The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers

. 2021 ; 12 () : 567001. [epub] 20210304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33746746

For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.

Zobrazit více v PubMed

Almeida M. A., Rezende L. (1981). The serum levels of unbound bilirubin that induce changes in some brain mitochondrial reactions in newborn guinea-pigs. Experientia 37, 807–809. 10.1007/BF01985651 PubMed DOI

Arnold C., Pedroza C., Tyson J. E. (2014). Phototherapy in ELBW newborns: does it work? Is it safe? The evidence from randomized clinical trials. Semin. Perinatol. 38, 452–464. 10.1053/j.semperi.2014.08.008 PubMed DOI

Auger N., Laverdiere C., Ayoub A., Lo E., Luu T. M. (2019). Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer 145, 2061–2069. 10.1002/ijc.32158 PubMed DOI

Barone E., Trombino S., Cassano R., Sgambato A., De Paola B., Di Stasio E., et al. (2009). Characterization of the S-denitrosylating activity of bilirubin. J. Cell Mol. Med. 13, 2365–2375. 10.1111/j.1582-4934.2009.00680.x PubMed DOI PMC

Brand M. D., Nicholls D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312. 10.1042/BJ20110162 PubMed DOI PMC

Crewe C., Kinter M., Szweda L. I. (2013). Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart. PLoS One 8, e77280, 10.1371/journal.pone.0077280 PubMed DOI PMC

Dal Ben M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. (2017). Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci. Rep. 7, 41032. 10.1038/srep41032 PubMed DOI PMC

Dvorak A., Zelenka J., Smolkova K., Vitek L., Jezek P. (2017). Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res. 66, 293–304. 10.33549/physiolres.933249 PubMed DOI

Gordon D. M., Blomquist T. M., Miruzzi S. A., Mccullumsmith R., Stec D. E., Hinds T. D., Jr. (2019). RNA sequencing in human HepG2 hepatocytes reveals PPAR-α mediates transcriptome responsiveness of bilirubin. Physiol. Genomics 51, 234–240. 10.1152/physiolgenomics.00028.2019 PubMed DOI PMC

Gordon D. M., Neifer K. L., Hamoud A. A., Hawk C. F., Nestor-Kalinoski A. L., Miruzzi S. A., et al. (2020). Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J. Biol. Chem. 295, 9804–9822. 10.1074/jbc.RA120.013700 PubMed DOI PMC

Grojean S., Koziel V., Vert P., Daval J. L. (2000). Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 166, 334–341. 10.1006/exnr.2000.7518 PubMed DOI

Hansen R., Gibson S., De Paiva Alves E., Goddard M., Maclaren A., Karcher A. M., et al. (2018). Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci. Rep. 8, 6470. 10.1038/s41598-018-24811-3 PubMed DOI PMC

Hegyi T., Goldie E., Hiatt M. (1994). The protective role of bilirubin in oxygen-radical diseases of the preterm infant. J. Perinatol. 14, 296–300. PubMed

Hinds T. D., Jr., Stec D. E. (2019). Bilirubin safeguards cardiorenal and metabolic diseases: a protective role in health. Curr. Hypertens. Rep. 21, 87. 10.1007/s11906-019-0994-z PubMed DOI PMC

Hinds T. D., Jr., Stec D. E. (2018). Bilirubin, a cardiometabolic signaling molecule. Hypertension 72, 788–795. 10.1161/HYPERTENSIONAHA.118.11130 PubMed DOI PMC

Hyperbilirubinemia (2004). Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114, 297–316. 10.1542/peds.114.1.297 PubMed DOI

Jangi S., Otterbein L., Robson S. (2013). The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 45, 2843–2851. 10.1016/j.biocel.2013.09.014 PubMed DOI

Jašprová J., Dal Ben M., Hurný D., Hwang S., Žížalová K., Kotek J., et al. (2018). Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 8, 7444. 10.1038/s41598-018-25684-2 PubMed DOI PMC

Jasprova J., Dal Ben M., Vianello E., Goncharova I., Urbanova M., Vyroubalova K., et al. (2016). The biological effects of bilirubin photoisomers. PLoS One 11, e0148126. 10.1371/journal.pone.0148126 PubMed DOI PMC

Jasprova J., Dvorak A., Vecka M., Lenicek M., Lacina O., Valaskova P., et al. (2020). A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 10, 4411. 10.1038/s41598-020-61280-z PubMed DOI PMC

Kappler M., Pabst U., Weinholdt C., Taubert H., Rot S., Kaune T., et al. (2019). Causes and consequences of A glutamine induced normoxic HIF1 activity for the Tumor metabolism. Int. J. Mol. Sci. 20, 4742. 10.3390/ijms20194742 PubMed DOI PMC

Khan M., Malik K. A., Bai R. (2016). Hypocalcemia in jaundiced neonates receiving phototherapy. Pak J. Med. Sci. 32, 1449–1452. 10.12669/pjms.326.10849 PubMed DOI PMC

Kim J. W., Tchernyshyov I., Semenza G. L., Dang C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185. 10.1016/j.cmet.2006.02.002 PubMed DOI

Koves T. R., Ussher J. R., Noland R. C., Slentz D., Mosedale M., Ilkayeva O., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45–56. 10.1016/j.cmet.2007.10.013 PubMed DOI

Lightner D. A., Quistad G. B. (1972). Hematinic acid and propentdyopents from bilirubin photo-oxidation in vitro . FEBS Lett. 25, 94–96. 10.1016/0014-5793(72)80462-9 PubMed DOI

Lightner D. A., Linnane W. P., 3rd, Ahlfors C. E. (1984). Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr. Res. 18, 696–700. 10.1203/00006450-198408000-00003 PubMed DOI

Maisels M. J., McDonagh A. F. (2008). Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928. 10.1056/NEJMct0708376 PubMed DOI

Martinez-Reyes I., Chandel N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102. 10.1038/s41467-019-13668-3 PubMed DOI PMC

McDonagh A. F., Assisi F. (1972). The ready isomerization of bilirubin IX-in aqueous solution. Biochem. J. 129, 797–800. 10.1042/bj1290797 PubMed DOI PMC

McDonagh A. F., Palma L. A. (1980). Hepatic excretion of circulating bilirubin photoproducts in the Gunn rat. J. Clin. Invest 66, 1182–1185. 10.1172/JCI109951 PubMed DOI PMC

Mcnamee M. B., Cardwell C. R., Patterson C. C. (2012). Neonatal jaundice is associated with a small increase in the risk of childhood type 1 diabetes: a meta-analysis of observational studies. Acta Diabetol. 49, 83–87. 10.1007/s00592-011-0326-5 PubMed DOI

Mustafa M. G., Cowger M. L., King T. E. (1969). Effects of bilirubin on mitochondrial reactions. J. Biol. Chem. 244, 6403–6414. 10.1016/s0021-9258(18)63479-9 PubMed DOI

Mustafa M. G., Cowger M. L., King T. E. (1967). On the energy-dependent bilirubin-induced mitochondrial swelling. Biochem. Biophys. Res. Commun. 29, 661–666. 10.1016/0006-291x(67)90267-7 PubMed DOI

Noir B. A., Boveris A., Garaza Pereira A. M., Stoppani A. O. (1972). Bilirubin: a multi-site inhibitor of mitochondrial respiration. FEBS Lett. 27, 270–274. 10.1016/0014-5793(72)80638-0 PubMed DOI

Onishi S., Kawade N., Itoh S., Isobe K., Sugiyama S., Hashimoto T., et al. (1981). Kinetics of biliary excretion of the main two bilirubin photoproducts after injection into Gunn rats. Biochem. J. 198, 107–112. 10.1042/bj1980107 PubMed DOI PMC

Raghavan K., Thomas E., Patole S., Muller R. (2005). Is phototherapy a risk factor for ileus in high-risk neonates?. J. Matern. Fetal Neonatal. Med. 18, 129–131. 10.1080/14767050500233076 PubMed DOI

Rakhshandehroo M., Knoch B., Muller M., Kersten S. (2010). Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010, 612089. 10.1155/2010/612089 PubMed DOI PMC

Roca L., Calligaris S., Wennberg R. P., Ahlfors C. E., Malik S. G., Ostrow J. D., et al. (2006). Factors affecting the binding of bilirubin to serum albumins: validation and application of the peroxidase method. Pediatr. Res. 60, 724–728. 10.1203/01.pdr.0000245992.89965.94 PubMed DOI

Rodrigues C. M., Sola S., Brites D. (2002). Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 35, 1186–1195. 10.1053/jhep.2002.32967 PubMed DOI

Safar H., Elsary A. Y. (2020). Neonatal jaundice: the other side of the coin in the development of allergy. Am. J. Perinatol 37, 1357–1363. 10.1055/s-0039-1693697 PubMed DOI

Seidel R. A., Schowtka B., Klopfleisch M., Kuhl T., Weiland A., Koch A., et al. (2014). Total synthesis and characterization of the bilirubin oxidation product (Z)-2-(4-ethenyl-3-methyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)ethanamide (Z-BOX B). Tetrahedron Lett. 55, 6526–6529. 10.1016/j.tetlet.2014.09.108 PubMed DOI

Shekeeb S. M., Kumar P., Sharma N., Narang A., Prasad R. (2008). Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol. Cell Biochem. 317, 51–59. 10.1007/s11010-008-9807-4 PubMed DOI

Smolkova K., Dvorak A., Zelenka J., Vitek L., Jezek P. (2015). Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. Int. J. Biochem. Cell Biol. 65, 125–133. 10.1016/j.biocel.2015.05.012 PubMed DOI

Soufli I., Toumi R., Rafa H., Touil-Boukoffa C. (2016). Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353–360. 10.4292/wjgpt.v7.i3.353 PubMed DOI PMC

Soutar M. P. M., Kempthorne L., Annuario E., Luft C., Wray S., Ketteler R., et al. (2019). FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy 15, 2002–2011. 10.1080/15548627.2019.1603549 PubMed DOI PMC

Stec D. E., John K., Trabbic C. J., Luniwal A., Hankins M. W., Baum J., et al. (2016). Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One 11, e0153427. 10.1371/journal.pone.0153427 PubMed DOI PMC

Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046. 10.1126/science.3029864 PubMed DOI

Stumpf D. A., Eguren L. A., Parks J. K. (1985). Bilirubin increases mitochondrial inner membrane conductance. Biochem. Med. 34, 226–229. 10.1016/0006-2944(85)90115-2 PubMed DOI

Valaskova P., Dvorak A., Lenicek M., Zizalova K., Kutinova-Canova N., Zelenka J., et al. (2019). Hyperbilirubinemia in Gunn rats is associated with decreased inflammatory response in LPS-mediated systemic inflammation. Ijms 20, 2306. 10.3390/ijms20092306 PubMed DOI PMC

Vítek L. (2020). Bilirubin as a signaling molecule. Med. Res. Rev. 40, 1335–1351. 10.1002/med.21660 PubMed DOI

Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. (1998). Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can J. Physiol. Pharmacol. 76, 1057–1065. 10.1139/cjpp-76-12-1057 PubMed DOI

Wagner K. H., Wallner M., Molzer C., Gazzin S., Bulmer A. C., Tiribelli C., et al. (2015). Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 129, 1–25. 10.1042/CS20140566 PubMed DOI

Watchko J. F., Tiribelli C. (2013). Bilirubin-induced neurologic damage--mechanisms and management approaches. N. Engl. J. Med. 369, 2021–2030. 10.1056/NEJMra1308124 PubMed DOI

Williams N. C., O'Neill L. a. J. (2018). A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141. 10.3389/fimmu.2018.00141 PubMed DOI PMC

Xie Q. W., Kashiwabara Y., Nathan C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705–4708. 10.1016/s0021-9258(17)37600-7 PubMed DOI

Xiong T., Qu Y., Cambier S., Mu D. (2011). The side effects of phototherapy for neonatal jaundice: what do we know? What should we do?. Eur. J. Pediatr. 170, 1247–1255. 10.1007/s00431-011-1454-1 PubMed DOI

Yamaguchi T., Shioji I., Sugimoto A., Komoda Y., Nakajima H. (1994). Chemical structure of a new family of bile pigments from human urine. J. Biochem. 116, 298–303. 10.1093/oxfordjournals.jbchem.a124523 PubMed DOI

Zelenka J., Dvorak A., Alan L., Zadinova M., Haluzik M., Vitek L. (2016). Hyperbilirubinemia protects against aging-associated inflammation and metabolic deterioration. Oxid. Med. Cell Longev. 2016, 6190609. 10.1155/2016/6190609 PubMed DOI PMC

Zelenka J., Muchova L., Zelenkova M., Vanova K., Vreman H. J., Wong R. J., et al. (2012). Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 94, 1821–1827. 10.1016/j.biochi.2012.04.0210.1016/j.biochi.2012.04.026 PubMed DOI

Zielinski L. P., Smith A. C., Smith A. G., Robinson A. J. (2016). Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 31, 45–55. 10.1016/j.mito.2016.09.003 PubMed DOI PMC

Zucker S. D., Vogel M. E., Kindel T. L., Smith D. L., Idelman G., Avissar U., et al. (2015). Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G841–G854. 10.1152/ajpgi.00149.2014 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...