Chlorophyll-Mediated Changes in the Redox Status of Pancreatic Cancer Cells Are Associated with Its Anticancer Effects

. 2018 ; 2018 () : 4069167. [epub] 20180702

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30057678

Nutritional factors which exhibit antioxidant properties, such as those contained in green plants, may be protective against cancer. Chlorophyll and other tetrapyrrolic compounds which are structurally related to heme and bilirubin (a bile pigment with antioxidant activity) are among those molecules which are purportedly responsible for these effects. Therefore, the aim of our study was to assess both the antiproliferative and antioxidative effects of chlorophylls (chlorophyll a/b, chlorophyllin, and pheophytin a) in experimental pancreatic cancer. Chlorophylls have been shown to produce antiproliferative effects in pancreatic cancer cell lines (PaTu-8902, MiaPaCa-2, and BxPC-3) in a dose-dependent manner (10-125 μmol/L). Chlorophylls also have been observed to inhibit heme oxygenase (HMOX) mRNA expression and HMOX enzymatic activity, substantially affecting the redox environment of pancreatic cancer cells, including the production of mitochondrial/whole-cell reactive oxygen species, and alter the ratio of reduced-to-oxidized glutathione. Importantly, chlorophyll-mediated suppression of pancreatic cancer cell viability has been replicated in in vivo experiments, where the administration of chlorophyll a resulted in the significant reduction of pancreatic tumor size in xenotransplanted nude mice. In conclusion, this data suggests that chlorophyll-mediated changes on the redox status of pancreatic cancer cells might be responsible for their antiproliferative and anticancer effects and thus contribute to the decreased incidence of cancer among individuals who consume green vegetables.

Zobrazit více v PubMed

Donaldson M. S. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutrition Journal. 2004;3(1):p. 19. doi: 10.1186/1475-2891-3-19. PubMed DOI PMC

Trock B., Lanza E., Greenwald P. Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. JNCI: Journal of the National Cancer Institute. 1990;82(8):650–661. doi: 10.1093/jnci/82.8.650. PubMed DOI

Vitek L., Ostrow J. D. Bilirubin chemistry and metabolism; harmful and protective aspects. Current Pharmaceutical Design. 2009;15(25):2869–2883. doi: 10.2174/138161209789058237. PubMed DOI

Ferruzzi M. G., Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research. 2007;27(1):1–12. doi: 10.1016/j.nutres.2006.12.003. DOI

Krautler B. Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit. Photochemical & Photobiological Sciences. 2008;7(10):1114–1120. doi: 10.1039/b802356p. PubMed DOI PMC

Ma L., Dolphin D. The metabolites of dietary chlorophylls. Phytochemistry. 1999;50(2):195–202. doi: 10.1016/S0031-9422(98)00584-6. DOI

Negishi T., Rai H., Hayatsu H. Antigenotoxic activity of natural chlorophylls. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1997;376(1-2):97–100. doi: 10.1016/S0027-5107(97)00030-4. PubMed DOI

Dashwood R., Negishi T., Hayatsu H., Breinholt V., Hendricks J., Bailey G. Chemopreventive properties of chlorophylls towards aflatoxin B1: a review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1998;399(2):245–253. doi: 10.1016/S0027-5107(97)00259-5. PubMed DOI

Egner P. A., Wang J. B., Zhu Y. R., et al. Chlorophyllin intervention reduces aflatoxin–DNA adducts in individuals at high risk for liver cancer. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(25):14601–14606. doi: 10.1073/pnas.251536898. PubMed DOI PMC

Balder H. F., Vogel J., Jansen M. C., et al. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiology, Biomarkers & Prevention. 2006;15(4):717–725. doi: 10.1158/1055-9965.EPI-05-0772. PubMed DOI

de Vogel J., Jonker-Termont D. S., van Lieshout E. M., Katan M. B., van der Meer R. Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon. Carcinogenesis. 2005;26(2):387–393. doi: 10.1093/carcin/bgh331. PubMed DOI

Zucker S. D., Horn P. S., Sherman K. E. Serum bilirubin levels in the U.S. population: gender effect and inverse correlation with colorectal cancer. Hepatology. 2004;40(4):827–835. doi: 10.1002/hep.1840400412. PubMed DOI

Ryter S. W., Alam J., Choi A. M. K. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews. 2006;86(2):583–650. doi: 10.1152/physrev.00011.2005. PubMed DOI

Shekhawat G. S., Verma K. Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. Journal of Experimental Botany. 2010;61(9):2255–2270. doi: 10.1093/jxb/erq074. PubMed DOI

Was H., Dulak J., Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Current Drug Targets. 2010;11(12):1551–1570. doi: 10.2174/1389450111009011551. PubMed DOI

Exner M., Minar E., Wagner O., Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radical Biology & Medicine. 2004;37(8):1097–1104. doi: 10.1016/j.freeradbiomed.2004.07.008. PubMed DOI

Berberat P. O., Dambrauskas Z., Gulbinas A., et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research. 2005;11(10):3790–3798. doi: 10.1158/1078-0432.CCR-04-2159. PubMed DOI

Gibbs P. E. M., Miralem T., Maines M. D. Biliverdin reductase: a target for cancer therapy? Frontiers in Pharmacology. 2015;6:p. 119. doi: 10.3389/fphar.2015.00119. PubMed DOI PMC

Kubickova K. N., Subhanova I., Konickova R., et al. Predictive role BLVRA mRNA expression in hepatocellular cancer. Annals of Hepatology. 2016;15(6):881–887. PubMed

Zhang M., Xin W., Yi Z., et al. Human biliverdin reductase regulates the molecular mechanism underlying cancer development. Journal of Cellular Biochemistry. 2018;119(2):1337–1345. doi: 10.1002/jcb.26285. PubMed DOI

Vreman H. J., Stevenson D. K. Heme oxygenase activity as measured by carbon monoxide production. Analytical Biochemistry. 1988;168(1):31–38. doi: 10.1016/0003-2697(88)90006-1. PubMed DOI

Subhanova I., Muchova L., Lenicek M., et al. Expression of biliverdin reductase A in peripheral blood leukocytes is associated with treatment response in HCV-infected patients. PLoS One. 2013;8(3, article e57555) doi: 10.1371/journal.pone.0057555. PubMed DOI PMC

Votyakova T. V., Reynolds I. J. ΔΨm-dependent and -independent production of reactive oxygen species by rat brain mitochondria. Journal of Neurochemistry. 2001;79(2):266–277. doi: 10.1046/j.1471-4159.2001.00548.x. PubMed DOI

Iuliano L., Piccheri C., Coppola I., Pratico D., Micheletta F., Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochimica et Biophysica Acta (BBA) - General Subjects. 2000;1474(2):177–182. doi: 10.1016/S0304-4165(00)00017-9. PubMed DOI

Smolkova K., Dvorak A., Zelenka J., Vitek L., Jezek P. Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. The International Journal of Biochemistry & Cell Biology. 2015;65:125–133. doi: 10.1016/j.biocel.2015.05.012. PubMed DOI

McKeage M. J., Kelland L. R., Boxall F. E., et al. Schedule dependency of orally administered bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) in vivo. Cancer Research. 1994;54(15):4118–4122. PubMed

Altman B. J., Stine Z. E., Dang C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews Cancer. 2016;16(10):619–634. doi: 10.1038/nrc.2016.71. PubMed DOI PMC

Chiu L. C., Kong C. K., Ooi V. E. The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and cyclin D1 depletion. International Journal of Molecular Medicine. 2005;16(4):735–740. PubMed

Siddavaram N., Ramamurthi V. P., Veeran V., Mishra R. Chlorophyllin abrogates canonical Wnt/β-catenin signaling and angiogenesis to inhibit the development of DMBA-induced hamster cheek pouch carcinomas. Cellular Oncology. 2012;35(5):385–395. doi: 10.1007/s13402-012-0099-z. PubMed DOI

Carpenter E. B. Clinical experiences with chlorophyll preparations with particular reference to chronic osteomyelitis and chronic ulcers. The American Journal of Surgery. 1949;77(2):167–171. doi: 10.1016/0002-9610(49)90419-5. PubMed DOI

Mishra V. K., Bacheti R. K., Husen A. Medicinal uses of chlorophyll: a critical overview. In: Le H., Salcedo E., editors. Chlorophyll Structure, Production and Medicinal Use. New York, NY, USA: Nova Science Publishers, Inc.; 2012. pp. 177–196.

Gandul-Rojas B., Gallardo-Guerrero L., Minguez-Mosquera M. I. Influence of the chlorophyll pigment structure on its transfer from an oily food matrix to intestinal epithelium cells. Journal of Agricultural and Food Chemistry. 2009;57(12):5306–5314. doi: 10.1021/jf900426h. PubMed DOI

Chernomorsky S., Segelman A., Poretz R. D. Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratogenesis, Carcinogenesis, and Mutagenesis. 1999;19(5):313–322. doi: 10.1002/(SICI)1520-6866(1999)19:5<313::AID-TCM1>3.0.CO;2-G. PubMed DOI

Nakatani Y., Ourisson G., Beck J. Chemistry and biochemistry of Chinese drugs. VII. : cytostatic pheophytins from silkworm excreta, and derived photocytotoxic pheophorbides. Chemical and Pharmaceutical Bulletin. 1981;29(8):2261–2269. doi: 10.1248/cpb.29.2261. PubMed DOI

Ferruzzi M. G., Bohm V., Courtney P. D., Schwartz S. J. Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. Journal of Food Science. 2002;67(7):2589–2595. doi: 10.1111/j.1365-2621.2002.tb08782.x. DOI

McCarty M. F. The chlorophyll metabolite phytanic acid is a natural rexinoid – potential for treatment and prevention of diabetes. Medical Hypotheses. 2001;56(2):217–219. doi: 10.1054/mehy.2000.1153. PubMed DOI

Nagini S., Palitti F., Natarajan A. T. Chemopreventive potential of chlorophyllin: a review of the mechanisms of action and molecular targets. Nutrition and Cancer. 2015;67(2):203–211. doi: 10.1080/01635581.2015.990573. PubMed DOI

Kamat J. P., Boloor K. K., Devasagayam T. P. A. Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2000;1487(2-3):113–127. doi: 10.1016/S1388-1981(00)00088-3. PubMed DOI

Koníčková R., Vaňková K., Vaníková J., et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology. 2014;13(2):273–283. PubMed

Zelenka J., Dvorak A., Alan L., Zadinova M., Haluzik M., Vitek L. Hyperbilirubinemia protects against aging-associated inflammation and metabolic deterioration. Oxidative Medicine and Cellular Longevity. 2016;2016:10. doi: 10.1155/2016/6190609.6190609 PubMed DOI PMC

Sabharwal S. S., Schumacker P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nature Reviews Cancer. 2014;14(11):709–721. doi: 10.1038/nrc3803. PubMed DOI PMC

Weinberg F., Hamanaka R., Wheaton W. W., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(19):8788–8793. doi: 10.1073/pnas.1003428107. PubMed DOI PMC

Gorrini C., Harris I. S., Mak T. W. Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery. 2013;12(12):931–947. doi: 10.1038/nrd4002. PubMed DOI

Sayin V. I., Ibrahim M. X., Larsson E., Nilsson J. A., Lindahl P., Bergo M. O. Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine. 2014;6(221, article 221ra15) doi: 10.1126/scitranslmed.3007653. PubMed DOI

Piskounova E., Agathocleous M., Murphy M. M., et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186–191. doi: 10.1038/nature15726. PubMed DOI PMC

Zhang Y., Guan L., Wang X., Wen T., Xing J., Zhao J. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radical Research. 2008;42(4):362–371. doi: 10.1080/10715760801993076. PubMed DOI

Zhu L., Yang Z., Zeng X., et al. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Molecular Biology. 2017;93(6):579–592. doi: 10.1007/s11103-017-0583-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...