INTRODUCTION: The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED: We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION: Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
- MeSH
- Adaptor Proteins, Signal Transducing MeSH
- Molecular Targeted Therapy * MeSH
- Immunoconjugates pharmacology MeSH
- Immunotherapy * methods MeSH
- Humans MeSH
- Tumor Microenvironment * immunology MeSH
- Neoplasms * immunology drug therapy MeSH
- Patents as Topic * MeSH
- Antineoplastic Agents pharmacology MeSH
- Proto-Oncogene Proteins c-cbl * immunology antagonists & inhibitors MeSH
- Signal Transduction drug effects MeSH
- T-Lymphocytes immunology drug effects MeSH
- Drug Development * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Prognostic value of T-cells between primary colorectal cancer (pCRC) and its paired synchronous and metachronous liver metastasis (LM) is underinvestigated and is the subject of the present study. We enrolled into this retrospective cohort study patients, who underwent resection of both pCRC and synchronous LM (N = 55) or metachronous LM (N = 44). After immunohistochemical staining for CD3+, CD8+, and CD45R0+ whole slides were scanned and T-cell densities were quantified using QuPath software in tumor center (TC), inner margin (IM), outer margin (OM), and peritumor zone (PT) of pCRC and LM. High densities of CD8+ T-cells in TC, OM and PT of synchronous LM were associated with longer disease-free survival (DFS). Greater densities of CD3+ T-cells in IM and PT and CD8+ T-cells in IM, OM and PT in synchronous LM over pCRC were associated with longer DFS. Greater densities of CD8+ T-cells in the TC and IM and CD3+ T-cells in the IM of pCRC were found in the metachronous over synchronous group. The first novel finding demonstrated that high density of CD8+ T cells in synchronous LM were associated with favorable outcome. The second finding of high CD8+ cell density in pCRC in metachronous over synchronous CRC may provide a mechanistic basis for the delay of metastatic spread. Both findings could be applied clinically with own reference values.
- MeSH
- CD8-Positive T-Lymphocytes immunology MeSH
- Adult MeSH
- Colorectal Neoplasms * pathology immunology MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasms, Multiple Primary pathology immunology MeSH
- Liver Neoplasms * secondary immunology pathology MeSH
- Disease-Free Survival MeSH
- Prognosis MeSH
- Retrospective Studies MeSH
- Neoplasms, Second Primary pathology MeSH
- Aged MeSH
- T-Lymphocytes immunology pathology MeSH
- Lymphocytes, Tumor-Infiltrating immunology pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Immunotherapy represents a revolutionary advancement in cancer treatment, which has traditionally focused on T cells; however, the role of B cells in cancer immunotherapy has gained interest because of their role in antigen presentation, antibody production, and cytokine release. In this study, we examined the role of B cells in previously developed intratumoral MBTA therapy (mannan-BAM, TLR ligands, and anti-CD40 antibody) in murine models of MTT pheochromocytoma. The results indicated that B cells significantly enhance the success of MBTA therapy, with wild-type mice exhibiting a lower tumor incidence and smaller tumors compared with B cell-deficient mice. Increased IL-6 and TNF-alpha levels indicated severe inflammation and a potential cytokine storm in B cell-deficient mice. Neutralization of TNF-alpha ameliorated these complications but resulted in increased tumor recurrence. The results highlight the important role of B cells in enhancing the immune response and maintaining immune homeostasis during MBTA therapy. Our findings offer new insights into improving therapeutic outcomes.
- MeSH
- B-Lymphocytes * immunology MeSH
- Pheochromocytoma * immunology therapy MeSH
- Immunotherapy * methods MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Adrenal Gland Neoplasms * immunology therapy MeSH
- Tumor Necrosis Factor-alpha MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Intramural MeSH
Our aim is to determine the number of leukocytes, T lymphocytes and B lymphocytes and the expression of activation markers CD200 and CD23 on B lymphocytes in atopic dermatitis (AD) patients (treated and not treated with dupilumab) during the pollen season. We examined 29 patients not treated with dupilumab, 24 patients treated with dupilumab and 40 healthy subjects as a control group. The count of T and B lymphocytes and their subsets were assessed by flow cytometry. The non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni's modification was used for statistical processing. Although there was a significant improvement in skin findings in patients treated with dupilumab, the changes in immunological profile show a persistent altered immune response characterized by dysregulation and overactivation of B lymphocytes. Dupilumab therapy leads to normalization of relative T regulatory lymphocytes and total memory B lymphocytes and to decreased count of absolute CD8+ T lymphocytes. Why carry out this study?Studies investigating the immunological profile of atopic dermatitis (AD) patients during the pollen season are rare. There are no studies investigating the count of B lymphocytes (CD5+, CD22+ and CD73+ B lymphocytes) and the expression of activation markers CD23 and CD200 on B lymphocytes and on their subsets during pollen season in AD patients treated and non-treated with dupilumab therapy.What was learned from the study?In atopic dermatitis (AD) patients with and without dupilumab therapy, we confirmed the significantly higher count of absolute neutrophils, absolute monocytes, absolute eosinophils, absolute basophils, non-switched B lymphocytes, transitional B lymphocytes, CD23 memory, naive, non-switched, switched and total CD23 B lymphocytes, the relative count of CD200 memory and CD200 switched B lymphocytes.In dupilumab treated patients, we confirmed the significantly higher count of relative eosinophils, relative CD16+ eosinophils, relative CD200 non-switched B lymphocytes and lower count of absolute CD8+ T lymphocytes. Further studies should focus on investigating the effect of dupilumab on CD8+ T lymphocytes and their subpopulations.In patients without dupilumab therapy, we confirmed the significantly higher count of relative neutrophils, relative T regulatory lymphocytes and total memory B lymphocytes.The changes in the count of CD5+, CD22+ and CD73+ B lymphocytes were not observed during pollen season in both groups of AD patients.
- MeSH
- Dermatitis, Atopic * drug therapy immunology MeSH
- B-Lymphocytes immunology MeSH
- Antigens, CD MeSH
- Adult MeSH
- Antibodies, Monoclonal, Humanized * therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Pollen immunology MeSH
- Receptors, IgE MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Most kidney transplant patients who undergo biopsies are classified as having no rejection based on consensus thresholds. However, we hypothesized that because these patients have normal adaptive immune systems, T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) may exist as subthreshold activity in some transplants currently classified as no rejection. To examine this question, we studied genome-wide microarray results from 5086 kidney transplant biopsies (from 4170 patients). An updated molecular archetypal analysis designated 56% of biopsies as no rejection. Subthreshold molecular TCMR and/or ABMR activity molecular activity was detectable as elevated classifier scores in many biopsies classified as no rejection, with ABMR activity in many TCMR biopsies and TCMR activity in many ABMR biopsies. In biopsies classified as no rejection histologically and molecularly, molecular TCMR classifier scores correlated with increases in histologic TCMR features and molecular injury, lower estimated glomerular filtration rate, and higher risk of graft loss, and molecular ABMR activity correlated with increased glomerulitis and donor-specific antibody. No rejection biopsies with high subthreshold TCMR or ABMR activity had a higher probability of having TCMR or ABMR, respectively, diagnosed in a future biopsy. We conclude that many kidney transplant recipients have unrecognized subthreshold TCMR or ABMR activity, with significant implications for future problems.
- MeSH
- Biopsy MeSH
- Adult MeSH
- Glomerular Filtration Rate MeSH
- Isoantibodies immunology MeSH
- Middle Aged MeSH
- Humans MeSH
- Follow-Up Studies MeSH
- Graft Survival immunology MeSH
- Prognosis MeSH
- Graft Rejection * pathology immunology etiology MeSH
- Risk Factors MeSH
- T-Lymphocytes immunology MeSH
- Kidney Transplantation * adverse effects MeSH
- Kidney Function Tests MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Numerous studies have reported that increased interleukin 6 (IL-6) and soluble IL-6 receptor (sIL-6) levels induce inflammatory conditions. However, the exact mechanisms by which IL-6 drives inflammatory conditions remain unclear. Therefore, we investigated the potential role of IL-6/sIL-6R in inducing energy metabolism, including glycolysis, oxidative phosphorylation, lactate secretion and Akt/mTOR phosphorylation, in Jurkat cells, and whether IL-6 would increase the risk of developing inflammatory conditions due to the high metabolic profile of the T cells. Jurkat CD4 T-cell lines were stimulated with IL-6/sIL-6R for 24 h prior to 48-h stimulation with anti-CD3/CD28. Lactate secretion, glycolysis and oxidative phosphorylation levels were characterized using the Seahorse XF analyser. The Akt and mTOR phosphorylation status was detected using Western blotting. IL-6/sIL-6R significantly induced glycolysis and oxidative phosphorylation and their related parameters, including glycolytic capacity and maximal respiration, followed by significantly increased lactate secretion. Akt and mTOR phosphorylation were increased, which could have resulted from energy metabolism. Here we show that IL-6 enhanced the metabolic profile of Jurkat cells. This effect could have consequences for the metabolism-related signalling pathways, including Akt and mTOR, suggesting that IL-6 might promote T-cell energy metabolism, where T-cell hyperactivity might increase the inflammatory disease risk. The findings should be validated using studies on primary cells isolated from humans.
- MeSH
- Energy Metabolism * drug effects MeSH
- Phosphorylation drug effects MeSH
- Glycolysis drug effects MeSH
- Interleukin-6 * metabolism MeSH
- Jurkat Cells MeSH
- Lactic Acid metabolism MeSH
- Humans MeSH
- Oxidative Phosphorylation drug effects MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Signal Transduction * drug effects MeSH
- TOR Serine-Threonine Kinases * metabolism MeSH
- Inflammation * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Úvod a cíl studie: Uterinní NK (uNK) buňky jsou specializovanou subpopulací NK (natural killer) lymfocytů nacházejících se v endometriu. Hrají klíčovou roli v regulaci imunitní odpovědi a v procesu implantace embrya. Cílem této studie je retrospektivní analýza výsledků léčby metodou in vitro fertilizace (IVF) v souboru žen, které podstoupily imunofenotypizaci uNK buněk a na základě výsledků tohoto vyšetření byly, nebo nebyly léčeny imunomodulační terapií. Metody: Studie zahrnovala 122 pacientek, které podstoupily imunofenotypizaci uNK buněk v období od dubna do prosince 2023. Imunofenotypizace byla provedena metodou průtokové cytometrie. Pacientky byly roztříděny do čtyř skupin dle fenotypu uNK buněk: normální nálezy, nízké absolutní a relativní počty uNK (LOW-IMMUNE profil), nízké počty uNK v kombinaci s nežádoucím posunem směrem k cytotoxickému uNKdim imunofenotypu (MIXED-IMMUNE profil) a normální počty uNK, ale nežádoucí posun v poměru cytotoxických a regulačních uNK s cytotoxickým fenotypem (OVER-IMMUNE profil). Byly hodnoceny výsledky embryotransferu a výskyt potratů do ukončeného 12. týdne těhotenství v jednotlivých skupinách. Výsledky: Nejvyšší míra dosažení klinické gravidity byla nalezena v léčené skupině OVER- -IMMUNE (70 %), následované skupinou MIXED-IMMUNE (60 %). Skupina LOW-IMMUNE se od neléčené NORMAL skupiny signifikantně nelišila (p = 0,205). Nedostatečná imunitní aktivace (LOW-IMMUNE profil) byla signifikantně nejčastěji sdružena s prvotrimestrální těhotenskou ztrátou (p < 0,0001). Závěr: Tato studie přináší nové poznatky o potenciálu imunofenotypizace uNK buněk a následné imunomodulační terapie v léčbě poruch plodnosti. Ačkoli výsledky naznačují možné klinické přínosy, je zapotřebí dalšího výzkumu k potvrzení těchto zjištění a k objasnění mechanizmů, které vedou ke zlepšení výsledků léčby technikami asistované reprodukce.
Introduction and objective: Uterine NK (uNK) cells, a specialized subpopulation of natural killer (NK) lymphocytes located in the endometrium, play a crucial role in regulating the immune response and in the process of embryo implantation. This study aims to retrospectively analyze the outcomes of in vitro fertilization (IVF) treatment in a cohort of women who underwent uNK cell immunophenotyping with subsequent immunomodulatory therapy applied based on the results. Methods: The study included 122 patients who underwent uNK cell immunophenotyping between April and December 2023. Immunophenotyping was performed using flow cytometry. Patients were categorized into four groups according to their uNK cell phenotypes: normal findings, low absolute and relative numbers of uNK cells (LOW-IMMUNE profile), low numbers of uNK cells combined with the shift towards the cytotoxic uNKc dim immunophenotype (MIXED-IMMUNE profile), and normal numbers of uNK cells, but an undesirable shift in the ratio of cytotoxic to regulatory uNK cells towards the cytotoxic uNK dim phenotype (OVER-IMMUNE profile). Embryo transfer outcomes and the occurrence of miscarriages up to the 12th week of pregnancy were evaluated in each group. Results: The highest clinical pregnancy rate was observed in the treated OVER-IMMUNE group (70%), fol lowed by the MIXED-IMMUNE group (60%). The LOW-IMMUNE group did not differ significantly from the untreated NORMAL group (P = 0.205). Insufficient immune activation (LOW-IMMUNE profile) was significantly associated with first-trimester pregnancy loss (P < 0.0001). Conclusion: This study provides new insights into the potential benefits of uNK cell immunophenotyping and subsequent immunomodulatory therapy in treating fertility disorders. While the results indicate possible clinical advantages, further research is necessary to confirm these findings and elucidate the mechanisms leading to improved outcomes in assisted reproductive techniques.
- Keywords
- uterinní NK buňky, imunofenotypizace lymfocytů, opakované selhání implantace,
- MeSH
- Killer Cells, Natural MeSH
- Endometrium cytology MeSH
- Fertilization in Vitro * MeSH
- Abortion, Habitual MeSH
- Immunophenotyping MeSH
- Immunomodulation MeSH
- Humans MeSH
- Flow Cytometry methods MeSH
- Retrospective Studies MeSH
- Infertility, Female * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
AIMS: This study aimed to examine changes in the repertoire of functional T-cells specific for six leukemia-associated antigens (LAA), including WT1, PRAME, MUC1, CCNA1, NPM1, and NPM1c, during immune reconstitution following allogeneic transplantation of hematopoietic stem cells (HSCT) in patients with acute myeloid leukemia. PATIENTS & METHODS: LAA-specific T cell response was measured by ELISPOT- IFNγ and intracellular cytokine staining in 47 patients before starting conditioning therapy (baseline) and 7 months after HSCT. RESULTS: The positive cumulative LAA-specific T cell response before HSCT was associated with a decreased risk of relapse after HSCT. The prevalent genetic aberration - an internal tandem duplication of Fms 3 - related receptor tyrosine kinase, which has been previously implicated in immune escape mechanisms, is presented here for the first time as a factor associated with the absence of an adaptive T cell response against multiple LAAs. T-cell specific responses against wild-type and mutated NPM1 antigens were less frequent in the study cohort and did not correlate with mutations in the NPM1 gene. CONCLUSIONS: Our results showed that the T-cell response to LAA can be reconstituted after HSCT. Measurement of functional pre-transplant T-cell responses against multiple LAAs could help to find patients with an increased risk of relapse.
- MeSH
- Leukemia, Myeloid, Acute * therapy immunology genetics MeSH
- Antigens, Neoplasm immunology MeSH
- Adult MeSH
- Transplantation, Homologous MeSH
- Nuclear Proteins genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Mucin-1 genetics immunology MeSH
- Mutation * MeSH
- Nucleophosmin * MeSH
- WT1 Proteins immunology genetics MeSH
- Recurrence MeSH
- Aged MeSH
- T-Lymphocytes * immunology MeSH
- Hematopoietic Stem Cell Transplantation * MeSH
- fms-Like Tyrosine Kinase 3 * genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
- MeSH
- Genome-Wide Association Study * MeSH
- Chromosome Aberrations * MeSH
- Gene-Environment Interaction MeSH
- Humans MeSH
- Lymphocytes metabolism MeSH
- Neoplasms genetics MeSH
- DNA Repair genetics MeSH
- DNA Damage MeSH
- Occupational Exposure adverse effects MeSH
- Environmental Exposure adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Applications like drug development need simple and streamlined methods to process samples from 96-well cell culture plates for gene expression measurements. Unfortunately, current options are expensive for such processing. Therefore, our aim was to develop a method that would allow streamlined analysis of mRNA from 96-well cell culture plates while being relatively cheap and simple. We developed a method based on the qPCR 'Cells-to-cDNA' approach and validated it against commercially available kits using the same approach or spin columns-based RNA purification. For this purpose, we conducted a series of comparisons of gene expression from peripheral blood mononuclear cells, SK-HEP-1 and U-87 cell cultures in 96-well plates. Our final method involved lysing cells with 25-100 μl solution of 0.5% SDS, 10 mM DTT, 1 mg ml-1 proteinase K dissolved in water, 1 h incubation at 50°C, followed by proteinase K inactivation at 90°C for 5 min and lysate neutralization with 1 : 1 dilution by 20% Tween 20 solution. Reverse transcription and qPCR were carried out using standard methods. This method showed a mean reduction of Ct ± s.d. value by 2.4 ± 1.3 compared with the 'Cells-to-cDNA' kit and by 1.4 ± 0.5 compared with the RNA purification kit with lower variability.
- MeSH
- Cost-Benefit Analysis MeSH
- Cell Culture Techniques methods economics MeSH
- DNA, Complementary * genetics MeSH
- Real-Time Polymerase Chain Reaction methods MeSH
- Leukocytes, Mononuclear cytology metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Gene Expression Profiling methods economics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH