Hyperbilirubinemia Protects against Aging-Associated Inflammation and Metabolic Deterioration
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27547293
PubMed Central
PMC4983390
DOI
10.1155/2016/6190609
Knihovny.cz E-zdroje
- MeSH
- bilirubin krev MeSH
- fibroblasty metabolismus patologie MeSH
- hyperbilirubinemie krev patologie MeSH
- intracelulární prostor metabolismus MeSH
- kultivované buňky MeSH
- metabolické nemoci komplikace patologie MeSH
- mitochondrie metabolismus MeSH
- potkani Gunn MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí patologie MeSH
- zánět komplikace patologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bilirubin MeSH
- reaktivní formy kyslíku MeSH
Mild constitutive hyperbilirubinemia is associated with a reduced risk of cardiovascular diseases, diabetes, and cancer. Since these pathologies are associated with aging, inflammation, and oxidative stress, we investigated whether hyperbilirubinemia interferes with ROS homeostasis in cell cultures and with inflammation, senescence, and mitochondrial dysfunction in aged rats. Human embryonic kidney cells and rat primary fibroblasts showed a dose-dependent decrease in the ratio of oxidized/reduced glutathione, intracellular H2O2 levels, and mitochondrial ROS production, with increasing bilirubin concentrations in the culture media. Compared to their normobilirubinemic siblings, aged hyperbilirubinemic Gunn rats showed significantly smaller amounts of visceral fat, better glucose tolerance, and decreased serum levels of proinflammatory cytokines TNFα, IL-1β, and IL-18. Simultaneously, livers from Gunn rats showed decreased expression of senescence markers and cell cycle inhibitors p21 and p16. Mitochondria from aged Gunn rats showed higher respiration and lower H2O2 production compared to controls. In conclusion, we demonstrated that mildly elevated serum bilirubin is generally associated with attenuation of oxidative stress and with better anthropometric parameters, decreased inflammatory status, increased glucose tolerance, fewer signs of cellular senescence, and enhanced mitochondrial function in aged rats.
Zobrazit více v PubMed
Vítek L., Ostrow J. D. Bilirubin chemistry and metabolism; harmful and protective aspects. Current Pharmaceutical Design. 2009;15(25):2869–2883. doi: 10.2174/138161209789058237. PubMed DOI
Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235(4792):1043–1046. doi: 10.1126/science.3029864. PubMed DOI
Stocker R. Antioxidant activities of bile pigments. Antioxidants & Redox Signaling. 2004;6(5):841–849. doi: 10.1089/ars.2004.6.841. PubMed DOI
Zucker S. D., Goessling W., Bootle E. J., Sterritt C. Localization of bilirubin in phospholipid bilayers by parallax analysis of fluorescence quenching. Journal of Lipid Research. 2001;42(9):1377–1388. PubMed
Kaur H., Hughes M. N., Green C. J., Naughton P., Foresti R., Motterlini R. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Letters. 2003;543(1–3):113–119. doi: 10.1016/s0014-5793(03)00420-4. PubMed DOI
Zelenka J., Muchova L., Zelenkova M., et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie. 2012;94(8):1821–1827. doi: 10.1016/j.biochi.2012.04.026. PubMed DOI
Jansen T., Hortmann M., Oelze M., et al. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. Journal of Molecular and Cellular Cardiology. 2010;49(2):186–195. doi: 10.1016/j.yjmcc.2010.04.011. PubMed DOI
Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nature Medicine. 2014;20(7):709–711. doi: 10.1038/nm.3624. PubMed DOI
Wagner K.-H., Wallner M., Mölzer C., et al. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clinical Science. 2015;129(1):1–25. doi: 10.1042/cs20140566. PubMed DOI
Wang W. W., Smith D. L. H., Zucker S. D. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40(2):424–433. doi: 10.1002/hep.20334. PubMed DOI
Lanone S., Bloc S., Foresti R., et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. The FASEB Journal. 2005;19(13):1890–1892. doi: 10.1096/fj.04-2368fje. PubMed DOI
Ollinger R., Kogler P., Troppmair J., et al. Bilirubin inhibits tumor cell growth via activation of ERK. Cell Cycle. 2007;6(24):3078–3085. doi: 10.4161/cc.6.24.5022. PubMed DOI
Öllinger R., Bilban M., Erat A., et al. A natural inhibitor of vascular smooth muscle cell proliferation. Circulation. 2005;112(7):1030–1039. doi: 10.1161/CIRCULATIONAHA.104.528802. PubMed DOI
Bulmer A. C., Ried K., Blanchfield J. T., Wagner K.-H. The anti-mutagenic properties of bile pigments. Mutation Research. 2008;658(1-2):28–41. doi: 10.1016/j.mrrev.2007.05.001. PubMed DOI
Pflueger A., Croatt A. J., Peterson T. E., et al. The hyperbilirubinemic Gunn rat is resistant to the pressor effects of angiotensin II. American Journal of Physiology—Renal Physiology. 2005;288(3):F552–F558. doi: 10.1152/ajprenal.00278.2004. PubMed DOI
Stec D. E., Storm M. V., Pruett B. E., Gousset M. U. Antihypertensive actions of moderate hyperbilirubinemia: role of superoxide inhibition. American Journal of Hypertension. 2013;26(7):918–923. doi: 10.1093/ajh/hpt038. PubMed DOI PMC
Wallner M., Marculescu R., Doberer D., et al. Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert's syndrome. Clinical Science. 2013;125(5):257–264. doi: 10.1042/cs20120661. PubMed DOI
Bulmer A. C., Verkade H. J., Wagner K.-H. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Progress in Lipid Research. 2013;52(2):193–205. doi: 10.1016/j.plipres.2012.11.001. PubMed DOI
U. S. National Institute of Aging. Global Health and Aging. Geneva, Switzerland: World Health Organization; 2011.
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxidants & Redox Signaling. 2013;19(12):1420–1445. doi: 10.1089/ars.2012.5148. PubMed DOI PMC
Youm Y.-H., Grant R. W., McCabe L. R., et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metabolism. 2013;18(4):519–532. doi: 10.1016/j.cmet.2013.09.010. PubMed DOI PMC
Facchini F. S., Hua N., Abbasi F., Reaven G. M. Insulin resistance as a predictor of age-related diseases. Journal of Clinical Endocrinology and Metabolism. 2001;86(8):3574–3578. doi: 10.1210/jc.86.8.3574. PubMed DOI
Collado M., Blasco M. A., Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–233. doi: 10.1016/j.cell.2007.07.003. PubMed DOI
Lagouge M., Larsson N.-G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. Journal of Internal Medicine. 2013;273(6):529–543. doi: 10.1111/joim.12055. PubMed DOI PMC
Koníčková R., Vaňková K., Vaníková J., et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology. 2014;13(2):273–283. PubMed
Jabůrek M., Ježek J., Zelenka J., Ježek P. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. International Journal of Biochemistry and Cell Biology. 2013;45(4):816–825. doi: 10.1016/j.biocel.2013.01.010. PubMed DOI
McDonagh A. F., Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochemical Journal. 1972;129(3):797–800. doi: 10.1042/bj1290797. PubMed DOI PMC
Belousov V. V., Fradkov A. F., Lukyanov K. A., et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods. 2006;3(4):281–286. doi: 10.1038/nmeth866. PubMed DOI
Debacq-Chainiaux F., Erusalimsky J. D., Campisi J., Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols. 2009;4(12):1798–1806. doi: 10.1038/nprot.2009.191. PubMed DOI
Qaisiya M., Coda Zabetta C. D., Bellarosa C., Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cellular Signalling. 2014;26(3):512–520. doi: 10.1016/j.cellsig.2013.11.029. PubMed DOI
Guo W., Jiang L., Bhasin S., Khan S. M., Swerdlow R. H. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion. 2009;9(4):261–265. doi: 10.1016/j.mito.2009.03.003. PubMed DOI PMC
Alán L., Špaček T., Zelenka J., et al. Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. Transplantation Proceedings. 2011;43(9):3281–3284. doi: 10.1016/j.transproceed.2011.09.055. PubMed DOI
Zelenka J., Dvořák A., Alán L. L-lactate protects skin fibroblasts against aging-associated mitochondrial dysfunction via mitohormesis. Oxidative Medicine and Cellular Longevity. 2015;2015:14. doi: 10.1155/2015/351698.351698 PubMed DOI PMC
Rodrigues C. M. P., Solá S., Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology. 2002;35(5):1186–1195. doi: 10.1053/jhep.2002.32967. PubMed DOI
Keshavan P., Schwemberger S. J., Smith D. L. H., Babcock G. F., Zucker S. D. Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. International Journal of Cancer. 2004;112(3):433–445. doi: 10.1002/ijc.20418. PubMed DOI
Kröller-Schön S., Steven S., Kossmann S., et al. Molecular mechanisms of the crosstalk between mitochondria and nadph oxidase through reactive oxygen species—studies in white blood cells and in animal models. Antioxidants & Redox Signaling. 2014;20(2):247–266. doi: 10.1089/ars.2012.4953. PubMed DOI PMC
Gazzin S., Zelenka J., Zdrahalova L., et al. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatric Research. 2012;71(6):653–660. doi: 10.1038/pr.2012.23. PubMed DOI
Zelenka J., Leníček M., Muchová L., et al. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2008;867(1):37–42. doi: 10.1016/j.jchromb.2008.03.005. PubMed DOI
Finelli C., Sommella L., Gioia S., La Sala N., Tarantino G. Should visceral fat be reduced to increase longevity? Ageing Research Reviews. 2013;12(4):996–1004. doi: 10.1016/j.arr.2013.05.007. PubMed DOI
Zhou R., Yazdi A. S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663. PubMed DOI
Campisi J. Aging, cellular senescence, and cancer. Annual Review of Physiology. 2013;75:685–705. doi: 10.1146/annurev-physiol-030212-183653. PubMed DOI PMC
Velarde M. C., Flynn J. M., Day N. U., Melov S., Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging. 2012;4(1):3–12. doi: 10.18632/aging.100423. PubMed DOI PMC
Harman D. The biologic clock: the mitochondria? Journal of the American Geriatrics Society. 1972;20(4):145–147. doi: 10.1111/j.1532-5415.1972.tb00787.x. PubMed DOI
Mullen A. R., Hu Z., Shi X., et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Reports. 2014;7(5):1679–1690. doi: 10.1016/j.celrep.2014.04.037. PubMed DOI PMC
The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers