Hyperbilirubinemia in Gunn Rats is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation

. 2019 May 09 ; 20 (9) : . [epub] 20190509

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31075981

Grantová podpora
GAUK No. 168216 and SVV 260370/2018 Univerzita Karlova v Praze
RVO-VFN64165/2018 Ministerstvo Zdravotnictví Ceské Republiky

Decreased inflammatory status has been reported in subjects with mild unconjugated hyperbilirubinemia. However, mechanisms of the anti-inflammatory actions of bilirubin (BR) are not fully understood. The aim of this study is to assess the role of BR in systemic inflammation using hyperbilirubinemic Gunn rats as well as their normobilirubinemic littermates and further in primary hepatocytes. The rats were treated with lipopolysaccharide (LPS, 6 mg/kg intraperitoneally) for 12 h, their blood and liver were collected for analyses of inflammatory and hepatic injury markers. Primary hepatocytes were treated with BR and TNF-α. LPS-treated Gunn rats had a significantly decreased inflammatory response, as evidenced by the anti-inflammatory profile of white blood cell subsets, and lower hepatic and systemic expressions of IL-6, TNF-α, IL-1β, and IL-10. Hepatic mRNA expression of LPS-binding protein was upregulated in Gunn rats before and after LPS treatment. In addition, liver injury markers were lower in Gunn rats as compared to in LPS-treated controls. The exposure of primary hepatocytes to TNF-α with BR led to a milder decrease in phosphorylation of the NF-κB p65 subunit compared to in cells without BR. In conclusion, hyperbilirubinemia in Gunn rats is associated with an attenuated systemic inflammatory response and decreased liver damage upon exposure to LPS.

Zobrazit více v PubMed

Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A novel perspective on the biology of bilirubin in health and disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI

Jangi S., Otterbein L., Robson S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell B. 2013;45:2843–2851. doi: 10.1016/j.biocel.2013.09.014. PubMed DOI

Wagner K.H., Wallner M., Molzer C., Gazzin S., Bulmer A.C., Tiribelli C., Vitek L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015;129:1–25. doi: 10.1042/CS20140566. PubMed DOI

Basiglio C.L., Arriaga S.M., Pelusa F., Almara A.M., Kapitulnik J., Mottino A.D. Complement activation and disease: Protective effects of hyperbilirubinaemia. Clin. Sci. 2010;118:99–113. doi: 10.1042/CS20080540. PubMed DOI

Adin C.A., VanGundy Z.C., Papenfuss T.L., Xu F., Ghanem M., Lakey J., Hadley G.A. Physiologic doses of bilirubin contribute to tolerance of islet transplants by suppressing the innate immune response. Cell Transplant. 2017;26:11–21. doi: 10.3727/096368916X692096. PubMed DOI PMC

Idelman G., Smith D.L.H., Zucker S.D. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol. 2015;5:398–408. doi: 10.1016/j.redox.2015.06.008. PubMed DOI PMC

Vetvicka V., Miler I., Sima P., Taborsky L., Fornusek L. The effect of bilirubin on the Fc receptor expression and phagocytic activity of mouse peritoneal macrophages. Folia Microbiol. 1985;30:373–380. doi: 10.1007/BF02927593. PubMed DOI

Nejedla Z. The development of immunological factors in infants with hyperbilirubinemia. Pediatrics. 1970;45:102–104. PubMed

Rocuts F., Zhang X.Y., Yan J., Yue Y.A., Thomas M., Bach F.H., Czismadia E., Wang H.J. Bilirubin promotes de novo generation of T regulatory cells. Cell Transplant. 2010;19:443–451. doi: 10.3727/096368909X484680. PubMed DOI

Liu Y., Li P., Lu J., Xiong W., Oger J., Tetzlaff W., Cynader M. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J. Immunol. 2008;181:1887–1897. doi: 10.4049/jimmunol.181.3.1887. PubMed DOI

Haga Y., Tempero M.A., Kay D., Zetterman R.K. Intracellular accumulation of unconjugated bilirubin inhibits phytohemagglutin-induced proliferation and interleukin-2 production of human lymphocytes. Dig. Dis. Sci. 1996;41:1468–1474. doi: 10.1007/BF02088574. PubMed DOI

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009;1:a001651. doi: 10.1101/cshperspect.a001651. PubMed DOI PMC

Jerala R. Structural biology of the LPS recognition. Int. J. Med. Microbiol. 2007;297:353–363. doi: 10.1016/j.ijmm.2007.04.001. PubMed DOI

Siebenlist U., Franzoso G., Brown K. Structure, regulation and function of Nf-Kappa-B. Annu. Rev. Cell Biol. 1994;10:405–455. doi: 10.1146/annurev.cb.10.110194.002201. PubMed DOI

Hansen T.W.R., Mathiesen S.B.W., Walaas S.I. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr. Res. 1996;39:1072–1077. doi: 10.1203/00006450-199606000-00023. PubMed DOI

Bruno G., Saracino A., Monno L., Angarano G. The Revival of an “Old” Marker: CD4/CD8 Ratio. Aids Rev. 2017;19:81–88. PubMed

Dhiman M., Garg N.J. P47(phox-/-)mice are compromised in expansion and activation of CD8(+) T cells and susceptible to trypanosoma cruzi infection. PLoS Pathog. 2014;10:e1004516. doi: 10.1371/journal.ppat.1004516. PubMed DOI PMC

Wang W.Z.W., Smith D.L.H., Zucker S.D. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40:424–433. doi: 10.1002/hep.20334. PubMed DOI

Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–324. doi: 10.1016/j.it.2010.05.006. PubMed DOI PMC

Ozer E.K., Goktas M.T., Kilinc I., Toker A., Bariskaner H., Ugurluoglu C., Iskit A.B. Infliximab alleviates the mortality, mesenteric hypoperfusion, aortic dysfunction, and multiple organ damage in septic rats. Can. J. Physiol. Pharm. 2017;95:866–872. doi: 10.1139/cjpp-2016-0628. PubMed DOI

Ohlsson K., Bjork P., Bergenfeldt M., Hageman R., Thompson R.C. Interleukin-1 receptor antagonist reduces mortality from endotoxin-shock. Nature. 1990;348:550–552. doi: 10.1038/348550a0. PubMed DOI

Nullens S., Staessens M., Peleman C., Plaeke P., Malhotra-Kumar S., Francque S., De Man J.G., De Winter B.Y. Beneficial effects of anti-interleukin-6 antibodies on impaired gastrointestinal motility, inflammation and increased colonic permeability in a murine model of sepsis are most pronounced when administered in a preventive setup. PLoS ONE. 2016;11:e0152914. doi: 10.1371/journal.pone.0152914. PubMed DOI PMC

Steinhauser M.E., Hogaboam G.M., Kunkel S.L., Lukacs N.W., Strieter R.M., Standiford T.J. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J. Immunol. 1999;162:392–399. PubMed

Gogos C.A., Drosou E., Bassaris H.P., Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000;181:176–180. doi: 10.1086/315214. PubMed DOI

Silva R.A., Appelberg R. Blocking the receptor for interleukin 10 protects mice from lethal listeriosis. Antimicrob. Agents Chempther. 2001;45:1312–1314. doi: 10.1128/AAC.45.4.1312-1314.2001. PubMed DOI PMC

Wang M.J., Jeng K.C.G., Ping L.I. Exogenous cytokine modulation or neutralization of interleukin-10 enhance survival in lipopolysaccharide-hyporesponsive C3H/HeJ mice with Klebsiella infection. Immunology. 1999;98:90–97. doi: 10.1046/j.1365-2567.1999.00838.x. PubMed DOI PMC

Van der Poll T., Marchant A., Keogh C.B., Goldman M., Lowry S.F. Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J. Infect. Dis. 1996;174:994–1000. doi: 10.1093/infdis/174.5.994. PubMed DOI

Jacobs M., Brown N., Allie N., Gulert R., Ryffel B. Increased resistance to mycobacterial infection in the absence of interleukin-10. Immunology. 2000;100:494–501. doi: 10.1046/j.1365-2567.2000.00053.x. PubMed DOI PMC

Lanone S., Bloc S., Foresti R., Almolki A., Taille C., Callebert J., Conti M., Goven D., Aubier M., Dureuil B., et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: Implications for protection against endotoxic shock in rats. FASEB J. 2005;19:1890–1892. doi: 10.1096/fj.04-2368fje. PubMed DOI

Muchova L., Vanova K., Zelenka J., Lenicek M., Petr T., Vejrazka M., Sticova E., Vreman H.J., Wong R.J., Vitek L. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: Implications for bile acid-mediated oxidative stress. J. Cell Mol. Med. 2011;15:1156–1165. doi: 10.1111/j.1582-4934.2010.01098.x. PubMed DOI PMC

Su G.L., Freeswick P.D., Geller D.A., Wang Q., Shapiro R.A., Wan Y.H., Billiar T.R., Tweardy D.J., Simmons R.L., Wang S.C. Molecular-cloning, characterization, and tissue distribution of rat lipopolysaccharide-binding protein - evidence for extrahepatic expression. J. Immunol. 1994;153:743–752. PubMed

Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 1999;189:1777–1789. doi: 10.1084/jem.189.11.1777. PubMed DOI PMC

Lamping N., Dettmer R., Schroder N.W.J., Pfeil D., Hallatschek W., Burger R., Schumann R.R. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Investig. 1998;101:2065–2071. doi: 10.1172/JCI2338. PubMed DOI PMC

Perkins N.D. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat. Rev. Mol. Cell. Bio. 2007;8:49–62. doi: 10.1038/nrm2083. PubMed DOI

Mazzone G.L., Rigato I., Ostrow J.D., Tiribelli C. Bilirubin effect on endothelial adhesion molecules expression is mediated by the NF-kappa B signaling pathway. Biosci. Trends. 2009;3:151–157. PubMed

Soares M.P., Seldon M.P., Gregoire I.P., Vassilevskaia T., Berberat P.O., Yu J., Tsui T.Y., Bach F.H. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol. 2004;172:3553–3563. doi: 10.4049/jimmunol.172.6.3553. PubMed DOI

Gibbs P.E.M., Maines M.D. Biliverdin inhibits activation of NF-kappa B: Reversal of inhibition by human biliverdin reductase. Int. J. Cancer. 2007;121:2567–2574. doi: 10.1002/ijc.22978. PubMed DOI

Nuhn P., Mitkus T., Ceyhan G.O., Kunzli B.M., Bergmann F., Fischer L., Giese N., Friess H., Berberat P.O. Heme oxygenase 1-generated carbon monoxide and biliverdin attenuate the course of experimental necrotizing pancreatitis. Pancreas. 2013;42:265–271. doi: 10.1097/MPA.0b013e318264cc8b. PubMed DOI

Jimi E., Strickland I., Voll R.E., Long M.X., Ghosh S. Differential role of the transcription factor NF-kappa B in selection and survival of CD4(+) and CD8(+) thymocytes. Immunity. 2008;29:523–537. doi: 10.1016/j.immuni.2008.08.010. PubMed DOI PMC

McDonagh A.F., Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC

Berry M.N., Grivell A.R., Grivell M.B., Phillips J.W. Isolated hepatocytes-past, present and future. Cell Biol. Toxicol. 1997;13:223–233. doi: 10.1023/A:1007402505482. PubMed DOI

Zelenka J., Lenicek M., Muchova L., Jirsa M., Kudla M., Balaz P., Zadinova M., Ostrow J.D., Wong R.J., Vitek L. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B. 2008;867:37–42. doi: 10.1016/j.jchromb.2008.03.005. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers

. 2021 ; 12 () : 567001. [epub] 20210304

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...