systemic and Hepatic Bilirubin Concentrations and Lower Lipoperoxidation in Mice. Oxidative Med. Cell. Longev. 2019;2019:e6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC
Flaig T.W., Gustafson D.L., Su L.-J., Zirrolli J.A., Crighton F., Harrison G.S., Pierson A.S., Agarwal R., Glodé L.M. A Phase I and Pharmacokinetic Study of Silybin-Phytosome in Prostate Cancer Patients. Investig. New Drugs. 2007;25:139–146. doi: 10.1007/s10637-006-9019-2. PubMed DOI
Mariño Z., Crespo G., D’Amato M., Brambilla N., Giacovelli G., Rovati L., Costa J., Navasa M., Forns X. Intravenous Silibinin Monotherapy Shows Significant Antiviral Activity in HCV-Infected Patients in the Peri-Transplantation Period. J. Hepatol. 2013;58:415–420. doi: 10.1016/j.jhep.2012.09.034. PubMed DOI
Maher P. The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci. 2019;20:3056. doi: 10.3390/ijms20123056. PubMed DOI PMC
Wang T.H., Wang S.Y., Wang X.D., Jiang H.Q., Yang Y.Q., Wang Y., Cheng J.L., Zhang C.T., Liang W.W., Feng H.L. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK. Neuroscience. 2018;379:152–166. doi: 10.1016/j.neuroscience.2018.03.008. PubMed DOI
Li L., Li W.-J., Zheng X.-R., Liu Q.-L., Du Q., Lai Y.-J., Liu S.-Q. Eriodictyol Ameliorates Cognitive Dysfunction in APP/PS1 Mice by Inhibiting Ferroptosis via Vitamin D Receptor-Mediated Nrf2 Activation. Mol. Med. 2022;28:11. doi: 10.1186/s10020-022-00442-3. PubMed DOI PMC
Mhillaj E., Tarozzi A., Pruccoli L., Cuomo V., Trabace L., Mancuso C. Curcumin and Heme Oxygenase: Neuroprotection and Beyond. Int. J. Mol. Sci. 2019;20:2419. doi: 10.3390/ijms20102419. PubMed DOI PMC
Ahmadi M., Agah E., Nafissi S., Jaafari M.R., Harirchian M.H., Sarraf P., Faghihi-Kashani S., Hosseini S.J., Ghoreishi A., Aghamollaii V., et al. Safety and Efficacy of Nanocurcumin as Add-on Therapy to Riluzole in Patients with Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial. Neurotherapeutics. 2018;15:430–438. doi: 10.1007/s13311-018-0606-7. PubMed DOI PMC
Valverde-Salazar V., Ruiz-Gabarre D., García-Escudero V. Alzheimer’s Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants. 2023;12:1460. doi: 10.3390/antiox12071460. PubMed DOI PMC
Mohi-Ud-Din R., Mir R.H., Shah A.J., Sabreen S., Wani T.U., Masoodi M.H., Akkol E.K., Bhat Z.A., Khan H. Plant-Derived Natural Compounds for the Treatment of Amyotrophic Lateral Sclerosis: An Update. Curr. Neuropharmacol. 2022;20:179–193. doi: 10.2174/1570159X19666210428120514. PubMed DOI PMC
Jiang H., Tian X., Guo Y., Duan W., Bu H., Li C. Activation of Nuclear Factor Erythroid 2-Related Factor 2 Cytoprotective Signaling by Curcumin Protect Primary Spinal Cord Astrocytes against Oxidative Toxicity. Biol. Pharm. Bull. 2011;34:1194–1197. doi: 10.1248/bpb.34.1194. PubMed DOI
Wang R., Li Y.-H., Xu Y., Li Y.-B., Wu H.-L., Guo H., Zhang J.-Z., Zhang J.-J., Pan X.-Y., Li X.-J. Curcumin Produces Neuroprotective Effects via Activating Brain-Derived Neurotrophic Factor/TrkB-Dependent MAPK and PI-3K Cascades in Rodent Cortical Neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34:147–153. doi: 10.1016/j.pnpbp.2009.10.016. PubMed DOI
Chen H., Li Z., Xu J., Zhang N., Chen J., Wang G., Zhao Y. Curcumin Induces Ferroptosis in Follicular Thyroid Cancer by Upregulating HO-1 Expression. Oxidative Med. Cell. Longev. 2023;2023:e6896790. doi: 10.1155/2023/6896790. PubMed DOI PMC
Meng P., Yang R., Jiang F., Guo J., Lu X., Yang T., He Q. Molecular Mechanism of Astragaloside IV in Improving Endothelial Dysfunction of Cardiovascular Diseases Mediated by Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:e1481236. doi: 10.1155/2021/1481236. PubMed DOI PMC
Huang X.-P., Qiu Y.-Y., Wang B., Ding H., Tang Y.-H., Zeng R., Deng C.-Q. Effects of Astragaloside IV Combined with the Active Components of Panax Notoginseng on Oxidative Stress Injury and Nuclear Factor-Erythroid 2-Related Factor 2/Heme Oxygenase-1 Signaling Pathway after Cerebral Ischemia-Reperfusion in Mice. Pharmacogn. Mag. 2014;10:402–409. doi: 10.4103/0973-1296.141765. PubMed DOI PMC
Kontush A., Mann U., Arlt S., Ujeyl A., Lührs C., Müller-Thomsen T., Beisiegel U. Influence of Vitamin E and C Supplementation on Lipoprotein Oxidation in Patients with Alzheimer’s Disease. Free Radic. Biol. Med. 2001;31:345–354. doi: 10.1016/S0891-5849(01)00595-0. PubMed DOI
Mudgal R., Sharma S., Singh S., Ravichandiran V. The Neuroprotective Effect of Ascorbic Acid against Imidacloprid-Induced Neurotoxicity and the Role of HO-1 in Mice. Front. Neurol. 2023;14:1130575. doi: 10.3389/fneur.2023.1130575. PubMed DOI PMC
Zhang N., Zhao W., Hu Z.-J., Ge S.-M., Huo Y., Liu L.-X., Gao B.-L. Protective Effects and Mechanisms of High-Dose Vitamin C on Sepsis-Associated Cognitive Impairment in Rats. Sci. Rep. 2021;11:14511. doi: 10.1038/s41598-021-93861-x. PubMed DOI PMC
Littlejohns T.J., Henley W.E., Lang I.A., Annweiler C., Beauchet O., Chaves P.H.M., Fried L., Kestenbaum B.R., Kuller L.H., Langa K.M., et al. Vitamin D and the Risk of Dementia and Alzheimer Disease. Neurology. 2014;83:920–928. doi: 10.1212/WNL.0000000000000755. PubMed DOI PMC
Saad El-Din S., Rashed L., Medhat E., Emad Aboulhoda B., Desoky Badawy A., Mohammed ShamsEldeen A., Abdelgwad M. Active Form of Vitamin D Analogue Mitigates Neurodegenerative Changes in Alzheimer’s Disease in Rats by Targeting Keap1/Nrf2 and MAPK-38p/ERK Signaling Pathways. Steroids. 2020;156:108586. doi: 10.1016/j.steroids.2020.108586. PubMed DOI
Liu S., Li G., Tang H., Pan R., Wang H., Jin F., Yan X., Xing Y., Chen G., Fu Y., et al. Madecassoside Ameliorates Lipopolysaccharide-Induced Neurotoxicity in Rats by Activating the Nrf2-HO-1 Pathway. Neurosci. Lett. 2019;709:134386. doi: 10.1016/j.neulet.2019.134386. PubMed DOI
Arab H., Mahjoub S., Hajian-Tilaki K., Moghadasi M. The Effect of Green Tea Consumption on Oxidative Stress Markers and Cognitive Function in Patients with Alzheimer’s Disease: A Prospective Intervention Study. Casp. J. Intern. Med. 2016;7:188–194. PubMed PMC
Na H.-K., Kim E.-H., Jung J.-H., Lee H.-H., Hyun J.-W., Surh Y.-J. (−)-Epigallocatechin Gallate Induces Nrf2-Mediated Antioxidant Enzyme Expression via Activation of PI3K and ERK in Human Mammary Epithelial Cells. Arch. Biochem. Biophys. 2008;476:171–177. doi: 10.1016/j.abb.2008.04.003. PubMed DOI
Zhou H., Mao Z., Zhang X., Li R., Yin J., Xu Y. Neuroprotective Effect of Mangiferin against Parkinson’s Disease through G-Protein-Coupled Receptor-Interacting Protein 1 (GIT1)-Mediated Antioxidant Defense. ACS Chem. Neurosci. 2023;14:1379–1387. doi: 10.1021/acschemneuro.2c00458. PubMed DOI
Gold-Smith F., Fernandez A., Bishop K. Mangiferin and Cancer: Mechanisms of Action. Nutrients. 2016;8:396. doi: 10.3390/nu8070396. PubMed DOI PMC
Dillon J.C., Phuc A.P., Dubacq J.P. Nutritional Value of the Alga Spirulina. World Rev. Nutr. Diet. 1995;77:32–46. doi: 10.1159/000424464. PubMed DOI
Gershwin M.E., Amha B., editors. Spirulina in Human Nutrition and Health. CRC Press; Boca Raton, FL, USA: 2007. DOI
Padyana A.K., Bhat V.B., Madyastha K.M., Rajashankar K.R., Ramakumar S. Crystal Structure of a Light-Harvesting Protein C-Phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 2001;282:893–898. doi: 10.1006/bbrc.2001.4663. PubMed DOI
Terry M.J., Maines M.D., Lagarias J.C. Inactivation of Phytochrome- and Phycobiliprotein-Chromophore Precursors by Rat Liver Biliverdin Reductase. J. Biol. Chem. 1993;268:26099–26106. doi: 10.1016/S0021-9258(19)74286-0. PubMed DOI
McCarty M.F. Clinical Potential of Spirulina as a Source of Phycocyanobilin. J. Med. Food. 2007;10:566–570. doi: 10.1089/jmf.2007.621. PubMed DOI
McCarty M.F., Hendler S.S., Rorvik D.M., Inoguchi T. Compositions for Inhibiting NADPH Oxidase Activity. US20100172971A1. [(accessed on 15 November 2023)];2010 July 8; Available online: https://patents.google.com/patent/US20100172971A1/en.
Li Y. The Bioactivities of Phycocyanobilin from Spirulina. J. Immunol. Res. 2022;2022:e4008991. doi: 10.1155/2022/4008991. PubMed DOI PMC
Strasky Z., Zemankova L., Nemeckova I., Rathouska J., Wong R.J., Muchova L., Subhanova I., Vanikova J., Vanova K., Vitek L., et al. Spirulina platensis and Phycocyanobilin Activate Atheroprotective Heme Oxygenase-1: A Possible Implication for Atherogenesis. Food Funct. 2013;4:1586–1594. doi: 10.1039/c3fo60230c. PubMed DOI
Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty M.F., Fujii M., Ikeda N., Kobayashi K., Sonoda N., Takayanagi R. Phycocyanin and Phycocyanobilin from Spirulina platensis Protect against Diabetic Nephropathy by Inhibiting Oxidative Stress. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2013;304:R110–R120. doi: 10.1152/ajpregu.00648.2011. PubMed DOI
El-Sayed E.-S.M., Hikal M.S., Abo El-Khair B.E., El-Ghobashy R.E., El-Assar A.M. Hypoglycemic and Hypolipidemic Effects of Spirulina platensis, Phycocyanin, Phycocyanopeptide and Phycocyanobilin on Male Diabetic Rats. Arab. Univ. J. Agric. Sci. 2018;26((Suppl. S2)):1121–1134. doi: 10.21608/ajs.2018.28365. DOI
Koníčková R., Vaňková K., Vaníková J., Vánová K., Muchová L., Subhanová I., Zadinová M., Zelenka J., Dvořák A., Kolář M., et al. Anti-Cancer Effects of Blue-Green Alga Spirulina platensis, a Natural Source of Bilirubin-like Tetrapyrrolic Compounds. Ann. Hepatol. 2014;13:273–283. doi: 10.1016/S1665-2681(19)30891-9. PubMed DOI
Hussein N., Ebied S., Saleh M. Evaluation of the Anticancer Effect of Violacein, Phycocyanin and Phycocyanobilin on Apoptotic Genes Expression and Glycan Profiles in Breast Cancer Cells. Int. J. Cancer Biomed. Res. 2021;5:81–97. doi: 10.21608/jcbr.2021.46268.1079. DOI
Liu J., Zhang Q.-Y., Yu L.-M., Liu B., Li M.-Y., Zhu R.-Z. Phycocyanobilin Accelerates Liver Regeneration and Reduces Mortality Rate in Carbon Tetrachloride-Induced Liver Injury Mice. World J. Gastroenterol. 2015;21:5465–5472. doi: 10.3748/wjg.v21.i18.5465. PubMed DOI PMC
Trotta T., Porro C., Cianciulli A., Panaro M.A. Beneficial Effects of Spirulina Consumption on Brain Health. Nutrients. 2022;14:676. doi: 10.3390/nu14030676. PubMed DOI PMC
Cervantes-Llanos M., Lagumersindez-Denis N., Marín-Prida J., Pavón-Fuentes N., Falcon-Cama V., Piniella-Matamoros B., Camacho-Rodríguez H., Fernández-Massó J.R., Valenzuela-Silva C., Raíces-Cruz I., et al. Beneficial Effects of Oral Administration of C-Phycocyanin and Phycocyanobilin in Rodent Models of Experimental Autoimmune Encephalomyelitis. Life Sci. 2018;194:130–138. doi: 10.1016/j.lfs.2017.12.032. PubMed DOI
Pavón-Fuentes N., Marín-Prida J., Llópiz-Arzuaga A., Falcón-Cama V., Campos-Mojena R., Cervantes-Llanos M., Piniella-Matamoros B., Pentón-Arias E., Pentón-Rol G. Phycocyanobilin Reduces Brain Injury after Endothelin-1-Induced Focal Cerebral Ischaemia. Clin. Exp. Pharmacol. Physiol. 2020;47:383–392. doi: 10.1111/1440-1681.13214. PubMed DOI
Pentón-Rol G., Marín-Prida J., Falcón-Cama V. C-Phycocyanin and Phycocyanobilin as Remyelination Therapies for Enhancing Recovery in Multiple Sclerosis and Ischemic Stroke: A Preclinical Perspective. Behav. Sci. 2018;8:15. doi: 10.3390/bs8010015. PubMed DOI PMC
McCarty M.F., Barroso-Aranda J., Contreras F. Oral Phycocyanobilin May Diminish the Pathogenicity of Activated Brain Microglia in Neurodegenerative Disorders. Med. Hypotheses. 2010;74:601–605. doi: 10.1016/j.mehy.2008.09.061. PubMed DOI
Chamorro G., Pérez-Albiter M., Serrano-García N., Mares-Sámano J.J., Rojas P. Spirulina Maxima Pretreatment Partially Protects against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Neurotoxicity. Nutr. Neurosci. 2006;9:207–212. doi: 10.1080/10284150600929748. PubMed DOI
Marín-Prida J., Pavón-Fuentes N., Lagumersindez-Denis N., Camacho-Rodríguez H., García-Soca A.M., Sarduy-Chávez R.d.l.C., Vieira L.M., Carvalho-Tavares J., Falcón-Cama V., Fernández-Massó J.R., et al. Anti-Inflammatory Mechanisms and Pharmacological Actions of Phycocyanobilin in a Mouse Model of Experimental Autoimmune Encephalomyelitis: A Therapeutic Promise for Multiple Sclerosis. Front. Immunol. 2022;13:1036200. doi: 10.3389/fimmu.2022.1036200. PubMed DOI PMC
Gardón D.P., Cervantes-Llanos M., Matamoros B.P., Rodríguez H.C., Tan C.-Y., Marín-Prida J., Falcón-Cama V., Pavón-Fuentes N., Lemus J.G., Ruiz L.d.l.C.B., et al. Positive Effects of Phycocyanobilin on Gene Expression in Glutamate-Induced Excitotoxicity in SH-SY5Y Cells and Animal Models of Multiple Sclerosis and Cerebral Ischemia. Heliyon. 2022;8:e09769. doi: 10.1016/j.heliyon.2022.e09769. PubMed DOI PMC
Pendyala B., Patras A., Dash C. Phycobilins as Potent Food Bioactive Broad-Spectrum Inhibitors Against Proteases of SARS-CoV-2 and Other Coronaviruses: A Preliminary Study. Front. Microbiol. 2021;12:645713. doi: 10.3389/fmicb.2021.645713. PubMed DOI PMC
Chen Y.-H., Chang G.-K., Kuo S.-M., Huang S.-Y., Hu I.-C., Lo Y.-L., Shih S.-R. Well-Tolerated Spirulina Extract Inhibits Influenza Virus Replication and Reduces Virus-Induced Mortality. Sci. Rep. 2016;6:24253. doi: 10.1038/srep24253. PubMed DOI PMC
Teas J., Hebert J.R., Fitton J.H., Zimba P.V. Algae—A Poor Man’s HAART? Med. Hypotheses. 2004;62:507–510. doi: 10.1016/j.mehy.2003.10.005. PubMed DOI
Ngo-Matip M.-E., Pieme C.A., Azabji-Kenfack M., Moukette B.M., Korosky E., Stefanini P., Ngogang J.Y., Mbofung C.M. Impact of Daily Supplementation of Spirulina platensis on the Immune System of Naïve HIV-1 Patients in Cameroon: A 12-Months Single Blind, Randomized, Multicenter Trial. Nutr. J. 2015;14:70. doi: 10.1186/s12937-015-0058-4. PubMed DOI PMC
Teas J., Irhimeh M.R. Dietary Algae and HIV/AIDS: Proof of Concept Clinical Data. J. Appl. Phycol. 2012;24:575–582. doi: 10.1007/s10811-011-9766-0. PubMed DOI PMC
Nihal B., Gupta N.V., Gowda D.V., Manohar M. Formulation and Development of Topical Anti Acne Formulation of Spirulina Extract. Int. J. Appl. Pharm. 2018;10:229–233. doi: 10.22159/ijap.2018v10i6.26334. DOI
Mapoung S., Arjsri P., Thippraphan P., Semmarath W., Yodkeeree S., Chiewchanvit S., Piyamongkol W., Limtrakul P. Photochemoprotective Effects of Spirulina platensis Extract against UVB Irradiated Human Skin Fibroblasts. South. Afr. J. Bot. 2020;130:198–207. doi: 10.1016/j.sajb.2020.01.001. DOI
Ragusa I., Nardone G.N., Zanatta S., Bertin W., Amadio E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics. 2021;8:7. doi: 10.3390/cosmetics8010007. DOI
Reportlinker Global Market Study on Spirulina: Powder Product form Segment Anticipated to Dominate the Global Market in Terms of both Value and Volume during 2016–2026. [(accessed on 15 November 2023)]. Available online: https://www.prnewswire.com/news-releases/global-market-study-on-spirulina-powder-product-form-segment-anticipated-to-dominate-the-global-market-in-terms-of-both-value-and-volume-during-2016---2026-300443004.html.
Qin X. Bilirubin Would Be the Indispensable Component for Some of the Most Important Therapeutic Effects of Calculus Bovis (Niuhuang) Chin. Med. J. 2008;121:480. doi: 10.1097/00029330-200803010-00024. PubMed DOI
Yu Z.-J., Xu Y., Peng W., Liu Y.-J., Zhang J.-M., Li J.-S., Sun T., Wang P. Calculus Bovis: A Review of the Traditional Usages, Origin, Chemistry, Pharmacological Activities and Toxicology. J. Ethnopharmacol. 2020;254:112649. doi: 10.1016/j.jep.2020.112649. PubMed DOI
Zhang S., Jiang X., Wang Y., Lin K., Zhang Z., Zhang Z., Zhu P., Ng M.L., Qu S., Sze S.C.W., et al. Protective Effect of An-Gong-Niu-Huang Wan Pre-Treatment Against Experimental Cerebral Ischemia Injury via Regulating GSK-3β/HO-1 Pathway. Front. Pharmacol. 2021;12:640297. doi: 10.3389/fphar.2021.640297. PubMed DOI PMC
Banjerdpongchai R., Wudtiwai B., Khawon P. Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin. Asian Pac. J. Cancer Prev. 2016;17:3289–3294. PubMed
Martins T., Barros A.N., Rosa E., Antunes L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules. 2023;28:5344. doi: 10.3390/molecules28145344. PubMed DOI PMC
Mishra V.K., Bachheti R., Husen A. Chlorophyll: Structure, Production and Medicinal Uses. Nova Biomedical; Waltham, MA, USA: 2011. Medicinal Uses of Chlorophyll: A Critical Overview; pp. 177–196.
Ferruzzi M.G., Blakeslee J. Digestion, Absorption, and Cancer Preventative Activity of Dietary Chlorophyll Derivatives. Nutr. Res. 2007;27:1–12. doi: 10.1016/j.nutres.2006.12.003. DOI
Vaňková K., Marková I., Jašprová J., Dvořák A., Subhanová I., Zelenka J., Novosádová I., Rasl J., Vomastek T., Sobotka R., et al. Chlorophyll-Mediated Changes in the Redox Status of Pancreatic Cancer Cells Are Associated with Its Anticancer Effects. Oxid. Med. Cell Longev. 2018;2018:4069167. doi: 10.1155/2018/4069167. PubMed DOI PMC
Pittala V., Vanella L., Salerno L., Di Giacomo C., Acquaviva R., Raffaele M., Romeo G., Modica M.N., Prezzavento O., Sorrenti V. Novel Caffeic Acid Phenethyl Ester (Cape) Analogues as Inducers of Heme Oxygenase-1. Curr. Pharm. Des. 2017;23:2657–2664. doi: 10.2174/1381612823666170210151411. PubMed DOI
Šmíd V., Šuk J., Kachamakova-Trojanowska N., Jašprová J., Valášková P., Józkowicz A., Dulak J., Šmíd F., Vítek L., Muchová L. Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition. Oxid. Med. Cell Longev. 2018;2018:3845027. doi: 10.1155/2018/3845027. PubMed DOI PMC
Moon S., Kim C.-H., Park J., Kim M., Jeon H.S., Kim Y.-M., Choi Y.K. Induction of BVR-A Expression by Korean Red Ginseng in Murine Hippocampal Astrocytes: Role of Bilirubin in Mitochondrial Function via the LKB1–SIRT1–ERRα Axis. Antioxidants. 2022;11:1742. doi: 10.3390/antiox11091742. PubMed DOI PMC
Wu L.-X., Guo C.-X., Qu Q., Yu J., Chen W.-Q., Wang G., Fan L., Li Q., Zhang W., Zhou H.-H. Effects of Natural Products on the Function of Human Organic Anion Transporting Polypeptide 1B1. Xenobiotica. 2012;42:339–348. doi: 10.3109/00498254.2011.623796. PubMed DOI
Vítek L., Carey M.C. Enterohepatic Cycling of Bilirubin as a Cause of “black” Pigment Gallstones in Adult Life. Eur. J. Clin. Investig. 2003;33:799–810. doi: 10.1046/j.1365-2362.2003.01214.x. PubMed DOI
Vítek L., Zelenka J., Zadinová M., Malina J. The Impact of Intestinal Microflora on Serum Bilirubin Levels. J. Hepatol. 2005;42:238–243. doi: 10.1016/j.jhep.2004.10.012. PubMed DOI
Hall B., Levy S., Dufault-Thompson K., Ndjite G.M., Weiss A., Braccia D., Jenkins C., Yang Y., Arp G., Abeysinghe S., et al. Discovery of the Gut Microbial Enzyme Responsible for Bilirubin Reduction to Urobilinogen. bioRxiv. 2023:Preprint. doi: 10.1101/2023.02.07.527579. DOI