Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20518850
PubMed Central
PMC3822628
DOI
10.1111/j.1582-4934.2010.01098.x
PII: JCMM1098
Knihovny.cz E-zdroje
- MeSH
- bilirubin metabolismus MeSH
- cholestáza metabolismus patologie MeSH
- hemová oxygenasa (decyklizující) krev MeSH
- intracelulární prostor metabolismus MeSH
- játra metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- kyselina taurocholová farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- potkani Gunn MeSH
- potkani Wistar MeSH
- žlučové kyseliny a soli metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- hemová oxygenasa (decyklizující) MeSH
- kyselina taurocholová MeSH
- žlučové kyseliny a soli MeSH
High plasma concentrations of bile acids (BA) and bilirubin are hallmarks of cholestasis. BA are implicated in the pathogenesis of cholestatic liver damage through mechanisms involving oxidative stress, whereas bilirubin is a strong antioxidant. We evaluated the roles of bilirubin and BA on mediating oxidative stress in rats following bile duct ligation (BDL). Adult female Wistar and Gunn rats intraperitoneally anaesthetized with ketamine and xylazine underwent BDL or sham operation. Cholestatic markers, antioxidant capacity, lipid peroxidation and heme oxygenase (HO) activity were determined in plasma and/or liver tissue 5 days after surgery. HepG2-rNtcp cells were used for in vitro experiments. Plasma bilirubin levels in control and BDL animals positively correlated with plasma antioxidant capacity. Peroxyl radical scavenging capacity was significantly higher in the plasma of BDL Wistar rats (210 ± 12%, P < 0.0001) compared to controls, but not in the liver tissues. Furthermore after BDL, lipid peroxidation in the livers increased (179 ± 37%, P < 0.01), whereas liver HO activity significantly decreased to 61% of control levels (P < 0.001). Addition of taurocholic acid (TCA, ≥ 50 μmol/l) to liver homogenates increased lipid peroxidation (P < 0.01) in Wistar, but not in Gunn rats or after the addition of bilirubin. In HepG2-rNtcp cells, TCA decreased both HO activity and intracellular bilirubin levels. We conclude that even though plasma bilirubin is a marker of cholestasis and hepatocyte dysfunction, it is also an endogenous antioxidant, which may counteract the pro-oxidative effects of BA in circulation. However, in an animal model of obstructive cholestasis, we found that BA compromise intracellular bilirubin levels making hepatocytes more susceptible to oxidative damage.
Zobrazit více v PubMed
Kullak-Ublick GA, Meier PJ. Mechanisms of cholestasis. Clin Liver Dis. 2000;4:357–85. PubMed
Roma MG, Crocenzi FA, Sanchez Pozzi EA. Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci. 2008;114:567–88. PubMed
Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54:1024–33. PubMed PMC
Maher JJ, Friedman SL. Parenchymal and nonparenchymal cell interactions in the liver. Semin Liver Dis. 1993;13:13–20. PubMed
Sokol RJ, Straka MS, Dahl R, et al. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr Res. 2001;49:519–31. PubMed
Fuentes-Broto L, Martinez-Ballarin E, Miana-Mena J, et al. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids. Free Radic Res. 2009;43:1080–9. PubMed
Sokol RJ, Winklhofer-Roob BM, Devereaux MW, et al. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology. 1995;109:1249–56. PubMed
Moran M, Oruc MT, Ozmen MM, et al. Effect of Erythropoietin on Oxidative Stress and Liver Injury in Experimental Obstructive Jaundice. Eur Surg Res. 2009;43:228–34. PubMed
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.
Stocker R, Yamamoto Y, McDonagh AF, et al. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6. PubMed
Dennery PA, McDonagh AF, Spitz DR, et al. Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia. Free Radic Biol Med. 1995;19:395–404. PubMed
Schwertner HA, Vitek L. Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis. 2008;198:1–11. PubMed
Ollinger R, Yamashita K, Bilban M, et al. Bilirubin and biliverdin treatment of atherosclerotic diseases. Cell Cycle. 2007;6:39–43. PubMed
Bulmer AC, Blanchfield JT, Toth I, et al. Improved resistance to serum oxidation in Gilbert’s syndrome: a mechanism for cardiovascular protection. Atherosclerosis. 2008;199:390–6. PubMed
Ollinger R, Kogler P, Troppmair J, et al. Bilirubin inhibits tumor cell growth via activation of ERK. Cell Cycle. 2007;6:3078–85. PubMed
Zucker SD, Horn PS, Sherman KE. Serum bilirubin levels in the U.S. population: gender effect and inverse correlation with colorectal cancer. Hepatology. 2004;40:827–35. PubMed
Vitek L, Schwertner HA. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv Clin Chem. 2007;43:1–57. PubMed
McDonagh AF, Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem J. 1972;129:797–800. PubMed PMC
Aller MA, Nava MP, Arias JL, et al. Microsurgical extrahepatic cholestasis in the rat: a long-term study. J Invest Surg. 2004;17:99–104. PubMed
Iuliano L, Piccheri C, Coppola I, et al. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim Biophys Acta. 2000;1474:177–82. PubMed
Zelenka J, Lenicek M, Muchova L, et al. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;867:37–42. PubMed
Maines MD. Current protocols in toxicology. New York: John Wiley; 1998.
Vreman HJ, Wong RJ, Kadotani T, et al. Determination of carbon monoxide (CO) in rodent tissue: effect of heme administration and environmental CO exposure. Anal Biochem. 2005;341:280–9. PubMed
Vreman HJ, Kwong LK, Stevenson DK. Carbon monoxide in blood: an improved microliter blood-sample collection system, with rapid analysis by gas chromatography. Clin Chem. 1984;30:1382–6. PubMed
Vreman HJ, Wong RJ, Sanesi CA, et al. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can J Physiol Pharmacol. 1998;76:1057–65. PubMed
Kullak-Ublick GA, Ismair MG, Kubitz R, et al. Stable expression and functional characterization of a Na+-taurocholate cotransporting green fluorescent protein in human hepatoblastoma HepG2 cells. Cytotechnology. 2000;34:1–9. PubMed PMC
Kotal P, Van der Veere CN, Sinaasappel M, et al. Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr Res. 1997;42:195–200. PubMed
Wolff DG. The formation of carbon monoxide during peroxidation of microsomal lipids. Biochem Biophys Res Commun. 1976;73:850–7. PubMed
Granato A, Gores G, Vilei MT, et al. Bilirubin inhibits bile acid induced apoptosis in rat hepatocytes. Gut. 2003;52:1774–8. PubMed PMC
Zelenka J, Muchova L, Vitek L. The role of heme oxygenase-1 induction and intracellular metabolism of bilirubin in response to oxidative stress. Hepatology. 2008;48:1124a.
Dumont M, Jacquemin E, D’Hont C, et al. Expression of the liver Na+-independent organic anion transporting polypeptide (oatp-1) in rats with bile duct ligation. J Hepatol. 1997;27:1051–6. PubMed
Dulundu E, Ozel Y, Topaloglu U, et al. Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction. J Gastroenterol Hepatol. 2007;22:885–92. PubMed
Huang LT, Tiao MM, Tain YL, et al. Melatonin ameliorates bile duct ligation-induced systemic oxidative stress and spatial memory deficits in developing rats. Pediatr Res. 2009;65:176–80. PubMed
Muchova L, Wong RJ, Hsu M, et al. Statin treatment increases formation of carbon monoxide and bilirubin in mice: a novel mechanism of in vivo antioxidant protection. Can J Physiol Pharmacol. 2007;85:800–10. PubMed
Naito T, Kuroki S, Chijiiwa K, et al. Bile acid synthesis and biliary hydrophobicity during obstructive jaundice in rats. J Surg Res. 1996;65:70–6. PubMed
Mediavilla MG, Pascolo L, Rodriguez JV, et al. Uptake of [(3)H]bilirubin in freshly isolated rat hepatocytes: role of free bilirubin concentration. FEBS Lett. 1999;463:143–5. PubMed
Geier A, Wagner M, Dietrich CG, et al. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 2007;1773:283–308. PubMed
Baranano DE, Rao M, Ferris CD, et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA. 2002;99:16093–8. PubMed PMC
Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1223–33. PubMed
Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition
Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis