Biomimetic Tumour Model Systems for Pancreatic Ductal Adenocarcinoma in Relation to Photodynamic Therapy
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
SGL027/1011
Academy of Medical Sciences - United Kingdom
PubMed
40650165
PubMed Central
PMC12250287
DOI
10.3390/ijms26136388
PII: ijms26136388
Knihovny.cz E-resources
- Keywords
- 2-D and 3-D cell culture, cancer models, cell death, cell viability assays, chemotherapy, in vitro analysis, pancreas, patient-derived xenografts, photodynamic therapy, preclinical testing, spheroids and organoids,
- MeSH
- Biomimetics * methods MeSH
- Carcinoma, Pancreatic Ductal * drug therapy pathology MeSH
- Photochemotherapy * methods MeSH
- Photosensitizing Agents therapeutic use MeSH
- Humans MeSH
- Tumor Microenvironment drug effects MeSH
- Pancreatic Neoplasms * drug therapy pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Photosensitizing Agents MeSH
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is associated with poor prognosis. Despite years of research and improvements in chemotherapy regimens, the 5-year survival rate of PDAC remains dismal. Therapies for PDAC often face resistance owing in large part to an extensive desmoplastic stromal matrix. Modelling PDAC ex vivo to investigate novel therapeutics is challenging due to the complex tumour microenvironment and its heterogeneity in native tumours. Development of novel therapies is needed to improve PDAC survival rates, for which disease models that recapitulate the tumour biology are expected to bear utility. This review focuses on the existing preclinical models for human PDAC and discusses advancements in tissue remodelling to guide translational PDAC research. Further emphasis is placed on photodynamic therapy (PDT) due to the ability of this treatment modality to not only directly kill cancer cells by minimally invasive means, but also to perturb the tumour microenvironment and elicit a post-therapeutic anti-tumour immune response. Accordingly, more complex preclinical models that feature multiple biologically relevant PDAC components are needed to develop translatable PDT regimens in a preclinical setting.
See more in PubMed
Peng J., Sun B.F., Chen C.Y., Zhou J.Y., Chen Y.S., Chen H., Liu L., Huang D., Jiang J., Cui G.S., et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–738. doi: 10.1038/s41422-019-0195-y. PubMed DOI PMC
Buscail L., Bournet B., Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020;17:153–168. doi: 10.1038/s41575-019-0245-4. PubMed DOI
Conroy T., Hammel P., Hebbar M., Ben Abdelghani M., Wei A.C., Raoul J.L., Chone L., Francois E., Artru P., Biagi J.J., et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018;379:2395–2406. doi: 10.1056/NEJMoa1809775. PubMed DOI
Strobel O., Neoptolemos J., Jager D., Buchler M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019;16:11–26. doi: 10.1038/s41571-018-0112-1. PubMed DOI
Oettle H., Neuhaus P., Hochhaus A., Hartmann J.T., Gellert K., Ridwelski K., Niedergethmann M., Zulke C., Fahlke J., Arning M.B., et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA. 2013;310:1473–1481. doi: 10.1001/jama.2013.279201. PubMed DOI
Strobel O., Hank T., Hinz U., Bergmann F., Schneider L., Springfeld C., Jager D., Schirmacher P., Hackert T., Buchler M.W. Pancreatic Cancer Surgery: The New R-status Counts. Ann. Surg. 2017;265:565–573. doi: 10.1097/SLA.0000000000001731. PubMed DOI
Hank T., Hinz U., Tarantino I., Kaiser J., Niesen W., Bergmann F., Hackert T., Buchler M.W., Strobel O. Validation of at least 1 mm as cut-off for resection margins for pancreatic adenocarcinoma of the body and tail. Br. J. Surg. 2018;105:1171–1181. doi: 10.1002/bjs.10842. PubMed DOI
Vitali F., Pfeifer L., Janson C., Goertz R.S., Neurath M.F., Strobel D., Wildner D. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): A promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer. Z. Gastroenterol. 2015;53:1175–1181. doi: 10.1055/s-0041-103847. PubMed DOI
Liu X., Fu Y., Chen Q., Wu J., Gao W., Jiang K., Miao Y., Wei J. Predictors of distant metastasis on exploration in patients with potentially resectable pancreatic cancer. BMC Gastroenterol. 2018;18:168. doi: 10.1186/s12876-018-0891-y. PubMed DOI PMC
Versteijne E., Suker M., Groothuis K., Akkermans-Vogelaar J.M., Besselink M.G., Bonsing B.A., Buijsen J., Busch O.R., Creemers G.M., van Dam R.M., et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020;38:1763–1773. doi: 10.1200/JCO.19.02274. PubMed DOI PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Dangi-Garimella S., Sahai V., Ebine K., Kumar K., Munshi H.G. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS ONE. 2013;8:e64566. doi: 10.1371/journal.pone.0064566. PubMed DOI PMC
Zhao J., Wang H., Hsiao C.H., Chow D.S., Koay E.J., Kang Y., Wen X., Huang Q., Ma Y., Bankson J.A., et al. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials. 2018;159:215–228. doi: 10.1016/j.biomaterials.2018.01.014. PubMed DOI PMC
Sensi F., D’Angelo E., Biccari A., Marangio A., Battisti G., Crotti S., Fassan M., Laterza C., Giomo M., Elvassore N., et al. Establishment of a human 3D pancreatic adenocarcinoma model based on a patient-derived extracellular matrix scaffold. Transl. Res. 2023;253:57–67. doi: 10.1016/j.trsl.2022.08.015. PubMed DOI
Mu P., Zhou S., Lv T., Xia F., Shen L., Wan J., Wang Y., Zhang H., Cai S., Peng J., et al. Newly developed 3D in vitro models to study tumor-immune interaction. J. Exp. Clin. Cancer Res. 2023;42:81. doi: 10.1186/s13046-023-02653-w. PubMed DOI PMC
Karimnia V., Stanley M.E., Fitzgerald C.T., Rizvi I., Slack F.J., Celli J.P. Photodynamic Stromal Depletion Enhances Therapeutic Nanoparticle Delivery in 3D Pancreatic Ductal Adenocarcinoma Tumor Models. Photochem. Photobiol. 2023;99:120–131. doi: 10.1111/php.13663. PubMed DOI PMC
Lintern N., Smith A.M., Jayne D.G., Khaled Y.S. Photodynamic Stromal Depletion in Pancreatic Ductal Adenocarcinoma. Cancers. 2023;15:4135. doi: 10.3390/cancers15164135. PubMed DOI PMC
Mei L., Du W., Ma W.W. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: Controversies and promises. J. Gastrointest. Oncol. 2016;7:487–494. doi: 10.21037/jgo.2016.03.03. PubMed DOI PMC
Schnittert J., Bansal R., Mardhian D.F., van Baarlen J., Ostman A., Prakash J. Integrin alpha11 in pancreatic stellate cells regulates tumor stroma interaction in pancreatic cancer. FASEB J. 2019;33:6609–6621. doi: 10.1096/fj.201802336R. PubMed DOI
Schnittert J., Bansal R., Prakash J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer. 2019;5:128–142. doi: 10.1016/j.trecan.2019.01.001. PubMed DOI
Du W., Pasca di Magliano M., Zhang Y. Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Front. Oncol. 2021;11:682217. doi: 10.3389/fonc.2021.682217. PubMed DOI PMC
Bauer C., Kühnemuth B., Duewell P., Ormanns S., Gress T., Schnurr M. Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett. 2016;381:259–268. doi: 10.1016/j.canlet.2016.02.057. PubMed DOI
Raskov H., Orhan A., Christensen J.P., Gögenur I. Cytotoxic CD8. Br. J. Cancer. 2021;124:359–367. doi: 10.1038/s41416-020-01048-4. PubMed DOI PMC
Tormoen G.W., Crittenden M.R., Gough M.J. Role of the immunosuppressive microenvironment in immunotherapy. Adv. Radiat. Oncol. 2018;3:520–526. doi: 10.1016/j.adro.2018.08.018. PubMed DOI PMC
Longo V., Brunetti O., Gnoni A., Cascinu S., Gasparini G., Lorusso V., Ribatti D., Silvestris N. Angiogenesis in pancreatic ductal adenocarcinoma: A controversial issue. Oncotarget. 2016;7:58649–58658. doi: 10.18632/oncotarget.10765. PubMed DOI PMC
Le Large T.Y., Mantini G., Meijer L.L., Pham T.V., Funel N., van Grieken N.C., Kok B., Knol J., van Laarhoven H.W., Piersma S.R., et al. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight. 2020;5:e138290. doi: 10.1172/jci.insight.138290. PubMed DOI PMC
Pan Z., Li L., Fang Q., Zhang Y., Hu X., Qian Y., Huang P. Analysis of dynamic molecular networks for pancreatic ductal adenocarcinoma progression. Cancer Cell Int. 2018;18:214. doi: 10.1186/s12935-018-0718-5. PubMed DOI PMC
Shen Y., Pu K., Zheng K., Ma X., Qin J., Jiang L., Li J. Differentially Expressed microRNAs in MIA PaCa-2 and PANC-1 Pancreas Ductal Adenocarcinoma Cell Lines are Involved in Cancer Stem Cell Regulation. Int. J. Mol. Sci. 2019;20:4473. doi: 10.3390/ijms20184473. PubMed DOI PMC
Khosravani F., Mir H., Mirzaei A., Kobarfard F., Bardania H., Hosseini E. Arsenic trioxide and Erlotinib loaded in RGD-modified nanoliposomes for targeted combination delivery to PC3 and PANC-1 cell lines. Biotechnol. Appl. Biochem. 2023;70:811–823. doi: 10.1002/bab.2401. PubMed DOI
Malinda R.R., Zeeberg K., Sharku P.C., Ludwig M.Q., Pedersen L.B., Christensen S.T., Pedersen S.F. TGFβ Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Front. Oncol. 2020;10:687. doi: 10.3389/fonc.2020.00687. PubMed DOI PMC
Schnittert J., Heinrich M.A., Kuninty P.R., Storm G., Prakash J. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer Lett. 2018;420:247–258. doi: 10.1016/j.canlet.2018.01.072. PubMed DOI
Kuninty P.R., Bojmar L., Tjomsland V., Larsson M., Storm G., Ostman A., Sandstrom P., Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget. 2016;7:16396–16408. doi: 10.18632/oncotarget.7651. PubMed DOI PMC
Gunti S., Hoke A.T.K., Vu K.P., London N.R. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers. 2021;13:874. doi: 10.3390/cancers13040874. PubMed DOI PMC
Ding Y., Mei W., Zheng Z., Cao F., Liang K., Jia Y., Wang Y., Liu D., Li J., Li F. Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p. Tissue Cell. 2021;73:101623. doi: 10.1016/j.tice.2021.101623. PubMed DOI
Suri R., Zimmerman J.W., Burkhart R.A. Modeling human pancreatic ductal adenocarcinoma for translational research: Current options, challenges, and prospective directions. Ann. Pancreat. Cancer. 2020;3:17. doi: 10.21037/apc-20-29. PubMed DOI PMC
Hwang C.I., Boj S.F., Clevers H., Tuveson D.A. Preclinical models of pancreatic ductal adenocarcinoma. J. Pathol. 2016;238:197–204. doi: 10.1002/path.4651. PubMed DOI PMC
Audero M.M., Carvalho T.M.A., Ruffinatti F.A., Loeck T., Yassine M., Chinigo G., Folcher A., Farfariello V., Amadori S., Vaghi C., et al. Acidic Growth Conditions Promote Epithelial-to-Mesenchymal Transition to Select More Aggressive PDAC Cell Phenotypes In Vitro. Cancers. 2023;15:2572. doi: 10.3390/cancers15092572. PubMed DOI PMC
Rodrigues J., Heinrich M.A., Teixeira L.M., Prakash J. 3D In Vitro Model (R)evolution: Unveiling Tumor-Stroma Interactions. Trends Cancer. 2021;7:249–264. doi: 10.1016/j.trecan.2020.10.009. PubMed DOI
Prakash J., Shaked Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discov. 2024;14:1375–1388. doi: 10.1158/2159-8290.CD-24-0002. PubMed DOI PMC
Longati P., Jia X., Eimer J., Wagman A., Witt M.R., Rehnmark S., Verbeke C., Toftgård R., Löhr M., Heuchel R.L. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95. doi: 10.1186/1471-2407-13-95. PubMed DOI PMC
Rescigno F., Ceriotti L., Meloni M. Extra Cellular Matrix Deposition and Assembly in Dermis Spheroids. Clin. Cosmet. Investig. Dermatol. 2021;14:935–943. doi: 10.2147/CCID.S316707. PubMed DOI PMC
Ncube K.N., Jurgens T., Steenkamp V., Cromarty A.D., van den Bout I., Cordier W. Comparative Evaluation of the Cytotoxicity of Doxorubicin in BT-20 Triple-Negative Breast Carcinoma Monolayer and Spheroid Cultures. Biomedicines. 2023;11:1484. doi: 10.3390/biomedicines11051484. PubMed DOI PMC
Nkune N.W., Simelane N.W.N., Montaseri H., Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int. J. Mol. Sci. 2021;22:12618. doi: 10.3390/ijms222312618. PubMed DOI PMC
Roy M., Alix C., Bouakaz A., Serriere S., Escoffre J.M. Tumor Spheroids as Model to Design Acoustically Mediated Drug Therapies: A Review. Pharmaceutics. 2023;15:806. doi: 10.3390/pharmaceutics15030806. PubMed DOI PMC
Gilazieva Z., Ponomarev A., Rutland C., Rizvanov A., Solovyeva V. Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers. 2020;12:2727. doi: 10.3390/cancers12102727. PubMed DOI PMC
Kuntze A., Goetsch O., Fels B., Najder K., Unger A., Wilhelmi M., Sargin S., Schimmelpfennig S., Neumann I., Schwab A., et al. Protonation of Piezo1 Impairs Cell-Matrix Interactions of Pancreatic Stellate Cells. Front. Physiol. 2020;11:89. doi: 10.3389/fphys.2020.00089. PubMed DOI PMC
Ware M.J., Keshishian V., Law J.J., Ho J.C., Favela C.A., Rees P., Smith B., Mohammad S., Hwang R.F., Rajapakshe K., et al. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 2016;108:129–142. doi: 10.1016/j.biomaterials.2016.08.041. PubMed DOI PMC
Lee K.-H., Kim T.-H. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. Biosensors. 2021;11:445. doi: 10.3390/bios11110445. PubMed DOI PMC
Dufau I., Frongia C., Sicard F., Dedieu L., Cordelier P., Ausseil F., Ducommun B., Valette A. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: Application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer. 2012;12:15. doi: 10.1186/1471-2407-12-15. PubMed DOI PMC
Maietta I., Martínez-Pérez A., Álvarez R., De Lera Á.R., González-Fernández Á., Simón-Vázquez R. Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals. 2022;15:824. doi: 10.3390/ph15070824. PubMed DOI PMC
Wang Z., He R., Dong S., Zhou W. Pancreatic stellate cells in pancreatic cancer: As potential targets for future therapy. Front. Oncol. 2023;13:1185093. doi: 10.3389/fonc.2023.1185093. PubMed DOI PMC
Ferreira L.P., Gaspar V.M., Mendes L., Duarte I.F., Mano J.F. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials. 2021;275:120983. doi: 10.1016/j.biomaterials.2021.120983. PubMed DOI
Scalise M., Marino F., Salerno L., Cianflone E., Molinaro C., Salerno N., De Angelis A., Viglietto G., Urbanek K., Torella D. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int. J. Mol. Sci. 2021;22:13180. doi: 10.3390/ijms222413180. PubMed DOI PMC
Khursheed M., Bashyam M.D. Apico-basal polarity complex and cancer. J. Biosci. 2014;39:145–155. doi: 10.1007/s12038-013-9410-z. PubMed DOI
Tsai S., McOlash L., Palen K., Johnson B., Duris C., Yang Q., Dwinell M.B., Hunt B., Evans D.B., Gershan J., et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18:335. doi: 10.1186/s12885-018-4238-4. PubMed DOI PMC
Neesse A., Michl P., Frese K.K., Feig C., Cook N., Jacobetz M.A., Lolkema M.P., Buchholz M., Olive K.P., Gress T.M., et al. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60:861–868. doi: 10.1136/gut.2010.226092. PubMed DOI
Shinkawa T., Ohuchida K., Nakamura M. Heterogeneity of Cancer-Associated Fibroblasts and the Tumor Immune Microenvironment in Pancreatic Cancer. Cancers. 2022;14:3994. doi: 10.3390/cancers14163994. PubMed DOI PMC
Luo Y., Li Z., Kong Y., He W., Zheng H., An M., Lin Y., Zhang D., Yang J., Zhao Y., et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J. Clin. Investig. 2022;132:e157644. doi: 10.1172/JCI157644. PubMed DOI PMC
McGuigan A.J., Coleman H.G., McCain R.S., Kelly P.J., Johnston D.I., Taylor M.A., Turkington R.C. Immune cell infiltrates as prognostic biomarkers in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. J. Pathol. Clin. Res. 2021;7:99–112. doi: 10.1002/cjp2.192. PubMed DOI PMC
Liu X., Iovanna J., Santofimia-Castaño P. Stroma-targeting strategies in pancreatic cancer: A double-edged sword. J. Physiol. Biochem. 2023;79:213–222. doi: 10.1007/s13105-022-00941-1. PubMed DOI
Stouten I., van Montfoort N., Hawinkels L.J.A.C. The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. Int. J. Mol. Sci. 2023;24:8707. doi: 10.3390/ijms24108707. PubMed DOI PMC
Maneshi P., Mason J., Dongre M., Oehlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front. Cell Dev. Biol. 2021;9:787485. doi: 10.3389/fcell.2021.787485. PubMed DOI PMC
Miyazaki Y., Oda T., Inagaki Y., Kushige H., Saito Y., Mori N., Takayama Y., Kumagai Y., Mitsuyama T., Kida Y.S. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci. Rep. 2021;11:4690. doi: 10.1038/s41598-021-84058-3. PubMed DOI PMC
Hwang H.J., Oh M.S., Lee D.W., Kuh H.J. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J. Exp. Clin. Cancer Res. 2019;38:258. doi: 10.1186/s13046-019-1225-9. PubMed DOI PMC
Knight E., Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat. 2015;227:746–756. doi: 10.1111/joa.12257. PubMed DOI PMC
Lee J.H., Kim S.K., Khawar I.A., Jeong S.Y., Chung S., Kuh H.J. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 2018;37:4. doi: 10.1186/s13046-017-0654-6. PubMed DOI PMC
Jang S.D., Song J., Kim H.A., Im C.N., Khawar I.A., Park J.K., Kuh H.J. Anti-Cancer Activity Profiling of Chemotherapeutic Agents in 3D Co-Cultures of Pancreatic Tumor Spheroids with Cancer-Associated Fibroblasts and Macrophages. Cancers. 2021;13:5955. doi: 10.3390/cancers13235955. PubMed DOI PMC
Kpeglo D., Hughes M.D.G., Dougan L., Haddrick M., Knowles M.A., Evans S.D., Peyman S.A. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biol. Plus. 2022;14:100109. doi: 10.1016/j.mbplus.2022.100109. PubMed DOI PMC
Ding L., Zhang Z., Shang D., Cheng J., Yuan H., Wu Y., Song X., Jiang H. α-Smooth muscle actin-positive myofibroblasts, in association with epithelial-mesenchymal transition and lymphogenesis, is a critical prognostic parameter in patients with oral tongue squamous cell carcinoma. J. Oral Pathol. Med. 2014;43:335–343. doi: 10.1111/jop.12143. PubMed DOI
Kaszak I., Witkowska-Piłaszewicz O., Niewiadomska Z., Dworecka-Kaszak B., Ngosa Toka F., Jurka P. Role of Cadherins in Cancer-A Review. Int. J. Mol. Sci. 2020;21:7624. doi: 10.3390/ijms21207624. PubMed DOI PMC
Kim S., You D., Jeong Y., Yu J., Kim S.W., Nam S.J., Lee J.E. TP53 upregulates α-smooth muscle actin expression in tamoxifen-resistant breast cancer cells. Oncol. Rep. 2019;41:1075–1082. doi: 10.3892/or.2018.6910. PubMed DOI
Öhlund D., Handly-Santana A., Biffi G., Elyada E., Almeida A.S., Ponz-Sarvise M., Corbo V., Oni T.E., Hearn S.A., Lee E.J., et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017;214:579–596. doi: 10.1084/jem.20162024. PubMed DOI PMC
Priwitaningrum D.L., Blonde J.G., Sridhar A., van Baarlen J., Hennink W.E., Storm G., Le Gac S., Prakash J. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. J. Control. Release. 2016;244:257–268. doi: 10.1016/j.jconrel.2016.09.004. PubMed DOI
Kuninty P.R., Bansal R., De Geus S.W.L., Mardhian D.F., Schnittert J., van Baarlen J., Storm G., Bijlsma M.F., van Laarhoven H.W., Metselaar J.M., et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Sci. Adv. 2019;5:eaax2770. doi: 10.1126/sciadv.aax2770. PubMed DOI PMC
Anane-Adjei A.B., Fletcher N.L., Cavanagh R.J., Houston Z.H., Crawford T., Pearce A.K., Taresco V., Ritchie A.A., Clarke P., Grabowska A.M., et al. Synthesis, characterisation and evaluation of hyperbranched N-(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines in vitro and in vivo. Biomater. Sci. 2022;10:2328–2344. doi: 10.1039/D1BM01548F. PubMed DOI
Saito K., Sakaguchi M., Maruyama S., Iioka H., Putranto E.W., Sumardika I.W., Tomonobu N., Kawasaki T., Homma K., Kondo E. Stromal mesenchymal stem cells facilitate pancreatic cancer progression by regulating specific secretory molecules through mutual cellular interaction. J. Cancer. 2018;9:2916–2929. doi: 10.7150/jca.24415. PubMed DOI PMC
Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells—Current trends and future prospective. Biosci. Rep. 2015;35:e00191. doi: 10.1042/BSR20150025. PubMed DOI PMC
Pednekar K.P., Heinrich M.A., van Baarlen J., Prakash J. Novel 3D microtissues Mimicking the Fibrotic Stroma in Pancreatic Cancer to Study Cellular Interactions and Stroma-Modulating Therapeutics. Cancers. 2021;13:5006. doi: 10.3390/cancers13195006. PubMed DOI PMC
Ammar N., Hildebrandt M., Geismann C., Roder C., Gemoll T., Sebens S., Trauzold A., Schafer H. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants. 2023;12:1818. doi: 10.3390/antiox12101818. PubMed DOI PMC
Kitamura F., Semba T., Yasuda-Yoshihara N., Yamada K., Nishimura A., Yamasaki J., Nagano O., Yasuda T., Yonemura A., Tong Y., et al. Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 2023;8:e163022. doi: 10.1172/jci.insight.163022. PubMed DOI PMC
Xu R., Yang J., Ren B., Wang H., Yang G., Chen Y., You L., Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front. Oncol. 2020;10:572722. doi: 10.3389/fonc.2020.572722. PubMed DOI PMC
Jin M.-Z., Han R.-R., Qiu G.-Z., Ju X.-C., Lou G., Jin W.-L. Organoids: An intermediate modeling platform in precision oncology. Cancer Lett. 2018;414:174–180. doi: 10.1016/j.canlet.2017.11.021. PubMed DOI
Ye L., Swingen C., Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr. Cardiol. Rev. 2013;9:63–72. doi: 10.2174/157340313805076278. PubMed DOI PMC
Zhang Y., Houchen C.W., Li M. Patient-Derived Organoid Pharmacotyping Guides Precision Medicine for Pancreatic Cancer. Clin. Cancer Res. 2022;28:3176–3178. doi: 10.1158/1078-0432.CCR-22-1083. PubMed DOI PMC
Yang H., Wang Y., Wang P., Zhang N., Wang P. Tumor organoids for cancer research and personalized medicine. Cancer Biol. Med. 2021;18:319–332. doi: 10.20892/j.issn.2095-3941.2021.0335. PubMed DOI PMC
Broguiere N., Isenmann L., Hirt C., Ringel T., Placzek S., Cavalli E., Ringnalda F., Villiger L., Züllig R., Lehmann R., et al. Growth of Epithelial Organoids in a Defined Hydrogel. Adv. Mater. 2018;30:e1801621. doi: 10.1002/adma.201801621. PubMed DOI
Schuster B., Junkin M., Kashaf S.S., Romero-Calvo I., Kirby K., Matthews J., Weber C.R., Rzhetsky A., White K.P., Tay S. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 2020;11:5271. doi: 10.1038/s41467-020-19058-4. PubMed DOI PMC
Aberle M.R., Burkhart R.A., Tiriac H., Damink S.W.M.O., Dejong C.H.C., Tuveson D.A., van Dam R.M. Patient-derived organoid models help define personalized management of gastrointestinal cancer. Br. J. Surg. 2018;105:E48–E60. doi: 10.1002/bjs.10726. PubMed DOI PMC
Boucherit N., Gorvel L., Olive D. 3D Tumor Models and Their Use for the Testing of Immunotherapies. Front. Immunol. 2020;11:603640. doi: 10.3389/fimmu.2020.603640. PubMed DOI PMC
Romero-Calvo I., Weber C.R., Ray M., Brown M., Kirby K., Nandi R.K., Long T.M., Sparrow S.M., Ugolkov A., Qiang W., et al. Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors. Mol. Cancer Res. 2019;17:70–83. doi: 10.1158/1541-7786.MCR-18-0531. PubMed DOI PMC
Driehuis E., van Hoeck A., Moore K., Kolders S., Francies H.E., Gulersonmez M.C., Stigter E.C.A., Burgering B., Geurts V., Gracanin A., et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl. Acad. Sci. USA. 2019;116:26580–26590. doi: 10.1073/pnas.1911273116. PubMed DOI PMC
Zeöld A., Sándor G.O., Kiss A., Soós A.Á., Tölgyes T., Bursics A., Szűcs Á., Harsányi L., Kittel Á., Gézsi A., et al. Shared extracellular vesicle miRNA profiles of matched ductal pancreatic adenocarcinoma organoids and blood plasma samples show the power of organoid technology. Cell. Mol. Life Sci. 2021;78:3005–3020. doi: 10.1007/s00018-020-03703-8. PubMed DOI PMC
Sereti E., Papapostolou I., Dimas K. Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine? Biomedicines. 2023;11:890. doi: 10.3390/biomedicines11030890. PubMed DOI PMC
Holokai L., Chakrabarti J., Lundy J., Croagh D., Adhikary P., Richards S.S., Woodson C., Steele N., Kuester R., Scott A., et al. Murine- and Human-Derived Autologous Organoid/Immune Cell Co-Cultures as Pre-Clinical Models of Pancreatic Ductal Adenocarcinoma. Cancers. 2020;12:3816. doi: 10.3390/cancers12123816. PubMed DOI PMC
Hennig A., Baenke F., Klimova A., Drukewitz S., Jahnke B., Brückmann S., Secci R., Winter C., Schmäche T., Seidlitz T., et al. Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J. Pathol. 2022;257:607–619. doi: 10.1002/path.5906. PubMed DOI
Krieger T.G., Le Blanc S., Jabs J., Ten F.W., Ishaque N., Jechow K., Debnath O., Leonhardt C.-S., Giri A., Eils R., et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat. Commun. 2021;12:5826. doi: 10.1038/s41467-021-26059-4. PubMed DOI PMC
Lee S., Shanti A. Effect of Exogenous pH on Cell Growth of Breast Cancer Cells. Int. J. Mol. Sci. 2021;22:9910. doi: 10.3390/ijms22189910. PubMed DOI PMC
Baker L.A., Tiriac H., Clevers H., Tuveson D.A. Modeling pancreatic cancer with organoids. Trends Cancer. 2016;2:176–190. doi: 10.1016/j.trecan.2016.03.004. PubMed DOI PMC
Givant-Horwitz V., Davidson B., Reich R. Laminin-induced signaling in tumor cells: The role of the M(r) 67,000 laminin receptor. Cancer Res. 2004;64:3572–3579. doi: 10.1158/0008-5472.CAN-03-3424. PubMed DOI
Aisenbrey E.A., Murphy W.L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 2020;5:539–551. doi: 10.1038/s41578-020-0199-8. PubMed DOI PMC
Athukorala S.S., Tran T.S., Balu R., Truong V.K., Chapman J., Dutta N.K., Roy Choudhury N. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Polymers. 2021;13:474. doi: 10.3390/polym13030474. PubMed DOI PMC
Unnikrishnan K., Thomas L.V., Ram Kumar R.M. Advancement of Scaffold-Based 3D Cellular Models in Cancer Tissue Engineering: An Update. Front. Oncol. 2021;11:733652. doi: 10.3389/fonc.2021.733652. PubMed DOI PMC
Ermis M., Falcone N., Roberto de Barros N., Mecwan M., Haghniaz R., Choroomi A., Monirizad M., Lee Y., Song J., Cho H.J., et al. Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer. Bioact. Mater. 2023;25:360–373. doi: 10.1016/j.bioactmat.2023.02.005. PubMed DOI PMC
Ma B., Wang X., Bove A.M., Simone G. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front. Cell Dev. Biol. 2020;8:599281. doi: 10.3389/fcell.2020.599281. PubMed DOI PMC
Yan M., Wang L., Wu Y., Lu Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater. 2023;157:252–262. doi: 10.1016/j.actbio.2022.12.011. PubMed DOI
Curvello R., Kast V., Abuwarwar M.H., Fletcher A.L., Garnier G., Loessner D. 3D Collagen-Nanocellulose Matrices Model the Tumour Microenvironment of Pancreatic Cancer. Front. Digit. Health. 2021;3:704584. doi: 10.3389/fdgth.2021.704584. PubMed DOI PMC
Khan A.H., Zhou S.P., Moe M., Ortega Quesada B.A., Bajgiran K.R., Lassiter H.R., Dorman J.A., Martin E.C., Pojman J.A., Melvin A.T. Generation of 3D Spheroids Using a Thiol–Acrylate Hydrogel Scaffold to Study Endocrine Response in ER+ Breast Cancer. ACS Biomater. Sci. Eng. 2022;8:3977–3985. doi: 10.1021/acsbiomaterials.2c00491. PubMed DOI PMC
El-Sherbiny I.M., Yacoub M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013;2013:316–342. doi: 10.5339/gcsp.2013.38. PubMed DOI PMC
Geckil H., Xu F., Zhang X., Moon S., Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5:469–484. doi: 10.2217/nnm.10.12. PubMed DOI PMC
Kanton S., Paşca S.P. Human assembloids. Development. 2022;149:dev201120. doi: 10.1242/dev.201120. PubMed DOI
Choi J.I., Rim J.H., Jang S.I., Park J.S., Park H., Cho J.H., Lim J.B. The role of Jagged1 as a dynamic switch of cancer cell plasticity in PDAC assembloids. Theranostics. 2022;12:4431–4445. doi: 10.7150/thno.71364. PubMed DOI PMC
Mondadori C., Crippa M., Moretti M., Candrian C., Lopa S., Arrigoni C. Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature. Front. Bioeng. Biotechnol. 2020;8:907. doi: 10.3389/fbioe.2020.00907. PubMed DOI PMC
Dadgar N., Gonzalez-Suarez A.M., Fattahi P., Hou X., Weroha J.S., Gaspar-Maia A., Stybayeva G., Revzin A. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst. Nanoeng. 2020;6:93. doi: 10.1038/s41378-020-00201-6. PubMed DOI PMC
Lim W., Park S. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules. 2018;23:3355. doi: 10.3390/molecules23123355. PubMed DOI PMC
Bradney M.J., Venis S.M., Yang Y., Konieczny S.F., Han B. A Biomimetic Tumor Model of Heterogeneous Invasion in Pancreatic Ductal Adenocarcinoma. Small. 2020;16:e1905500. doi: 10.1002/smll.201905500. PubMed DOI PMC
Sonmez U.M., Cheng Y.-W., Watkins S.C., Roman B.L., Davidson L.A. Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator. Lab Chip. 2020;2:4373–4439. doi: 10.1039/D0LC00738B. PubMed DOI PMC
Beer M., Kuppalu N., Stefanini M., Becker H., Schulz I., Manoli S., Schuette J., Schmees C., Casazza A., Stelzle M., et al. A novel microfluidic 3D platform for culturing pancreatic ductal adenocarcinoma cells: Comparison with in vitro cultures and in vivo xenografts. Sci. Rep. 2017;7:1325. doi: 10.1038/s41598-017-01256-8. PubMed DOI PMC
Sato O., Tsuchikawa T., Kato T., Amaishi Y., Okamoto S., Mineno J., Takeuchi Y., Sasaki K., Nakamura T., Umemoto K., et al. Tumor Growth Suppression of Pancreatic Cancer Orthotopic Xenograft Model by CEA-Targeting CAR-T Cells. Cancers. 2023;15:601. doi: 10.3390/cancers15030601. PubMed DOI PMC
Wu C., Hu B., Wang L., Wu X., Gu H., Dong H., Yan J., Qi Z., Zhang Q., Chen H., et al. Assessment of stromal SCD-induced drug resistance of PDAC using 3D-printed zPDX model chips. iScience. 2023;26:105723. doi: 10.1016/j.isci.2022.105723. PubMed DOI PMC
Mallya K., Gautam S.K., Aithal A., Batra S.K., Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188554. doi: 10.1016/j.bbcan.2021.188554. PubMed DOI PMC
Zeng Z., Wong C.J., Yang L., Ouardaoui N., Li D., Zhang W., Gu S., Zhang Y., Liu Y., Wang X., et al. TISMO: Syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucleic Acids Res. 2022;50:D1391–D1397. doi: 10.1093/nar/gkab804. PubMed DOI PMC
Rovithi M., Avan A., Funel N., Leon L.G., Gomez V.E., Wurdinger T., Griffioen A.W., Verheul H.M.W., Giovannetti E. Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: A platform for drug testing. Sci. Rep. 2017;7:44686. doi: 10.1038/srep44686. PubMed DOI PMC
Johnson J.I., Decker S., Sausville E.A., Zaharevitz D., Rubinstein L.V., Venditti J.M., Schepartz S., Kalyandrug S., Christian M., Arbuck S., et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer. 2001;84:1424–1431. doi: 10.1054/bjoc.2001.1796. PubMed DOI PMC
Voskoglou-Nomikos T., Pater J.L., Seymour L. Clinical Predictive Value of the in Vitro Cell Line, Human Xenograft, and Mouse Allograft Preclinical Cancer Models. Clin. Cancer Res. 2003;9:4227–4239. PubMed
Garber K. From Human to Mouse and Back: “Tumorgraft” Models Surge in Popularity. JNCI J. Natl. Cancer Inst. 2009;101:6–8. doi: 10.1093/jnci/djn481. PubMed DOI
Bruns C.J., Harbison M.T., Davis D.W., Portera C.A., Tsan R., McConkey D.J., Evans D.B., Abbruzzese J.L., Hicklin D.J., Radinsky R. Epidermal Growth Factor Receptor Blockade with C225 Plus Gemcitabine Results in Regression of Human Pancreatic Carcinoma Growing Orthotopically in Nude Mice by Antiangiogenic Mechanisms. Clin. Cancer Res. 2000;6:1936–1948. PubMed
Philip P.A., Benedetti J., Khorana A.A., Goldman B., Fenoglio-Preiser C.M., Abbruzzese J.L., Blanke C.D., Corless C.L., Wong R., O’Reilly E.M., et al. Phase III Study Comparing Gemcitabine Plus Cetuximab Versus Gemcitabine in Patients with Advanced Pancreatic Adenocarcinoma: Southwest Oncology Group–Directed Intergroup Trial S0205. J. Clin. Oncol. 2010;28:3605–3610. doi: 10.1200/JCO.2009.25.7550. PubMed DOI PMC
Koutsounas I., Giaginis C., Theocharis S. Histone deacetylase inhibitors and pancreatic cancer: Are there any promising clinical trials? World J. Gastroenterol. 2013;19:1173–1181. doi: 10.3748/wjg.v19.i8.1173. PubMed DOI PMC
Mak I.W., Evaniew N., Ghert M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014;6:114–118. PubMed PMC
Van Hemelryk A., Tomljanovic I., Stuurman D., de Ridder C.M.A., Teubel W.J., Erkens-Schulze S., van de Werken H.J.G., van Royen M., Grudniewska M., Jenster G.W., et al. Patient-derived xenografts and organoids recapitulate castration-resistant prostate cancer with sustained androgen receptor signaling. Eur. J. Cancer. 2022;174:S43. doi: 10.1016/S0959-8049(22)00914-5. PubMed DOI PMC
Heinrich M.A., Uboldi I., Kuninty P.R., Ankone M.J.K., van Baarlen J., Zhang Y.S., Jain K., Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact. Mater. 2023;22:18–33. doi: 10.1016/j.bioactmat.2022.09.015. PubMed DOI PMC
Miyabayashi K., Baker L.A., Deschênes A., Traub B., Caligiuri G., Plenker D., Alagesan B., Belleau P., Li S., Kendall J., et al. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov. 2020;10:1566–1589. doi: 10.1158/2159-8290.CD-20-0133. PubMed DOI PMC
Boj S.F., Hwang C.-I., Baker L.A., Chio I.I.C., Engle D.D., Corbo V., Jager M., Ponz-Sarvise M., Tiriac H., Spector M.S., et al. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell. 2015;160:324–338. doi: 10.1016/j.cell.2014.12.021. PubMed DOI PMC
Olive K.P., Jacobetz M.A., Davidson C.J., Gopinathan A., McIntyre D., Honess D., Madhu B., Goldgraben M.A., Caldwell M.E., Allard D., et al. Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer. Science. 2009;324:1457–1461. doi: 10.1126/science.1171362. PubMed DOI PMC
Tanaka C., Furihata K., Naganuma S., Ogasawara M., Yoshioka R., Taniguchi H., Furihata M., Taniuchi K. Establishment of a mouse model of pancreatic cancer using human pancreatic cancer cell line S2-013-derived organoid. Hum. Cell Off. J. Hum. Cell Res. Soc. 2022;35:735–744. doi: 10.1007/s13577-022-00684-7. PubMed DOI PMC
Raimondi G., Mato-Berciano A., Pascual-Sabater S., Rovira-Rigau M., Cuatrecasas M., Fondevila C., Sánchez-Cabús S., Begthel H., Boj S.F., Clevers H., et al. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine. 2020;56:102786. doi: 10.1016/j.ebiom.2020.102786. PubMed DOI PMC
Le Bras A. Humanized mouse models of drug metabolism. Lab Anim. 2024;53:87. doi: 10.1038/s41684-024-01357-8. PubMed DOI
Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes. Dev. 2018;32:1267–1284. doi: 10.1101/gad.314617.118. PubMed DOI PMC
Lee S.H., Hu W., Matulay J.T., Silva M.V., Owczarek T.B., Kim K., Chua C.W., Barlow L.J., Kandoth C., Williams A.B., et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 2018;173:515–528.e517. doi: 10.1016/j.cell.2018.03.017. PubMed DOI PMC
Edgar R.D., Perrone F., Foster A.R., Payne F., Lewis S., Nayak K.M., Kraiczy J., Cenier A., Torrente F., Salvestrini C., et al. Culture-Associated DNA Methylation Changes Impact on Cellular Function of Human Intestinal Organoids. Cell Mol. Gastroenterol. Hepatol. 2022;14:1295–1310. doi: 10.1016/j.jcmgh.2022.08.008. PubMed DOI PMC
Fang Z., Li P., Du F., Shang L., Li L. The role of organoids in cancer research. Exp. Hematol. Oncol. 2023;12:69. doi: 10.1186/s40164-023-00433-y. PubMed DOI PMC
Peng Z., Lv X., Sun H., Zhao L., Huang S. 3D tumor cultures for drug resistance and screening development in clinical applications. Mol. Cancer. 2025;24:93. doi: 10.1186/s12943-025-02281-2. PubMed DOI PMC
Abdolahi S., Ghazvinian Z., Muhammadnejad S., Saleh M., Asadzadeh Aghdaei H., Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J. Transl. Med. 2022;20:206. doi: 10.1186/s12967-022-03405-8. PubMed DOI PMC
Seppälä T.T., Zimmerman J.W., Sereni E., Plenker D., Suri R., Rozich N., Blair A., Thomas D.L., Teinor J., Javed A., et al. Patient-derived Organoid Pharmacotyping is a Clinically Tractable Strategy for Precision Medicine in Pancreatic Cancer. Ann. Surg. 2020;272:427–435. doi: 10.1097/SLA.0000000000004200. PubMed DOI PMC
Magouliotis D., Dimas K., Sakellaridis N., Ioannou M., Zacharouli K., Ntalagiorgos A., Fergadi M., Zacharoulis D. Development of an Orthotopic Pancreatic Ductal Adenocarcinoma (PDAC) Patient Derived Xenografts (PDX) Preclinical Model and Characterization of Aquaporin 7 (AQP7) Expression. HPB. 2022;24:S304. doi: 10.1016/j.hpb.2022.05.642. DOI
Wu L., Zhang F., Chen X., Wan J., Wang Y., Li T., Wang H. Self-Assembled Gemcitabine Prodrug Nanoparticles Show Enhanced Efficacy against Patient-Derived Pancreatic Ductal Adenocarcinoma. ACS Appl. Mater. Interfaces. 2020;12:3327–3340. doi: 10.1021/acsami.9b16209. PubMed DOI
Garcia P.L., Miller A.L., Kreitzburg K.M., Council L.N., Gamblin T.L., Christein J.D., Heslin M.J., Arnoletti J.P., Richardson J.H., Chen D., et al. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene. 2016;35:833–845. doi: 10.1038/onc.2015.126. PubMed DOI PMC
Zanella E.R., Grassi E., Trusolino L. Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 2022;19:719–732. doi: 10.1038/s41571-022-00682-6. PubMed DOI
Delitto D., Pham K., Vlada A.C., Sarosi G.A., Thomas R.M., Behrns K.E., Liu C., Hughes S.J., Wallet S.M., Trevino J.G. Patient-Derived Xenograft Models for Pancreatic Adenocarcinoma Demonstrate Retention of Tumor Morphology through Incorporation of Murine Stromal Elements. Am. J. Pathol. 2015;185:1297–1303. doi: 10.1016/j.ajpath.2015.01.016. PubMed DOI PMC
Yoshida G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020;13:4–16. doi: 10.1186/s13045-019-0829-z. PubMed DOI PMC
Liu X., Xin Z., Wang K. Patient-derived xenograft model in colorectal cancer basic and translational research. Anim. Models Exp. Med. 2023;6:26–40. doi: 10.1002/ame2.12299. PubMed DOI PMC
De La Rochere P., Guil-Luna S., Decaudin D., Azar G., Sidhu S.S., Piaggio E. Humanized Mice for the Study of Immuno-Oncology. Trends Immunol. 2018;39:748–763. doi: 10.1016/j.it.2018.07.001. PubMed DOI
Tentler J.J., Tan A.C., Weekes C.D., Jimeno A., Leong S., Pitts T.M., Arcaroli J.J., Messersmith W.A., Eckhardt S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012;9:338–350. doi: 10.1038/nrclinonc.2012.61. PubMed DOI PMC
Ekins S., Mestres J., Testa B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol. 2007;152:9–20. doi: 10.1038/sj.bjp.0707305. PubMed DOI PMC
Güven E. Gene Expression Characteristics of Tumor and Adjacent Non-Tumor Tissues of Pancreatic Ductal Adenocarcinoma (PDAC) In-Silico. Iran. J. Biotechnol. 2022;20:e3092. doi: 10.30498/ijb.2021.292558.3092. PubMed DOI PMC
Zaccagnino A., Pilarsky C., Tawfik D., Sebens S., Trauzold A., Novak I., Schwab A., Kalthoff H. In silico analysis of the transportome in human pancreatic ductal adenocarcinoma. Eur. Biophys. J. 2016;45:749–763. doi: 10.1007/s00249-016-1171-9. PubMed DOI
Jain A., Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J. Gastroenterol. 2021;27:6527–6550. doi: 10.3748/wjg.v27.i39.6527. PubMed DOI PMC
Broekgaarden M., Weijer R., van Gulik T.M., Hamblin M.R., Heger M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 2015;34:643–690. doi: 10.1007/s10555-015-9588-7. PubMed DOI PMC
Yanovsky R.L., Bartenstein D.W., Rogers G.S., Isakoff S.J., Chen S.T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol. Photoimmunol. Photomed. 2019;35:295–303. doi: 10.1111/phpp.12489. PubMed DOI
Schuitmaker J.J., Baas P., van Leengoed H.L., van der Meulen F.W., Star W.M., van Zandwijk N. Photodynamic therapy: A promising new modality for the treatment of cancer. J. Photochem. Photobiol. B. 1996;34:3–12. doi: 10.1016/1011-1344(96)07342-3. PubMed DOI
Kim T.E., Chang J.E. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics. 2023;15:2257. doi: 10.3390/pharmaceutics15092257. PubMed DOI PMC
Reiniers M.J., van Golen R.F., Bonnet S., Broekgaarden M., van Gulik T.M., Egmond M.R., Heger M. Preparation and Practical Applications of 2′,7′-Dichlorodihydrofluorescein in Redox Assays. Anal. Chem. 2017;89:3853–3857. doi: 10.1021/acs.analchem.7b00043. PubMed DOI PMC
Broekgaarden M., de Kroon A.I., Gulik T.M., Heger M. Development and in vitro proof-of-concept of interstitially targeted zinc-phthalocyanine liposomes for photodynamic therapy. Curr. Med. Chem. 2014;21:377–391. doi: 10.2174/09298673113209990211. PubMed DOI
Hsieh Y.J., Chien K.Y., Yang I.F., Lee I.N., Wu C.C., Huang T.Y., Yu J.S. Oxidation of protein-bound methionine in Photofrin-photodynamic therapy-treated human tumor cells explored by methionine-containing peptide enrichment and quantitative proteomics approach. Sci. Rep. 2017;7:1370. doi: 10.1038/s41598-017-01409-9. PubMed DOI PMC
Sakharov D.V., Elstak E.D., Chernyak B., Wirtz K.W. Prolonged lipid oxidation after photodynamic treatment. Study with oxidation-sensitive probe C11-BODIPY581/591. FEBS Lett. 2005;579:1255–1260. doi: 10.1016/j.febslet.2005.01.024. PubMed DOI
Kanamori T., Kaneko S., Hamamoto K., Yuasa H. Mapping the diffusion pattern of (1)O(2) along DNA duplex by guanine photooxidation with an appended biphenyl photosensitizer. Sci. Rep. 2023;13:288. doi: 10.1038/s41598-023-27526-2. PubMed DOI PMC
Weijer R., Broekgaarden M., Kos M., van Vught R., Rauws E.A., Breukink E.J., van Gulik T.M., Storm G., Heger M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. J. Photochem. Photobiol. C. 2015;23:103–131. doi: 10.1016/j.jphotochemrev.2015.05.002. DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther. 2005;2:1–23. doi: 10.1016/S1572-1000(05)00030-X. PubMed DOI PMC
Weijer R., Clavier S., Zaal E.A., Pijls M.M., van Kooten R.T., Vermaas K., Leen R., Jongejan A., Moerland P.D., van Kampen A.H., et al. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy. Cell Mol. Life Sci. 2017;74:1133–1151. doi: 10.1007/s00018-016-2401-0. PubMed DOI PMC
Dias L.M., Sharifi F., de Keijzer M.J., Mesquita B., Desclos E., Kochan J.A., de Klerk D.J., Ernst D., de Haan L.R., Franchi L.P., et al. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. J. Photochem. Photobiol. B. 2021;216:112146. doi: 10.1016/j.jphotobiol.2021.112146. PubMed DOI
Mishchenko T., Balalaeva I., Gorokhova A., Vedunova M., Krysko D.V. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022;13:455. doi: 10.1038/s41419-022-04851-4. PubMed DOI PMC
Alzeibak R., Mishchenko T.A., Shilyagina N.Y., Balalaeva I.V., Vedunova M.V., Krysko D.V. Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J. Immunother. Cancer. 2021;9:e001926. doi: 10.1136/jitc-2020-001926. PubMed DOI PMC
Behrend L., Henderson G., Zwacka R.M. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 2003;31:1441–1444. doi: 10.1042/bst0311441. PubMed DOI
Hu Y., Rosen D.G., Zhou Y., Feng L., Yang G., Liu J., Huang P. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: Role in cell proliferation and response to oxidative stress. J. Biol. Chem. 2005;280:39485–39492. doi: 10.1074/jbc.M503296200. PubMed DOI
Trachootham D., Lu W., Ogasawara M.A., Nilsa R.D., Huang P. Redox regulation of cell survival. Antioxid. Redox Signal. 2008;10:1343–1374. doi: 10.1089/ars.2007.1957. PubMed DOI PMC
Ushio-Fukai M., Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52. doi: 10.1016/j.canlet.2008.02.044. PubMed DOI PMC
Wu W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25:695–705. doi: 10.1007/s10555-006-9037-8. PubMed DOI
Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett. 2008;266:53–59. doi: 10.1016/j.canlet.2008.02.031. PubMed DOI
Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants. 2021;10:642. doi: 10.3390/antiox10050642. PubMed DOI PMC
Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009;8:579–591. doi: 10.1038/nrd2803. PubMed DOI
Zhou Z., Song J., Nie L., Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016;45:6597–6626. doi: 10.1039/C6CS00271D. PubMed DOI PMC
Weijer R., Broekgaarden M., van Golen R.F., Bulle E., Nieuwenhuis E., Jongejan A., Moerland P.D., van Kampen A.H., van Gulik T.M., Heger M. Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells. BMC Cancer. 2015;15:1014. doi: 10.1186/s12885-015-1994-2. PubMed DOI PMC
De Silva P., Bano S., Pogue B.W., Wang K.K., Maytin E.V., Hasan T. Photodynamic priming with triple-receptor targeted nanoconjugates that trigger T cell-mediated immune responses in a 3D in vitro heterocellular model of pancreatic cancer. Nanophotonics. 2021;10:3199–3214. doi: 10.1515/nanoph-2021-0304. PubMed DOI PMC
Seshadri M., Spernyak J.A., Mazurchuk R., Camacho S.H., Oseroff A.R., Cheney R.T., Bellnier D.A. Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-dimethylxanthenone-4-acetic acid: Implications for combination therapy. Clin. Cancer Res. 2005;11:4241–4250. doi: 10.1158/1078-0432.CCR-04-2703. PubMed DOI
Wang W., Moriyama L.T., Bagnato V.S. Photodynamic therapy induced vascular damage: An overview of experimental PDT. Laser Phys. Lett. 2013;10:023001. doi: 10.1088/1612-2011/10/2/023001. DOI
Bano S., Alburquerque J.Q., Roberts H.J., Pang S., Huang H.C., Hasan T. Minocycline and photodynamic priming significantly improve chemotherapy efficacy in heterotypic spheroids of pancreatic ductal adenocarcinoma. J. Photochem. Photobiol. B. 2024;255:112910. doi: 10.1016/j.jphotobiol.2024.112910. PubMed DOI PMC
Kleinovink J.W., van Driel P.B., Snoeks T.J., Prokopi N., Fransen M.F., Cruz L.J., Mezzanotte L., Chan A., Lowik C.W., Ossendorp F. Combination of Photodynamic Therapy and Specific Immunotherapy Efficiently Eradicates Established Tumors. Clin. Cancer Res. 2016;22:1459–1468. doi: 10.1158/1078-0432.CCR-15-0515. PubMed DOI
Schroder T., Chen I.W., Sperling M., Bell R.H., Jr., Brackett K., Joffe S.N. Hematoporphyrin derivative uptake and photodynamic therapy in pancreatic carcinoma. J. Surg. Oncol. 1988;38:4–9. doi: 10.1002/jso.2930380103. PubMed DOI
Chatlani P.T., Nuutinen P.J., Toda N., Barr H., MacRobert A.J., Bedwell J., Bown S.G. Selective necrosis in hamster pancreatic tumours using photodynamic therapy with phthalocyanine photosensitization. Br. J. Surg. 1992;79:786–790. doi: 10.1002/bjs.1800790826. PubMed DOI
Mikvy P., Messman H., MacRobert A.J., Pauer M., Sams V.R., Davies C.L., Stewart J.C., Bown S.G. Photodynamic therapy of a transplanted pancreatic cancer model using meta-tetrahydroxyphenylchlorin (mTHPC) Br. J. Cancer. 1997;76:713–718. doi: 10.1038/bjc.1997.451. PubMed DOI PMC
Hajri A., Coffy S., Vallat F., Evrard S., Marescaux J., Aprahamian M. Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo. Br. J. Surg. 1999;86:899–906. doi: 10.1046/j.1365-2168.1999.01132.x. PubMed DOI
Sun F., Zhu Q., Li T., Saeed M., Xu Z., Zhong F., Song R., Huai M., Zheng M., Xie C., et al. Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. Adv. Sci. 2021;8:2002746. doi: 10.1002/advs.202002746. PubMed DOI PMC
De Silva P., Saad M.A., Camargo A.P., Swain J., Palanasami A., Obaid G., Shetty S., Hasan T. Abstract A17: Enhanced immune infiltration and antitumor immune reactivity in response to optical priming in pancreatic cancer. Cancer Immunol. Res. 2020;8:A17. doi: 10.1158/2326-6074.TUMIMM19-A17. DOI
Huang H.C., Rizvi I., Liu J., Anbil S., Kalra A., Lee H., Baglo Y., Paz N., Hayden D., Pereira S., et al. Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery. Cancer Res. 2018;78:558–571. doi: 10.1158/0008-5472.CAN-17-1700. PubMed DOI PMC
Weijer R., Broekgaarden M., Krekorian M., Alles L.K., van Wijk A.C., Mackaaij C., Verheij J., van der Wal A.C., van Gulik T.M., Storm G., et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341–3356. doi: 10.18632/oncotarget.6490. PubMed DOI PMC
Broekgaarden M., Weijer R., Krekorian M., van den Ijssel B., Kos M., Alles L.K., van Wijk A.C., Bikadi Z., Hazai E., van Gulik T.M., et al. Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res. 2016;9:1639–1662. doi: 10.1007/s12274-016-1059-0. DOI
de Keijzer M.J., de Klerk D.J., de Haan L.R., van Kooten R.T., Franchi L.P., Dias L.M., Kleijn T.G., van Doorn D.J., Heger M., on behalf of the Photodynamic Therapy Study Group Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol. Biol. 2022;2451:285–403. doi: 10.1007/978-1-0716-2099-1_19. PubMed DOI
Conte M., Cauda V. Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Adv. Ther. 2022;5:2200079. doi: 10.1002/adtp.202200079. DOI
Anbil S., Pigula M., Huang H.C., Mallidi S., Broekgaarden M., Baglo Y., De Silva P., Simeone D.M., Mino-Kenudson M., Maytin E.V., et al. Vitamin D Receptor Activation and Photodynamic Priming Enables Durable Low-dose Chemotherapy. Mol. Cancer Ther. 2020;19:1308–1319. doi: 10.1158/1535-7163.MCT-19-0791. PubMed DOI PMC
Obaid G., Bano S., Mallidi S., Broekgaarden M., Kuriakose J., Silber Z., Bulin A.L., Wang Y., Mai Z., Jin W., et al. Impacting Pancreatic Cancer Therapy in Heterotypic in Vitro Organoids and in Vivo Tumors with Specificity-Tuned, NIR-Activable Photoimmunonanoconjugates: Towards Conquering Desmoplasia? Nano Lett. 2019;19:7573–7587. doi: 10.1021/acs.nanolett.9b00859. PubMed DOI PMC
Obaid G., Bano S., Thomsen H., Callaghan S., Shah N., Swain J.W.R., Jin W., Ding X., Cameron C.G., McFarland S.A., et al. Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. Adv. Sci. 2022;9:e2104594. doi: 10.1002/advs.202104594. PubMed DOI PMC
Grunwald B.T., Devisme A., Andrieux G., Vyas F., Aliar K., McCloskey C.W., Macklin A., Jang G.H., Denroche R., Romero J.M., et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell. 2021;184:5577–5592.e18. doi: 10.1016/j.cell.2021.09.022. PubMed DOI
Bailey P., Zhou X., An J., Peccerella T., Hu K., Springfeld C., Buchler M., Neoptolemos J.P. Refining the Treatment of Pancreatic Cancer From Big Data to Improved Individual Survival. Function. 2023;4:zqad011. doi: 10.1093/function/zqad011. PubMed DOI PMC
Karimnia V., Rizvi I., Slack F.J., Celli J.P. Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochem. Photobiol. 2021;97:416–426. doi: 10.1111/php.13339. PubMed DOI PMC
Tan P., Cai H., Wei Q., Tang X., Zhang Q., Kopytynski M., Yang J., Yi Y., Zhang H., Gong Q., et al. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials. 2021;277:121061. doi: 10.1016/j.biomaterials.2021.121061. PubMed DOI
Murayama T., Gotoh N. Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells. 2019;8:621. doi: 10.3390/cells8060621. PubMed DOI PMC
Chitrangi S., Vaity P., Jamdar A., Bhatt S. Patient-derived organoids for precision oncology: A platform to facilitate clinical decision making. BMC Cancer. 2023;23:689. doi: 10.1186/s12885-023-11078-9. PubMed DOI PMC
Bubin R., Uljanovs R., Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023;24:7030. doi: 10.3390/ijms24087030. PubMed DOI PMC
Gurung P., Lim J., Shrestha R., Kim Y.W. Chlorin e6-associated photodynamic therapy enhances abscopal antitumor effects via inhibition of PD-1/PD-L1 immune checkpoint. Sci. Rep. 2023;13:4647. doi: 10.1038/s41598-023-30256-0. PubMed DOI PMC
Lou J., Aragaki M., Bernards N., Chee T., Gregor A., Hiraishi Y., Ishiwata T., Leung C., Ding L., Kitazawa S., et al. Repeated photodynamic therapy mediates the abscopal effect through multiple innate and adaptive immune responses with and without immune checkpoint therapy. Biomaterials. 2023;292:121918. doi: 10.1016/j.biomaterials.2022.121918. PubMed DOI
Quilbe A., Morales O., Baydoun M., Kumar A., Mustapha R., Murakami T., Leroux B., de Schutter C., Thecua E., Ziane L., et al. An Efficient Photodynamic Therapy Treatment for Human Pancreatic Adenocarcinoma. J. Clin. Med. 2020;9:192. doi: 10.3390/jcm9010192. PubMed DOI PMC
Wang Y., Wang H., Zhou L., Lu J., Jiang B., Liu C., Guo J. Photodynamic therapy of pancreatic cancer: Where have we come from and where are we going? Photodiagnosis Photodyn. Ther. 2020;31:101876. doi: 10.1016/j.pdpdt.2020.101876. PubMed DOI
Dorst D.N., Smeets E.M.M., Klein C., Frielink C., Geijs D., Trajkovic-Arsic M., Cheung P.F.Y., Stommel M.W.J., Gotthardt M., Siveke J.T., et al. Fibroblast Activation Protein-Targeted Photodynamic Therapy of Cancer-Associated Fibroblasts in Murine Models for Pancreatic Ductal Adenocarcinoma. Mol. Pharm. 2023;20:4319–4330. doi: 10.1021/acs.molpharmaceut.3c00453. PubMed DOI PMC
Tomas-Bort E., Kieler M., Sharma S., Candido J.B., Loessner D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics. 2020;10:5074–5089. doi: 10.7150/thno.42441. PubMed DOI PMC
Foglizzo V., Cocco E., Marchio S. Advanced Cellular Models for Preclinical Drug Testing: From 2D Cultures to Organ-on-a-Chip Technology. Cancers. 2022;14:3692. doi: 10.3390/cancers14153692. PubMed DOI PMC
Pinto B., Henriques A.C., Silva P.M.A., Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12:1186. doi: 10.3390/pharmaceutics12121186. PubMed DOI PMC
Hubrecht R.C., Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals. 2019;9:754. doi: 10.3390/ani9100754. PubMed DOI PMC
Saad M.A., Zhung W., Stanley M.E., Formica S., Grimaldo-Garcia S., Obaid G., Hasan T. Photoimmunotherapy Retains Its Anti-Tumor Efficacy with Increasing Stromal Content in Heterotypic Pancreatic Cancer Spheroids. Mol. Pharm. 2022;19:2549–2563. doi: 10.1021/acs.molpharmaceut.2c00260. PubMed DOI PMC
Bulin A.L., Broekgaarden M., Simeone D., Hasan T. Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget. 2019;10:2625–2643. doi: 10.18632/oncotarget.26780. PubMed DOI PMC
Broekgaarden M., Alkhateeb A., Bano S., Bulin A.L., Obaid G., Rizvi I., Hasan T. Cabozantinib Inhibits Photodynamic Therapy-Induced Auto- and Paracrine MET Signaling in Heterotypic Pancreatic Microtumors. Cancers. 2020;12:1401. doi: 10.3390/cancers12061401. PubMed DOI PMC
Hughes C.S., Postovit L.M., Lajoie G.A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–1890. doi: 10.1002/pmic.200900758. PubMed DOI
Benton G., George J., Kleinman H.K., Arnaoutova I.P. Advancing science and technology via 3D culture on basement membrane matrix. J. Cell Physiol. 2009;221:18–25. doi: 10.1002/jcp.21832. PubMed DOI
Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016;16:582–598. doi: 10.1038/nrc.2016.73. PubMed DOI
Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative Stress in Cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001. PubMed DOI PMC
Pervaiz S., Clement M.V. Tumor intracellular redox status and drug resistance--serendipity or a causal relationship? Curr. Pharm. Des. 2004;10:1969–1977. doi: 10.2174/1381612043384411. PubMed DOI
Onodera Y., Teramura T., Takehara T., Shigi K., Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio. 2015;5:492–501. doi: 10.1016/j.fob.2015.06.001. PubMed DOI PMC
Chiang S.K., Chen S.E., Chang L.C. The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells. 2021;10:2401. doi: 10.3390/cells10092401. PubMed DOI PMC
Fontaine E. Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences. Front. Endocrinol. 2018;9:753. doi: 10.3389/fendo.2018.00753. PubMed DOI PMC
de Haan L.R., Reiniers M.J., Reeskamp L.F., Belkouz A., Ao L., Cheng S., Ding B., van Golen R.F., Heger M. Experimental Conditions That Influence the Utility of 2′7′-Dichlorodihydrofluorescein Diacetate (DCFH(2)-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status. Antioxidants. 2022;11:1424. doi: 10.3390/antiox11081424. PubMed DOI PMC
Broekgaarden M., Bulin A.L., Frederick J., Mai Z., Hasan T. Tracking Photodynamic- and Chemotherapy-Induced Redox-State Perturbations in 3D Culture Models of Pancreatic Cancer: A Tool for Identifying Therapy-Induced Metabolic Changes. J. Clin. Med. 2019;8:1399. doi: 10.3390/jcm8091399. PubMed DOI PMC
Carigga Gutierrez N.M., Le Clainche T., Coll J.L., Sancey L., Broekgaarden M. Generating Large Numbers of Pancreatic Microtumors on Alginate-Gelatin Hydrogels for Quantitative Imaging of Tumor Growth and Photodynamic Therapy Optimization. Methods Mol. Biol. 2022;2451:91–105. doi: 10.1007/978-1-0716-2099-1_8. PubMed DOI
Cramer G.M., Jones D.P., El-Hamidi H., Celli J.P. ECM Composition and Rheology Regulate Growth, Motility, and Response to Photodynamic Therapy in 3D Models of Pancreatic Ductal Adenocarcinoma. Mol. Cancer Res. 2017;15:15–25. doi: 10.1158/1541-7786.MCR-16-0260. PubMed DOI PMC
Jafari R., Cramer G.M., Celli J.P. Modulation of Extracellular Matrix Rigidity Via Riboflavin-mediated Photocrosslinking Regulates Invasive Motility and Treatment Response in a 3D Pancreatic Tumor Model. Photochem. Photobiol. 2020;96:365–372. doi: 10.1111/php.13191. PubMed DOI PMC
Andersen T., Auk-Emblem P., Dornish M. 3D Cell Culture in Alginate Hydrogels. Microarrays. 2015;4:133–161. doi: 10.3390/microarrays4020133. PubMed DOI PMC
Abdelrahim A.A., Hong S., Song J.M. Integrative In Situ Photodynamic Therapy-Induced Cell Death Measurement of 3D-Bioprinted MCF-7 Tumor Spheroids. Anal. Chem. 2022;94:13936–13943. doi: 10.1021/acs.analchem.2c03022. PubMed DOI
Biffi G., Oni T.E., Spielman B., Hao Y., Elyada E., Park Y., Preall J., Tuveson D.A. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFbeta to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282–301. doi: 10.1158/2159-8290.CD-18-0710. PubMed DOI PMC
Lehnert L., Trost H., Schmiegel W., Roder C., Kalthoff H. Hollow-spheres: A new model for analyses of differentiation of pancreatic duct epithelial cells. Ann. N. Y. Acad. Sci. 1999;880:83–93. doi: 10.1111/j.1749-6632.1999.tb09512.x. PubMed DOI
Sipos B., Moser S., Kalthoff H., Torok V., Lohr M., Kloppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: Towards the establishment of an in vitro research platform. Virchows Arch. 2003;442:444–452. doi: 10.1007/s00428-003-0784-4. PubMed DOI
Winterhoff B.J., Arlt A., Duttmann A., Ungefroren H., Schafer H., Kalthoff H., Kruse M.L. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system. Differentiation. 2012;83:148–157. doi: 10.1016/j.diff.2011.11.013. PubMed DOI
Algarni A., Greenman J., Madden L.A. PO-48—Assessment of the procoagulant potential state of tumour-MP in cancer patients. Thromb. Res. 2016;140((Suppl. 1)):S194. doi: 10.1016/S0049-3848(16)30181-5. PubMed DOI
Lee W.T., Lee J., Kim H., Nguyen N.T., Lee E.S., Oh K.T., Choi H.G., Youn Y.S. Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mater. Today Bio. 2021;12:100164. doi: 10.1016/j.mtbio.2021.100164. PubMed DOI PMC
Yang J., Zhang Z., Zhang Y., Ni X., Zhang G., Cui X., Liu M., Xu C., Zhang Q., Zhu H., et al. ZIP4 Promotes Muscle Wasting and Cachexia in Mice with Orthotopic Pancreatic Tumors by Stimulating RAB27B-Regulated Release of Extracellular Vesicles From Cancer Cells. Gastroenterology. 2019;156:722–734.e726. doi: 10.1053/j.gastro.2018.10.026. PubMed DOI PMC
Hye Jeong J., Park S., Lee S., Kim Y., Kyong Shim I., Jeong S.Y., Kyung Choi E., Kim J., Jun E. Orthotopic model of pancreatic cancer using CD34+ humanized mice and generation of tumor organoids from humanized tumors. Int. Immunopharmacol. 2023;121:110451. doi: 10.1016/j.intimp.2023.110451. PubMed DOI
Er O., Tuncel A., Ocakoglu K., Ince M., Kolatan E.H., Yilmaz O., Aktas S., Yurt F. Radiolabeling, In Vitro Cell Uptake, and In Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Mol. Pharm. 2020;17:2648–2659. doi: 10.1021/acs.molpharmaceut.0c00331. PubMed DOI
Samkoe K.S., Chen A., Rizvi I., O’Hara J.A., Hoopes P.J., Pereira S.P., Hasan T., Pogue B.W. Imaging tumor variation in response to photodynamic therapy in pancreatic cancer xenograft models. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:251–259. doi: 10.1016/j.ijrobp.2009.08.041. PubMed DOI PMC
Yu L.S., Jhunjhunwala M., Hong S.Y., Yu L.Y., Lin W.R., Chen C.S. Tissue Architecture Influences the Biological Effectiveness of Boron Neutron Capture Therapy in In Vitro/In Silico Three-Dimensional Self-Assembly Cell Models of Pancreatic Cancers. Cancers. 2021;13:4058. doi: 10.3390/cancers13164058. PubMed DOI PMC
Karnevi E., Rosendahl A.H., Hilmersson K.S., Saleem M.A., Andersson R. Impact by pancreatic stellate cells on epithelial-mesenchymal transition and pancreatic cancer cell invasion: Adding a third dimension in vitro. Exp. Cell Res. 2016;346:206–215. doi: 10.1016/j.yexcr.2016.07.017. PubMed DOI
Jhaveri A.V., Zhou L., Ralff M.D., Lee Y.S., Navaraj A., Carneiro B.A., Safran H., Prabhu V.V., Ross E.A., Lee S., et al. Combination of ONC201 and TLY012 induces selective, synergistic apoptosis in vitro and significantly delays PDAC xenograft growth in vivo. Cancer Biol. Ther. 2021;22:607–618. doi: 10.1080/15384047.2021.1976567. PubMed DOI PMC
Lee J., Han S., Thapa Magar T.B., Gurung P., Lee J., Seong D., Park S., Kim Y.W., Jeon M., Kim J. Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy. Int. J. Mol. Sci. 2024;25:3457. doi: 10.3390/ijms25063457. PubMed DOI PMC
Froeling F.E., Feig C., Chelala C., Dobson R., Mein C.E., Tuveson D.A., Clevers H., Hart I.R., Kocher H.M. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology. 2011;141:1486–1497.e14. doi: 10.1053/j.gastro.2011.06.047. PubMed DOI
Kuroda Y., Oda T., Shimomura O., Hashimoto S., Akashi Y., Miyazaki Y., Furuya K., Furuta T., Nakahashi H., Louphrasitthiphol P., et al. Lectin-based phototherapy targeting cell surface glycans for pancreatic cancer. Int. J. Cancer. 2023;152:1425–1437. doi: 10.1002/ijc.34362. PubMed DOI PMC
Benzing C., Lam H., Tsang C.M., Rimmer A., Arroyo-Berdugo Y., Calle Y., Wells C.M. TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer. 2019;19:1214. doi: 10.1186/s12885-019-6429-z. PubMed DOI PMC
Shapoval O., Vetvicka D., Patsula V., Engstova H., Kockova O., Konefal M., Kabesova M., Horak D. Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo. Pharmaceutics. 2023;15:2694. doi: 10.3390/pharmaceutics15122694. PubMed DOI PMC
Gaviraghi M., Tunici P., Valensin S., Rossi M., Giordano C., Magnoni L., Dandrea M., Montagna L., Ritelli R., Scarpa A., et al. Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells. Biosci. Rep. 2011;31:45–55. doi: 10.1042/BSR20100018. PubMed DOI PMC
Nishino H., Takano S., Yoshitomi H., Suzuki K., Kagawa S., Shimazaki R., Shimizu H., Furukawa K., Miyazaki M., Ohtsuka M. Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med. 2017;6:2686–2696. doi: 10.1002/cam4.1212. PubMed DOI PMC
Anthiya S., Ozturk S.C., Yanik H., Tavukcuoglu E., Sahin A., Datta D., Charisse K., Alvarez D.M., Loza M.I., Calvo A., et al. Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors. J. Control. Release. 2023;357:67–83. doi: 10.1016/j.jconrel.2023.03.016. PubMed DOI
Xu D., Yuan H., Meng Z., Yang C., Li Z., Li M., Zhang Z., Gan Y., Tu H. Cadherin 13 Inhibits Pancreatic Cancer Progression and Epithelial-mesenchymal Transition by Wnt/beta-Catenin Signaling. J. Cancer. 2020;11:2101–2112. doi: 10.7150/jca.37762. PubMed DOI PMC
Nguyen H.D., Lin C.C. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater. 2024;177:203–215. doi: 10.1016/j.actbio.2024.02.010. PubMed DOI PMC
Kettler B., Trauzold A., Roder C., Egberts J.H., Kalthoff H. Topology impacts TRAIL therapy: Differences in primary cancer growth and liver metastasis between orthotopic and subcutaneous xenotransplants of pancreatic ductal adenocarcinoma cells. Hepatobiliary Pancreat. Dis. Int. 2021;20:279–284. doi: 10.1016/j.hbpd.2021.04.005. PubMed DOI
Feng H., Ou B.C., Zhao J.K., Yin S., Lu A.G., Oechsle E., Thasler W.E. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: Displaying heterogeneity and crater-like structure on inner layer. J. Cancer Res. Clin. Oncol. 2017;143:1771–1786. doi: 10.1007/s00432-017-2434-2. PubMed DOI PMC
Fiore P.F., Di Pace A.L., Conti L.A., Tumino N., Besi F., Scaglione S., Munari E., Moretta L., Vacca P. Different effects of NK cells and NK-derived soluble factors on cell lines derived from primary or metastatic pancreatic cancers. Cancer Immunol. Immunother. 2023;72:1417–1428. doi: 10.1007/s00262-022-03340-z. PubMed DOI PMC
Curley R.C., Burke C.S., Gkika K.S., Noorani S., Walsh N., Keyes T.E. Phototoxicity of Tridentate Ru(II) Polypyridyl Complex with Expanded Bite Angles toward Mammalian Cells and Multicellular Tumor Spheroids. Inorg. Chem. 2023;62:13089–13102. doi: 10.1021/acs.inorgchem.3c01982. PubMed DOI PMC
Gagliano N., Celesti G., Tacchini L., Pluchino S., Sforza C., Rasile M., Valerio V., Laghi L., Conte V., Procacci P. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model. World J. Gastroenterol. 2016;22:4466–4483. doi: 10.3748/wjg.v22.i18.4466. PubMed DOI PMC
Gang J., Park S.B., Hyung W., Choi E.H., Wen J., Kim H.S., Shul Y.G., Haam S., Song S.Y. Magnetic poly epsilon-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Target. 2007;15:445–453. doi: 10.1080/10611860701453901. PubMed DOI
Mohammad R.M., Al-Katib A., Pettit G.R., Vaitkevicius V.K., Joshi U., Adsay V., Majumdar A.P., Sarkar F.H. An orthotopic model of human pancreatic cancer in severe combined immunodeficient mice: Potential application for preclinical studies. Clin. Cancer Res. 1998;4:887–894. PubMed
Usha L., Klapko O., Edassery S. Xenogeneic fibroblasts inhibit the growth of the breast and ovarian cancer cell lines in co-culture. Neoplasma. 2021;68:1265–1271. doi: 10.4149/neo_2021_210226N252. PubMed DOI
Chen S.T., Kuo T.C., Liao Y.Y., Lin M.C., Tien Y.W., Huang M.C. Silencing of MUC20 suppresses the malignant character of pancreatic ductal adenocarcinoma cells through inhibition of the HGF/MET pathway. Oncogene. 2018;37:6041–6053. doi: 10.1038/s41388-018-0403-0. PubMed DOI PMC
Lal S., Cheung E.C., Zarei M., Preet R., Chand S.N., Mambelli-Lisboa N.C., Romeo C., Stout M.C., Londin E., Goetz A., et al. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol. Cancer Res. 2017;15:696–707. doi: 10.1158/1541-7786.MCR-16-0361. PubMed DOI PMC
Fredebohm J., Boettcher M., Eisen C., Gaida M.M., Heller A., Keleg S., Tost J., Greulich-Bode K.M., Hotz-Wagenblatt A., Lathrop M., et al. Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS ONE. 2012;7:e48503. doi: 10.1371/journal.pone.0048503. PubMed DOI PMC
Mohammad R.M., Dugan M.C., Mohamed A.N., Almatchy V.P., Flake T.M., Dergham S.T., Shields A.F., Al-Katib A.A., Vaitkevicius V.K., Sarkar F.H. Establishment of a human pancreatic tumor xenograft model: Potential application for preclinical evaluation of novel therapeutic agents. Pancreas. 1998;16:19–25. doi: 10.1097/00006676-199801000-00004. PubMed DOI
Matsuda Y., Ishiwata T., Kawamoto Y., Kawahara K., Peng W.X., Yamamoto T., Naito Z. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med. Mol. Morphol. 2010;43:211–217. doi: 10.1007/s00795-010-0497-0. PubMed DOI
Murota Y., Nagane M., Wu M., Santra M., Venkateswaran S., Tanaka S., Bradley M., Taga T., Tabu K. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells. Inflamm. Regen. 2023;43:46. doi: 10.1186/s41232-023-00296-0. PubMed DOI PMC
Hollevoet K., Mason-Osann E., Liu X.F., Imhof-Jung S., Niederfellner G., Pastan I. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol. Cancer Ther. 2014;13:2040–2049. doi: 10.1158/1535-7163.MCT-14-0089-T. PubMed DOI PMC
Tomar S., Zhang J., Khanal M., Hong J., Venugopalan A., Jiang Q., Sengupta M., Miettinen M., Li N., Pastan I., et al. Development of Highly Effective Anti-Mesothelin hYP218 Chimeric Antigen Receptor T Cells with Increased Tumor Infiltration and Persistence for Treating Solid Tumors. Mol. Cancer Ther. 2022;21:1195–1206. doi: 10.1158/1535-7163.MCT-22-0073. PubMed DOI PMC
Ikeda Y., Ezaki M., Hayashi I., Yasuda D., Nakayama K., Kono A. Establishment and characterization of human pancreatic cancer cell lines in tissue culture and in nude mice. Jpn. J. Cancer Res. 1990;81:987–993. doi: 10.1111/j.1349-7006.1990.tb03336.x. PubMed DOI PMC
Shichi Y., Gomi F., Hasegawa Y., Nonaka K., Shinji S., Takahashi K., Ishiwata T. Artificial intelligence-based analysis of time-lapse images of sphere formation and process of plate adhesion and spread of pancreatic cancer cells. Front. Cell Dev. Biol. 2023;11:1290753. doi: 10.3389/fcell.2023.1290753. PubMed DOI PMC
Xiong W., Friese-Hamim M., Johne A., Stroh C., Klevesath M., Falchook G.S., Hong D.S., Girard P., El Bawab S. Translational pharmacokinetic-pharmacodynamic modeling of preclinical and clinical data of the oral MET inhibitor tepotinib to determine the recommended phase II dose. CPT Pharmacomet. Syst. Pharmacol. 2021;10:428–440. doi: 10.1002/psp4.12602. PubMed DOI PMC
Ghosh S., Lovell J.F. Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy. Pharmaceutics. 2021;13:2183. doi: 10.3390/pharmaceutics13122183. PubMed DOI PMC
Heike M., Rohrig O., Gabbert H.E., Moll R., Meyer zum Buschenfelde K.H., Dippold W.G., Knuth A. New cell lines of gastric and pancreatic cancer: Distinct morphology, growth characteristics, expression of epithelial and immunoregulatory antigens. Virchows Arch. 1995;426:375–384. doi: 10.1007/BF00191347. PubMed DOI
Hlavaty J., Petznek H., Holzmuller H., Url A., Jandl G., Berger A., Salmons B., Gunzburg W.H., Renner M. Evaluation of a gene-directed enzyme-product therapy (GDEPT) in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer. PLoS ONE. 2012;7:e40611. doi: 10.1371/journal.pone.0040611. PubMed DOI PMC
Kalinina T., Gungor C., Thieltges S., Moller-Krull M., Penas E.M., Wicklein D., Streichert T., Schumacher U., Kalinin V., Simon R., et al. Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung. BMC Cancer. 2010;10:295. doi: 10.1186/1471-2407-10-295. PubMed DOI PMC
Yanagihara K., Kubo T., Mihara K., Kuwata T., Ochiai A., Seyama T., Yokozaki H. Development and Biological Analysis of a Novel Orthotopic Peritoneal Dissemination Mouse Model Generated Using a Pancreatic Ductal Adenocarcinoma Cell Line. Pancreas. 2019;48:315–322. doi: 10.1097/MPA.0000000000001253. PubMed DOI PMC
Blackham A.U., Northrup S.A., Willingham M., Sirintrapun J., Russell G.B., Lyles D.S., Stewart J.H. Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma. J. Surg. Res. 2014;187:412–426. doi: 10.1016/j.jss.2013.10.032. PubMed DOI PMC
Man Y.K.S., Davies J.A., Coughlan L., Pantelidou C., Blazquez-Moreno A., Marshall J.F., Parker A.L., Hallden G. The Novel Oncolytic Adenoviral Mutant Ad5-3Delta-A20T Retargeted to alphavbeta6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol. Cancer Ther. 2018;17:575–587. doi: 10.1158/1535-7163.MCT-17-0671. PubMed DOI
Xu Y., Fu J., Henderson M., Lee F., Jurcak N., Henn A., Wahl J., Shao Y., Wang J., Lyman M., et al. CLDN18.2 BiTE Engages Effector and Regulatory T Cells for Antitumor Immune Response in Preclinical Models of Pancreatic Cancer. Gastroenterology. 2023;165:1219–1232. doi: 10.1053/j.gastro.2023.06.037. PubMed DOI PMC
Salem A.F., Bonuccelli G., Bevilacqua G., Arafat H., Pestell R.G., Sotgia F., Lisanti M.P. Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle. 2011;10:3692–3700. doi: 10.4161/cc.10.21.17895. PubMed DOI PMC
Kaye E.G., Kailass K., Sadovski O., Beharry A.A. A Green-Absorbing, Red-Fluorescent Phenalenone-Based Photosensitizer as a Theranostic Agent for Photodynamic Therapy. ACS Med. Chem. Lett. 2021;12:1295–1301. doi: 10.1021/acsmedchemlett.1c00284. PubMed DOI PMC
Shen Y.J., Cao J., Sun F., Cai X.L., Li M.M., Zheng N.N., Qu C.Y., Zhang Y., Shen F., Zhou M., et al. Effect of photodynamic therapy with (17R,18R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt on pancreatic cancer cells in vitro and in vivo. World J. Gastroenterol. 2018;24:5246–5258. doi: 10.3748/wjg.v24.i46.5246. PubMed DOI PMC
Alves F., Contag S., Missbach M., Kaspareit J., Nebendahl K., Borchers U., Heidrich B., Streich R., Hiddemann W. An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas. 2001;23:227–235. doi: 10.1097/00006676-200110000-00002. PubMed DOI
Vankova K., Markova I., Jasprova J., Dvorak A., Subhanova I., Zelenka J., Novosadova I., Rasl J., Vomastek T., Sobotka R., et al. Chlorophyll-Mediated Changes in the Redox Status of Pancreatic Cancer Cells Are Associated with Its Anticancer Effects. Oxid. Med. Cell. Longev. 2018;2018:4069167. doi: 10.1155/2018/4069167. PubMed DOI PMC
Zhao X., Li D.C., Zhu X.G., Gan W.J., Li Z., Xiong F., Zhang Z.X., Zhang G.B., Zhang X.G., Zhao H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med. 2013;31:283–291. doi: 10.3892/ijmm.2012.1212. PubMed DOI PMC
Chen J., Liu T.H., Guo X.Y., Ye S.F. Two new human exocrine pancreatic adenocarcinoma cell lines in vitro and in vivo. Chin. Med. J. 1990;103:369–375. PubMed
Wei H.J., Yin T., Zhu Z., Shi P.F., Tian Y., Wang C.Y. Expression of CD44, CD24 and ESA in pancreatic adenocarcinoma cell lines varies with local microenvironment. Hepatobiliary Pancreat. Dis. Int. 2011;10:428–434. doi: 10.1016/S1499-3872(11)60073-8. PubMed DOI
Kumar M., Liu Z.R., Thapa L., Wang D.Y., Tian R., Qin R.Y. Mechanisms of inhibition of growth of human pancreatic carcinoma implanted in nude mice by somatostatin receptor subtype 2. Pancreas. 2004;29:141–151. doi: 10.1097/00006676-200408000-00009. PubMed DOI
Zhu H., Liang Z.Y., Ren X.Y., Liu T.H. Small interfering RNAs targeting mutant K-ras inhibit human pancreatic carcinoma cells growth in vitro and in vivo. Cancer Biol. Ther. 2006;5:1693–1698. doi: 10.4161/cbt.5.12.3466. PubMed DOI
Yano T., Ishikura H., Kato H., Ogawa Y., Kondo S., Kato H., Yoshiki T. Vaccination effect of interleukin-6-producing pancreatic cancer cells in nude mice: A model of tumor prevention and treatment in immune-compromised patients. Jpn. J. Cancer Res. 2001;92:83–87. doi: 10.1111/j.1349-7006.2001.tb01051.x. PubMed DOI PMC
Shichinohe T., Senmaru N., Furuuchi K., Ogiso Y., Ishikura H., Yoshiki T., Takahashi T., Kato H., Kuzumaki N. Suppression of pancreatic cancer by the dominant negative ras mutant, N116Y. J. Surg. Res. 1996;66:125–130. doi: 10.1006/jsre.1996.0383. PubMed DOI
Du X., He K., Huang Y., Xu Z., Kong M., Zhang J., Cao J., Teng L. Establishment of a novel human cell line retaining the characteristics of the original pancreatic adenocarcinoma, and evaluation of MEK as a therapeutic target. Int. J. Oncol. 2020;56:761–771. doi: 10.3892/ijo.2020.4965. PubMed DOI PMC
Rahman A., Matsuyama M., Ebihara A., Shibayama Y., Hasan A.U., Nakagami H., Suzuki F., Sun J., Kobayashi T., Hayashi H., et al. Antiproliferative Effects of Monoclonal Antibodies against (Pro)Renin Receptor in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther. 2020;19:1844–1855. doi: 10.1158/1535-7163.MCT-19-0228. PubMed DOI
Shichi Y., Gomi F., Ueda Y., Nonaka K., Hasegawa F., Hasegawa Y., Hinata N., Yoshimura H., Yamamoto M., Takahashi K., et al. Multiple cystic sphere formation from PK-8 cells in three-dimensional culture. Biochem. Biophys. Rep. 2022;32:101339. doi: 10.1016/j.bbrep.2022.101339. PubMed DOI PMC
Hoshida T., Sunamura M., Duda D.G., Egawa S., Miyazaki S., Shineha R., Hamada H., Ohtani H., Satomi S., Matsuno S. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas. 2002;25:111–121. doi: 10.1097/00006676-200208000-00001. PubMed DOI
Suemizu H., Monnai M., Ohnishi Y., Ito M., Tamaoki N., Nakamura M. Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/gammacnull (NOG) mice. Int. J. Oncol. 2007;31:741–751. doi: 10.3892/ijo.31.4.741. PubMed DOI
Hafeez B.B., Mustafa A., Fischer J.W., Singh A., Zhong W., Shekhani M.O., Meske L., Havighurst T., Kim K., Verma A.K. alpha-Mangostin: A dietary antioxidant derived from the pericarp of Garcinia mangostana L. inhibits pancreatic tumor growth in xenograft mouse model. Antioxid. Redox Signal. 2014;21:682–699. doi: 10.1089/ars.2013.5212. PubMed DOI PMC
Cykowiak M., Kleszcz R., Kucinska M., Paluszczak J., Szaefer H., Plewinski A., Piotrowska-Kempisty H., Murias M., Krajka-Kuzniak V. Attenuation of Pancreatic Cancer In Vitro and In Vivo via Modulation of Nrf2 and NF-kappaB Signaling Pathways by Natural Compounds. Cells. 2021;10:3556. doi: 10.3390/cells10123556. PubMed DOI PMC
Brancato V., Comunanza V., Imparato G., Cora D., Urciuolo F., Noghero A., Bussolino F., Netti P.A. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomater. 2017;49:152–166. doi: 10.1016/j.actbio.2016.11.072. PubMed DOI
Cherubini G., Kallin C., Mozetic A., Hammaren-Busch K., Muller H., Lemoine N.R., Hallden G. The oncolytic adenovirus AdDeltaDelta enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models. Gene Ther. 2011;18:1157–1165. doi: 10.1038/gt.2011.141. PubMed DOI
Dandawate P., Ghosh C., Palaniyandi K., Paul S., Rawal S., Pradhan R., Sayed A.A.A., Choudhury S., Standing D., Subramaniam D., et al. The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology. 2019;157:1646–1659.e1611. doi: 10.1053/j.gastro.2019.08.018. PubMed DOI PMC
Lachowski D., Matellan C., Cortes E., Saiani A., Miller A.F., Del Rio Hernandez A.E. Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment. Cancers. 2021;13:3286. doi: 10.3390/cancers13133286. PubMed DOI PMC
Taniguchi S., Iwamura T., Katsuki T. Correlation between spontaneous metastatic potential and type I collagenolytic activity in a human pancreatic cancer cell line (SUIT-2) and sublines. Clin. Exp. Metastasis. 1992;10:259–266. doi: 10.1007/BF00133561. PubMed DOI
Hennig R., Ventura J., Segersvard R., Ward E., Ding X.Z., Rao S.M., Jovanovic B.D., Iwamura T., Talamonti M.S., Bell R.H., Jr., et al. LY293111 improves efficacy of gemcitabine therapy on pancreatic cancer in a fluorescent orthotopic model in athymic mice. Neoplasia. 2005;7:417–425. doi: 10.1593/neo.04559. PubMed DOI PMC
Kramer B., Haan L., Vermeer M., Olivier T., Hankemeier T., Vulto P., Joore J., Lanz H.L. Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins. Int. J. Mol. Sci. 2019;20:4647. doi: 10.3390/ijms20184647. PubMed DOI PMC
Kurahara H., Bohl C., Natsugoe S., Nishizono Y., Harihar S., Sharma R., Iwakuma T., Welch D.R. Suppression of pancreatic cancer growth and metastasis by HMP19 identified through genome-wide shRNA screen. Int. J. Cancer. 2016;139:628–638. doi: 10.1002/ijc.30110. PubMed DOI PMC
Ye J., Kawaguchi M., Haruyama Y., Kanemaru A., Fukushima T., Yamamoto K., Lin C.Y., Kataoka H. Loss of hepatocyte growth factor activator inhibitor type 1 participates in metastatic spreading of human pancreatic cancer cells in a mouse orthotopic transplantation model. Cancer Sci. 2014;105:44–51. doi: 10.1111/cas.12306. PubMed DOI PMC
Diaz V.M., Planaguma J., Thomson T.M., Reventos J., Paciucci R. Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology. 2002;122:806–819. doi: 10.1053/gast.2002.31885. PubMed DOI
Liu C., Deng S., Jin K., Gong Y., Cheng H., Fan Z., Qian Y., Huang Q., Ni Q., Luo G., et al. Lewis antigen-negative pancreatic cancer: An aggressive subgroup. Int. J. Oncol. 2020;56:900–908. doi: 10.3892/ijo.2020.4989. PubMed DOI PMC
Yanagihara K., Takigahira M., Tanaka H., Arao T., Aoyagi Y., Oda T., Ochiai A., Nishio K. Establishment and molecular profiling of a novel human pancreatic cancer panel for 5-FU. Cancer Sci. 2008;99:1859–1864. doi: 10.1111/j.1349-7006.2008.00896.x. PubMed DOI PMC
Kozono S., Ohuchida K., Eguchi D., Ikenaga N., Fujiwara K., Cui L., Mizumoto K., Tanaka M. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 2013;73:2345–2356. doi: 10.1158/0008-5472.CAN-12-3180. PubMed DOI
Kawano K., Iwamura T., Yamanari H., Seo Y., Suganuma T., Chijiiwa K. Establishment and characterization of a novel human pancreatic cancer cell line (SUIT-4) metastasizing to lymph nodes and lungs in nude mice. Oncology. 2004;66:458–467. doi: 10.1159/000079500. PubMed DOI
Takahashi N., Aoyama F., Sawaguchi A. Three-dimensional culture of a pancreatic cancer cell line, SUIT-58, with air exposure can reflect the intrinsic features of the original tumor through electron microscopy. Microscopy. 2021;70:192–200. doi: 10.1093/jmicro/dfaa046. PubMed DOI
Sang M., Nakamura M., Ogata T., Sun D., Shimozato O., Nikaido T., Ozaki T. Impact of RUNX2 gene silencing on the gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 spheres. Oncol. Rep. 2018;39:2749–2758. doi: 10.3892/or.2018.6344. PubMed DOI
Li M.M., Cao J., Yang J.C., Shen Y.J., Cai X.L., Chen Y.W., Qu C.Y., Zhang Y., Shen F., Xu L.M. Effects of arginine-glycine-aspartic acid peptide-conjugated quantum dots-induced photodynamic therapy on pancreatic carcinoma in vivo. Int. J. Nanomed. 2017;12:2769–2779. doi: 10.2147/IJN.S130799. PubMed DOI PMC
Weber H.L., Gidekel M., Werbajh S., Salvatierra E., Rotondaro C., Sganga L., Haab G.A., Curiel D.T., Cafferata E.G., Podhajcer O.L. A Novel CDC25B Promoter-Based Oncolytic Adenovirus Inhibited Growth of Orthotopic Human Pancreatic Tumors in Different Preclinical Models. Clin. Cancer Res. 2015;21:1665–1674. doi: 10.1158/1078-0432.CCR-14-2316. PubMed DOI
Okabe T., Yamaguchi N., Ohsawa N. Establishment and characterization of a carcinoembryonic antigen (CEA)-producing cell line from a human carcinoma of the exocrine pancreas. Cancer. 1983;51:662–668. doi: 10.1002/1097-0142(19830215)51:4<662::AID-CNCR2820510419>3.0.CO;2-X. PubMed DOI
Saxena S., Purohit A., Varney M.L., Hayashi Y., Singh R.K. Semaphorin-5A maintains epithelial phenotype of malignant pancreatic cancer cells. BMC Cancer. 2018;18:1283. doi: 10.1186/s12885-018-5204-x. PubMed DOI PMC
Stefano E., Cossa L.G., De Castro F., De Luca E., Vergaro V., My G., Rovito G., Migoni D., Muscella A., Marsigliante S., et al. Evaluation of the Antitumor Effects of Platinum-Based [Pt(η1-C2H4-OR)(DMSO)(phen)]+ (R = Me, Et) Cationic Organometallic Complexes on Chemoresistant Pancreatic Cancer Cell Lines. Bioinorg. Chem. Appl. 2023;2023:5564624. doi: 10.1155/2023/5564624. PubMed DOI PMC
Neureiter D., Zopf S., Dimmler A., Stintzing S., Hahn E.G., Kirchner T., Herold C., Ocker M. Different capabilities of morphological pattern formation and its association with the expression of differentiation markers in a xenograft model of human pancreatic cancer cell lines. Pancreatology. 2005;5:387–397. doi: 10.1159/000086539. PubMed DOI
Heger M. Editor’s inaugural issue foreword: Perspectives on translational and clinical research. J. Clin. Transl. Res. 2015;1:1–5. doi: 10.18053/jctres.201501.005. PubMed DOI PMC
Gioeli D., Snow C.J., Simmers M.B., Hoang S.A., Figler R.A., Allende J.A., Roller D.G., Parsons J.T., Wulfkuhle J.D., Petricoin E.F., et al. Development of a multicellular pancreatic tumor microenvironment system using patient-derived tumor cells. Lab Chip. 2019;19:1193–1204. doi: 10.1039/C8LC00755A. PubMed DOI PMC
Stokes J.B., Adair S.J., Slack-Davis J.K., Walters D.M., Tilghman R.W., Hershey E.D., Lowrey B., Thomas K.S., Bouton A.H., Hwang R.F., et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol. Cancer Ther. 2011;10:2135–2145. doi: 10.1158/1535-7163.MCT-11-0261. PubMed DOI PMC
Walters D.M., Stokes J.B., Adair S.J., Stelow E.B., Borgman C.A., Lowrey B.T., Xin W., Blais E.M., Lee J.K., Papin J.A., et al. Clinical, molecular and genetic validation of a murine orthotopic xenograft model of pancreatic adenocarcinoma using fresh human specimens. PLoS ONE. 2013;8:e77065. doi: 10.1371/journal.pone.0077065. PubMed DOI PMC
Gorg C., Seifart U., Gorg K., Zugmaier G. Color Doppler sonographic mapping of pulmonary lesions: Evidence of dual arterial supply by spectral analysis. J. Ultrasound Med. 2003;22:1033–1039. doi: 10.7863/jum.2003.22.10.1033. PubMed DOI
Baronzio G., Schwartz L., Kiselevsky M., Guais A., Sanders E., Milanesi G., Baronzio M., Freitas I. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res. 2012;32:405–414. PubMed
Majumder S., Islam M.T., Righetti R. Non-invasive imaging of interstitial fluid transport parameters in solid tumors in vivo. Sci. Rep. 2023;13:7132. doi: 10.1038/s41598-023-33651-9. PubMed DOI PMC
Di Maggio F., Arumugam P., Delvecchio F.R., Batista S., Lechertier T., Hodivala-Dilke K., Kocher H.M. Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma. Pancreatology. 2016;16:995–1004. doi: 10.1016/j.pan.2016.05.393. PubMed DOI PMC
Korbelik M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 1996;14:329–334. doi: 10.1089/clm.1996.14.329. PubMed DOI
van Duijnhoven F.H., Aalbers R.I., Rovers J.P., Terpstra O.T., Kuppen P.J. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology. 2003;207:105–113. doi: 10.1078/0171-2985-00221. PubMed DOI
Canti G., De Simone A., Korbelik M. Photodynamic therapy and the immune system in experimental oncology. Photochem. Photobiol. Sci. 2002;1:79–80. doi: 10.1039/b109007k. PubMed DOI
Castano A.P., Mroz P., Hamblin M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer. 2006;6:535–545. doi: 10.1038/nrc1894. PubMed DOI PMC
Kousis P.C., Henderson B.W., Maier P.G., Gollnick S.O. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67:10501–10510. doi: 10.1158/0008-5472.CAN-07-1778. PubMed DOI PMC
Gollnick S.O., Evans S.S., Baumann H., Owczarczak B., Maier P., Vaughan L., Wang W.C., Unger E., Henderson B.W. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br. J. Cancer. 2003;88:1772–1779. doi: 10.1038/sj.bjc.6600864. PubMed DOI PMC
Hwang H.S., Shin H., Han J., Na K. Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. J. Pharm. Investig. 2018;48:143–151. doi: 10.1007/s40005-017-0377-x. PubMed DOI PMC
Korbelik M., Krosl G., Krosl J., Dougherty G.J. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56:5647–5652. PubMed
Korbelik M., Dougherty G.J. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999;59:1941–1946. PubMed
Hendrzak-Henion J.A., Knisely T.L., Cincotta L., Cincotta E., Cincotta A.H. Role of the immune system in mediating the antitumor effect of benzophenothiazine photodynamic therapy. Photochem. Photobiol. 1999;69:575–581. doi: 10.1111/j.1751-1097.1999.tb03330.x. PubMed DOI
Castano A.P., Liu Q., Hamblin M.R. A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br. J. Cancer. 2006;94:391–397. doi: 10.1038/sj.bjc.6602953. PubMed DOI PMC
Uenaka A., Nakayama E. Murine leukemia RL male 1 and sarcoma Meth A antigens recognized by cytotoxic T lymphocytes (CTL) Cancer Sci. 2003;94:931–936. doi: 10.1111/j.1349-7006.2003.tb01380.x. PubMed DOI PMC
Broekgaarden M., Kos M., Jurg F.A., van Beek A.A., van Gulik T.M., Heger M. Inhibition of NF-kappaB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy. Int. J. Mol. Sci. 2015;16:19960–19977. doi: 10.3390/ijms160819960. PubMed DOI PMC
Chen J., Liao S., Xiao Z., Pan Q., Wang X., Shen K., Wang S., Yang L., Guo F., Liu H.F., et al. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front. Immunol. 2022;13:1007579. doi: 10.3389/fimmu.2022.1007579. PubMed DOI PMC
Partecke I.L., Kaeding A., Sendler M., Albers N., Kuhn J.P., Speerforck S., Roese S., Seubert F., Diedrich S., Kuehn S., et al. In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer. 2011;11:40. doi: 10.1186/1471-2407-11-40. PubMed DOI PMC
Courtin A., Richards F.M., Bapiro T.E., Bramhall J.L., Neesse A., Cook N., Krippendorff B.F., Tuveson D.A., Jodrell D.I. Anti-tumour efficacy of capecitabine in a genetically engineered mouse model of pancreatic cancer. PLoS ONE. 2013;8:e67330. doi: 10.1371/journal.pone.0067330. PubMed DOI PMC
Blaauboer A., Van Koetsveld P.M., Mustafa D.A.M., Dumas J., Dogan F., Van Zwienen S., Van Eijck C.H.J., Hofland L.J. Immunomodulatory antitumor effect of interferon-beta combined with gemcitabine in pancreatic cancer. Int. J. Oncol. 2022;61:97. doi: 10.3892/ijo.2022.5387. PubMed DOI
Nasiri E., Student M., Roth K., Siti Utami N., Huber M., Buchholz M., Gress T.M., Bauer C. IL18 Receptor Signaling Inhibits Intratumoral CD8+ T-Cell Migration in a Murine Pancreatic Cancer Model. Cells. 2023;12:456. doi: 10.3390/cells12030456. PubMed DOI PMC
Czaplinska D., Ialchina R., Andersen H.B., Yao J., Stigliani A., Dannesboe J., Flinck M., Chen X., Mitrega J., Gnosa S.P., et al. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int. J. Cancer. 2023;152:1210–1225. doi: 10.1002/ijc.34367. PubMed DOI PMC
Fukushima H., Furusawa A., Kato T., Wakiyama H., Takao S., Okuyama S., Choyke P.L., Kobayashi H. Intratumoral IL15 Improves Efficacy of Near-Infrared Photoimmunotherapy. Mol. Cancer Ther. 2023;22:1215–1227. doi: 10.1158/1535-7163.MCT-23-0210. PubMed DOI PMC
Zhou F., Yang J., Zhang Y., Liu M., Lang M.L., Li M., Chen W.R. Local Phototherapy Synergizes with Immunoadjuvant for Treatment of Pancreatic Cancer through Induced Immunogenic Tumor Vaccine. Clin. Cancer Res. 2018;24:5335–5346. doi: 10.1158/1078-0432.CCR-18-1126. PubMed DOI PMC
Torres M.P., Rachagani S., Souchek J.J., Mallya K., Johansson S.L., Batra S.K. Novel pancreatic cancer cell lines derived from genetically engineered mouse models of spontaneous pancreatic adenocarcinoma: Applications in diagnosis and therapy. PLoS ONE. 2013;8:e80580. doi: 10.1371/journal.pone.0080580. PubMed DOI PMC
Benali N., Cordelier P., Calise D., Pages P., Rochaix P., Nagy A., Esteve J.P., Pour P.M., Schally A.V., Vaysse N., et al. Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc. Natl. Acad. Sci. USA. 2000;97:9180–9185. doi: 10.1073/pnas.130196697. PubMed DOI PMC
Hirota M., Egami H., Mogaki M., Kazakoff K., Chaney W.G., Pour P.M. Relationship between blood group-A antigen expression and malignant potential in hamster pancreatic cancers. Teratog. Carcinog. Mutagen. 1993;13:217–224. doi: 10.1002/tcm.1770130503. PubMed DOI
Chang B.K., Gutman R. Chemotherapy of pancreatic adenocarcinoma: Initial report on two transplantable models in the Syrian hamster. Cancer Res. 1982;42:2666–2670. PubMed
Baptista M.S., Cadet J., Di Mascio P., Ghogare A.A., Greer A., Hamblin M.R., Lorente C., Nunez S.C., Ribeiro M.S., Thomas A.H., et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017;93:912–919. doi: 10.1111/php.12716. PubMed DOI PMC
Sitnik T.M., Hampton J.A., Henderson B.W. Reduction of tumour oxygenation during and after photodynamic therapy in vivo: Effects of fluence rate. Br. J. Cancer. 1998;77:1386–1394. doi: 10.1038/bjc.1998.231. PubMed DOI PMC
Debefve E., Pegaz B., van den Bergh H., Wagnieres G., Lange N., Ballini J.P. Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne), in the CAM model. Angiogenesis. 2008;11:235–243. doi: 10.1007/s10456-008-9106-4. PubMed DOI PMC
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. PubMed DOI PMC
Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kedzierska E., Knap-Czop K., Kotlinska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI
Dias L.M., de Keijzer M.J., Ernst D., Sharifi F., de Klerk D.J., Kleijn T.G., Desclos E., Kochan J.A., de Haan L.R., Franchi L.P., et al. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. J. Photochem. Photobiol. B. 2022;234:112500. doi: 10.1016/j.jphotobiol.2022.112500. PubMed DOI
Xie Q., Li Z., Liu Y., Zhang D., Su M., Niitsu H., Lu Y., Coffey R.J., Bai M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021;134:716–729. doi: 10.1016/j.actbio.2021.07.052. PubMed DOI PMC
Lou J., Aragaki M., Bernards N., Kinoshita T., Mo J., Motooka Y., Ishiwata T., Gregor A., Chee T., Chen Z., et al. Repeated porphyrin lipoprotein-based photodynamic therapy controls distant disease in mouse mesothelioma via the abscopal effect. Nanophotonics. 2021;10:3279–3294. doi: 10.1515/nanoph-2021-0241. PubMed DOI PMC
Osuna de la Pena D., Trabulo S.M.D., Collin E., Liu Y., Sharma S., Tatari M., Behrens D., Erkan M., Lawlor R.T., Scarpa A., et al. Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nat. Commun. 2021;12:5623. doi: 10.1038/s41467-021-25921-9. PubMed DOI PMC
Godier C., Baka Z., Lamy L., Gribova V., Marchal P., Lavalle P., Gaffet E., Bezdetnaya L., Alem H. A 3D Bio-Printed-Based Model for Pancreatic Ductal Adenocarcinoma. Diseases. 2024;12:206. doi: 10.3390/diseases12090206. PubMed DOI PMC
Sun H., Wang Y., Sun M., Ke X., Li C., Jin B., Pang M., Wang Y., Jiang S., Du L., et al. Developing Patient-Derived 3D-Bioprinting models of pancreatic cancer. J. Adv. Res. 2024 doi: 10.1016/j.jare.2024.09.011. in press . PubMed DOI
Haque M.R., Wessel C.R., Leary D.D., Wang C., Bhushan A., Bishehsari F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst. Nanoeng. 2022;8:36. doi: 10.1038/s41378-022-00370-6. PubMed DOI PMC
Sgarminato V., Marasso S.L., Cocuzza M., Scordo G., Ballesio A., Ciardelli G., Tonda-Turo C. PDAC-on-chip for in vitro modeling of stromal and pancreatic cancer cell crosstalk. Biomater. Sci. 2022;11:208–224. doi: 10.1039/D2BM00881E. PubMed DOI
Goluba K., Parfejevs V., Rostoka E., Jekabsons K., Blake I., Neimane A., Ule A.A., Rimsa R., Vangravs R., Pcolkins A., et al. Personalized PDAC chip with functional endothelial barrier for tumour biomarker detection: A platform for precision medicine applications. Mater. Today Bio. 2024;29:101262. doi: 10.1016/j.mtbio.2024.101262. PubMed DOI PMC
Geyer M., Schreyer D., Gaul L.M., Pfeffer S., Pilarsky C., Queiroz K. A microfluidic-based PDAC organoid system reveals the impact of hypoxia in response to treatment. Cell Death Discov. 2023;9:20. doi: 10.1038/s41420-023-01334-z. PubMed DOI PMC
Kumano K., Nakahashi H., Louphrasitthiphol P., Kuroda Y., Miyazaki Y., Shimomura O., Hashimoto S., Akashi Y., Mathis B.J., Kim J., et al. Hypoxia at 3D organoid establishment selects essential subclones within heterogenous pancreatic cancer. Front. Cell Dev. Biol. 2024;12:1327772. doi: 10.3389/fcell.2024.1327772. PubMed DOI PMC
Abou Khouzam R., Lehn J.M., Mayr H., Clavien P.A., Wallace M.B., Ducreux M., Limani P., Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers. 2023;15:1235. doi: 10.3390/cancers15041235. PubMed DOI PMC
Broekgaarden M., Weijer R., van Wijk A.C., Cox R.C., Egmond M.R., Hoebe R., van Gulik T.M., Heger M. Photodynamic Therapy with Liposomal Zinc Phthalocyanine and Tirapazamine Increases Tumor Cell Death via DNA Damage. J. Biomed. Nanotechnol. 2017;13:204–220. doi: 10.1166/jbn.2017.2327. PubMed DOI
Cros J., Raffenne J., Couvelard A., Pote N. Tumor Heterogeneity in Pancreatic Adenocarcinoma. Pathobiology. 2018;85:64–71. doi: 10.1159/000477773. PubMed DOI
Palma A.M., Vudatha V., Peixoto M.L., Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv. Cancer Res. 2023;159:203–249. doi: 10.1016/bs.acr.2023.02.005. PubMed DOI
Evan T., Wang V.M., Behrens A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene. 2022;41:4686–4695. doi: 10.1038/s41388-022-02448-x. PubMed DOI PMC
Roos E., Soer E.C., Klompmaker S., Meijer L.L., Besselink M.G., Giovannetti E., Heger M., Kazemier G., Klumpen H.J., Takkenberg R.B., et al. Crossing borders: A systematic review with quantitative analysis of genetic mutations of carcinomas of the biliary tract. Crit. Rev. Oncol. Hematol. 2019;140:8–16. doi: 10.1016/j.critrevonc.2019.05.011. PubMed DOI
Patel T. Cholangiocarcinoma—Controversies and challenges. Nat. Rev. Gastroenterol. Hepatol. 2011;8:189–200. doi: 10.1038/nrgastro.2011.20. PubMed DOI PMC
Banales J.M., Marin J.J.G., Lamarca A., Rodrigues P.M., Khan S.A., Roberts L.R., Cardinale V., Carpino G., Andersen J.B., Braconi C., et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020;17:557–588. doi: 10.1038/s41575-020-0310-z. PubMed DOI PMC
de Klerk D.J., de Keijzer M.J., Dias L.M., Heemskerk J., de Haan L.R., Kleijn T.G., Franchi L.P., Heger M., Photodynamic Therapy Study G. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol. Biol. 2022;2451:405–480. doi: 10.1007/978-1-0716-2099-1_20. PubMed DOI
Moss D.M., Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br. J. Pharmacol. 2014;171:3963–3979. doi: 10.1111/bph.12604. PubMed DOI PMC
Kadam R.S., Bourne D.W., Kompella U.B. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metab. Dispos. 2012;40:1380–1388. doi: 10.1124/dmd.112.044925. PubMed DOI PMC
Zhang A., Meng K., Liu Y., Pan Y., Qu W., Chen D., Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid. Interface Sci. 2020;284:102261. doi: 10.1016/j.cis.2020.102261. PubMed DOI
Liu W., Zhu Y., Ye L., Zhu Y., Wang Y. Comparison of tumor angiogenesis in subcutaneous and orthotopic LNCaP mouse models using contrast-enhanced ultrasound imaging. Transl. Cancer Res. 2021;10:3268–3277. doi: 10.21037/tcr-21-372. PubMed DOI PMC
Guerin M.V., Finisguerra V., Van den Eynde B.J., Bercovici N., Trautmann A. Preclinical murine tumor models: A structural and functional perspective. Elife. 2020;9:e50740. doi: 10.7554/eLife.50740. PubMed DOI PMC
Fung A.S., Lee C., Yu M., Tannock I.F. The effect of chemotherapeutic agents on tumor vasculature in subcutaneous and orthotopic human tumor xenografts. BMC Cancer. 2015;15:112. doi: 10.1186/s12885-015-1091-6. PubMed DOI PMC
Li M., Bosman E.D.C., Smith O.M., Lintern N., de Klerk D.J., Sun H., Cheng S., Pan W., Storm G., Khaled Y.S., et al. Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma. J. Photochem. Photobiol. B. 2024;254:112903. doi: 10.1016/j.jphotobiol.2024.112903. PubMed DOI
Price O.T., Lau C., Zucker R.M. Quantitative fluorescence of 5-FU-treated fetal rat limbs using confocal laser scanning microscopy and Lysotracker Red. Cytom. A. 2003;53:9–21. doi: 10.1002/cyto.a.10036. PubMed DOI
Zhitomirsky B., Farber H., Assaraf Y.G. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: Implications for anticancer drug design evading multidrug resistance. J. Cell. Mol. Med. 2018;22:2131–2141. doi: 10.1111/jcmm.13485. PubMed DOI PMC
Heger M., Salles I.I., van Vuure W., Hamelers I.H., de Kroon A.I., Deckmyn H., Beek J.F. On the interaction of fluorophore-encapsulating PEGylated lecithin liposomes with hamster and human platelets. Microvasc. Res. 2009;78:57–66. doi: 10.1016/j.mvr.2009.02.006. PubMed DOI
Barton B.E., Karras J.G., Murphy T.F., Barton A., Huang H.F. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther. 2004;3:11–20. doi: 10.1158/1535-7163.11.3.1. PubMed DOI
Reiniers M.J., de Haan L.R., Reeskamp L.F., Broekgaarden M., van Golen R.F., Heger M. Analysis and Optimization of Conditions for the Use of 2′,7′-Dichlorofluorescein Diacetate in Cultured Hepatocytes. Antioxidants. 2021;10:674. doi: 10.3390/antiox10050674. PubMed DOI PMC
Harada M., Woodhams J., MacRobert A.J., Feneley M.R., Kato H., Bown S.G. The vascular response to photodynamic therapy with ATX-S10Na(II) in the normal rat colon. J. Photochem. Photobiol. B. 2005;79:223–230. doi: 10.1016/j.jphotobiol.2004.08.011. PubMed DOI
Suzuki T., Tanaka M., Sasaki M., Ichikawa H., Nishie H., Kataoka H. Vascular Shutdown by Photodynamic Therapy Using Talaporfin Sodium. Cancers. 2020;12:2369. doi: 10.3390/cancers12092369. PubMed DOI PMC