Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30327713
PubMed Central
PMC6169227
DOI
10.1155/2018/3845027
Knihovny.cz E-zdroje
- MeSH
- gangliosidy metabolismus MeSH
- hemoxygenasa-1 metabolismus MeSH
- játra metabolismus MeSH
- lidé MeSH
- mozek metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oxidační stres fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gangliosidy MeSH
- hemoxygenasa-1 MeSH
Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.
Malopolska Centre for Biotechnology Jagiellonian University Gronostajowa str 7a 30 387 Krakow Poland
Zobrazit více v PubMed
Otterbein L. E., Soares M. P., Yamashita K., Bach F. H. Heme oxygenase-1: unleashing the protective properties of heme. Trends in Immunology. 2003;24(8):449–455. doi: 10.1016/S1471-4906(03)00181-9. PubMed DOI
Ayuso P., Martínez C., Pastor P., et al. An association study between Heme oxygenase-1 genetic variants and Parkinson’s disease. Frontiers in Cellular Neuroscience. 2014;8:p. 298. doi: 10.3389/fncel.2014.00298. PubMed DOI PMC
Schipper H., Song W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. International Journal of Molecular Sciences. 2015;16(12):5400–5419. doi: 10.3390/ijms16035400. PubMed DOI PMC
Fredenburgh L. E., Merz A. A., Cheng S. Haeme oxygenase signalling pathway: implications for cardiovascular disease. European Heart Journal. 2015;36(24):1512–1518. doi: 10.1093/eurheartj/ehv114. PubMed DOI PMC
Poss K. D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(20):10925–10930. doi: 10.1073/pnas.94.20.10925. PubMed DOI PMC
Fraser S. T., Midwinter R. G., Berger B. S., Stocker R. Heme oxygenase-1: a critical link between iron metabolism, erythropoiesis, and development. Advances in Hematology. 2011;2011:6. doi: 10.1155/2011/473709.473709 PubMed DOI PMC
Mamiya T., Katsuoka F., Hirayama A., et al. Hepatocyte-specific deletion of heme oxygenase-1 disrupts redox homeostasis in basal and oxidative environments. The Tohoku Journal of Experimental Medicine. 2008;216(4):331–339. doi: 10.1620/tjem.216.331. PubMed DOI
Novotny L., Vitek L. Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Experimental Biology and Medicine. 2003;228(5):568–571. doi: 10.1177/15353702-0322805-29. PubMed DOI
Zelenka J., Muchova L., Zelenkova M., et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie. 2012;94(8):1821–1827. doi: 10.1016/j.biochi.2012.04.026. PubMed DOI
Muchova L., Vanova K., Zelenka J., et al. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. Journal of Cellular and Molecular Medicine. 2011;15(5):1156–1165. doi: 10.1111/j.1582-4934.2010.01098.x. PubMed DOI PMC
Yu R. K., Nakatani Y., Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. Journal of Lipid Research. 2009;50:S440–S445. doi: 10.1194/jlr.R800028-JLR200. PubMed DOI PMC
Regina Todeschini A., Hakomori S. I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochimica et Biophysica Acta (BBA) - General Subjects. 2008;1780(3):421–433. doi: 10.1016/j.bbagen.2007.10.008. PubMed DOI PMC
Rahmann H. Brain gangliosides and memory formation. Behavioural Brain Research. 1995;66(1-2):105–116. doi: 10.1016/0166-4328(94)00131-X. PubMed DOI
Wang B. Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition. 2009;29(1):177–222. doi: 10.1146/annurev.nutr.28.061807.155515. PubMed DOI
Pike L. J. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. Journal of Lipid Research. 2006;47(7):1597–1598. doi: 10.1194/jlr.E600002-JLR200. PubMed DOI
Lingwood D., Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50. doi: 10.1126/science.1174621. PubMed DOI
Taira J., Sugishima M., Kida Y., Oda E., Noguchi M., Higashimoto Y. Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1. Biochemistry. 2011;50(32):6824–6831. doi: 10.1021/bi200601t. PubMed DOI
Gavella M., Kveder M., Lipovac V., Jurašin D., Filipovi-Vinceković N. Antioxidant properties of ganglioside micelles. Free Radical Research. 2007;41(10):1143–1150. doi: 10.1080/10715760701618245. PubMed DOI
Gavella M., Kveder M., Lipovac V. Modulation of ROS production in human leukocytes by ganglioside micelles. Brazilian Journal of Medical and Biological Research. 2010;43(10):942–949. doi: 10.1590/S0100-879X2010007500092. PubMed DOI
Avrova N. F., Victorov I. V., Tyurin V. A., et al. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochemical Research. 1998;23(7):945–952. doi: 10.1023/A:1021076220411. PubMed DOI
Petr T., Smíd V., Kučerová V., et al. The effect of heme oxygenase on ganglioside redistribution within hepatocytes in experimental estrogen-induced cholestasis. Physiological Research. 2014;63(3):359–367. PubMed
Šmíd V., Petr T., Váňová K., et al. Changes in liver ganglioside metabolism in obstructive cholestasis - the role of oxidative stress. Folia Biologica. 2016;62(4):148–159. PubMed
Szade A., Nowak W. N., Szade K., et al. Effect of crossing C57BL/6 and FVB mouse strains on basal cytokine expression. Mediators of Inflammation. 2015;2015:10. doi: 10.1155/2015/762419.762419 PubMed DOI PMC
Hamilton P. W. Designing a morphometric study. In: Hamilton P. W., Allen D. C., editors. Quantitative Clinical Pathology. Cambridge, MA, USA: Blackwell Science; 1995.
Majer F., Trnka L., Vítek L., Jirkovská M., Mareček Z., Šmíd F. Estrogen-induced cholestasis results in a dramatic increase of b-series gangliosides in the rat liver. Biomedical Chromatography. 2007;21(5):446–450. doi: 10.1002/bmc.743. PubMed DOI
Yu R. K., Ledeen R. W. Gangliosides of human, bovine, and rabbit plasma. Journal of Lipid Research. 1972;13(5):680–686. PubMed
Suzuki K. The pattern of mammalian brain gangliosides-II evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. Journal of Neurochemistry. 1965;12(7):629–638. doi: 10.1111/j.1471-4159.1965.tb04256.x. PubMed DOI
Folch J., Lees M., Sloane Stanley G. H. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 1957;226(1):497–509. PubMed
Chester M. A. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids—recommendations 1997. European Journal of Biochemistry. 1998;257(2):293–298. PubMed
Jirkovská M., Majer F., Šmídová J., et al. Changes in GM1 ganglioside content and localization in cholestatic rat liver. Glycoconjugate Journal. 2007;24(4-5):231–241. doi: 10.1007/s10719-007-9030-7. PubMed DOI
Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Canadian Journal of Physiology and Pharmacology. 1998;76(12):1057–1065. doi: 10.1139/y98-126. PubMed DOI
Hakomori S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconjugate Journal. 2004;21(3/4):125–137. doi: 10.1023/B:GLYC.0000044844.95878.cf. PubMed DOI
Schnaar R. L. Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Archives of Biochemistry and Biophysics. 2004;426(2):163–172. doi: 10.1016/j.abb.2004.02.019. PubMed DOI
Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1992;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-V. PubMed DOI
Yu R. K., Tsai Y. T., Ariga T. Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochemical Research. 2012;37(6):1230–1244. doi: 10.1007/s11064-012-0744-y. PubMed DOI PMC
Hakomori S. Structure, organization, and function of glycosphingolipids in membrane. Current Opinion in Hematology. 2003;10(1):16–24. doi: 10.1097/00062752-200301000-00004. PubMed DOI
Bektas M., Spiegel S. Glycosphingolipids and cell death. Glycoconjugate Journal. 2004;20(1):39–47. doi: 10.1023/B:GLYC.0000016741.88476.8b. PubMed DOI
Ngamukote S., Yanagisawa M., Ariga T., Ando S., Yu R. K. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. Journal of Neurochemistry. 2007;103(6):2327–2341. doi: 10.1111/j.1471-4159.2007.04910.x. PubMed DOI
Xu Y. H., Barnes S., Sun Y., Grabowski G. A. Multi-system disorders of glycosphingolipid and ganglioside metabolism. Journal of Lipid Research. 2010;51(7):1643–1675. doi: 10.1194/jlr.R003996. PubMed DOI PMC
Lobasso S., Tanzarella P., Vergara D., Maffia M., Cocco T., Corcelli A. Lipid profiling of parkin-mutant human skin fibroblasts. Journal of Cellular Physiology. 2017;232(12):3540–3551. doi: 10.1002/jcp.25815. PubMed DOI
Ishii A., Ikeda T., Hitoshi S., et al. Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology. 2007;17(3):261–276. doi: 10.1093/glycob/cwl076. PubMed DOI
Suzuki Y., Yanagisawa M., Ariga T., Yu R. K. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. Journal of Neurochemistry. 2011;116(5):874–880. doi: 10.1111/j.1471-4159.2010.07042.x. PubMed DOI PMC
Yamamoto A., Haraguchi M., Yamashiro S., et al. Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. Journal of Neurochemistry. 1996;66(1):26–34. PubMed
Dreyfus H., Guérold B., Freysz L., Hicks D. Successive isolation and separation of the major lipid fractions including gangliosides from single biological samples. Analytical Biochemistry. 1997;249(1):67–78. doi: 10.1006/abio.1997.2143. PubMed DOI
Avrova N. F., Zakharova I. O., Tyurin V. A., Tyurina Y. Y., Gamaley I. A., Schepetkin I. A. Different metabolic effects of ganglioside GM1 in brain synaptosomes and phagocytic cells. Neurochemical Research. 2002;27(7/8):751–759. doi: 10.1023/A:1020296605444. PubMed DOI
Vlasova I. A., Zakharova I. O., Sokolova T. V., Avrova N. F. Metabolic effects of ganglioside GM1 on PC12 cells at oxidative stress depend on modulation of activity of tyrosine kinase of trk receptor. Zhurnal Evoliutsionnoĭ Biokhimii i Fiziologii. 2013;49(1):15–23. PubMed
Gavella M., Lipovac V., Rakos R., Colak B. Reduction of oxidative changes in human spermatozoa by exogenous gangliosides. Andrologia. 2005;37(1):17–24. doi: 10.1111/j.1439-0272.2004.00646.x. PubMed DOI
Sohn H., Kim Y. S., Kim H. T., et al. Ganglioside GM3 is involved in neuronal cell death. The FASEB Journal. 2006;20(8):1248–1250. doi: 10.1096/fj.05-4911fje. PubMed DOI
García-Ruiz C., Colell A., París R., Fernández-Checa J. C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. The FASEB Journal. 2000;14(7):847–858. doi: 10.1096/fasebj.14.7.847. PubMed DOI
Rippo M. R., Malisan F., Ravagnan L., et al. GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. The FASEB Journal. 2000;14(13):2047–2054. doi: 10.1096/fj.99-1028com. PubMed DOI
Rippo M. R., Malisan F., Ravagnan L., et al. GD3 ganglioside as an intracellular mediator of apoptosis. European Cytokine Network. 2000;11(3):487–488. PubMed
Matarrese P., Garofalo T., Manganelli V., et al. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy. 2014;10(5):750–765. doi: 10.4161/auto.27959. PubMed DOI PMC
Malisan F., Testi R. The ganglioside GD3 as the Greek goddess Hecate: several faces turned towards as many directions. IUBMB Life. 2005;57(7):477–482. doi: 10.1080/15216540500167179. PubMed DOI
Dhanushkodi A., McDonald M. P. Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration. PLoS One. 2011;6(12, article e29285) doi: 10.1371/journal.pone.0029285. PubMed DOI PMC
Fuentes-Broto L., Martínez-Ballarín E., Miana-Mena J., et al. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids. Free Radical Research. 2009;43(11):1080–1089. doi: 10.1080/10715760903176927. PubMed DOI
Vitek L., Ostrow J. Bilirubin chemistry and metabolism; harmful and protective aspects. Current Pharmaceutical Design. 2009;15(25):2869–2883. doi: 10.2174/138161209789058237. PubMed DOI
Tripodi V., Contin M., Fernández M. A., Lemberg A. Bile acids content in brain of common duct ligated rats. Annals of Hepatology. 2012;11(6):930–934. PubMed
McMillin M., DeMorrow S. Effects of bile acids on neurological function and disease. The FASEB Journal. 2016;30(11):3658–3668. doi: 10.1096/fj.201600275R. PubMed DOI PMC
Mertens K. L., Kalsbeek A., Soeters M. R., Eggink H. M. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:p. 617. doi: 10.3389/fnins.2017.00617. PubMed DOI PMC
Rao Y. P., Stravitz R. T., Vlahcevic Z. R., Gurley E. C., Sando J. J., Hylemon P. B. Activation of protein kinase C alpha and delta by bile acids: correlation with bile acid structure and diacylglycerol formation. Journal of Lipid Research. 1997;38(12):2446–2454. PubMed
Steinberg S. F. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:p. 128. doi: 10.3389/fphar.2015.00128. PubMed DOI PMC
Kreutter D., Kim J. Y., Goldenring J. R., et al. Regulation of protein kinase C activity by gangliosides. Journal of Biological Chemistry. 1987;262(4):1633–1637. PubMed
Xia X. J., Gu X. B., Sartorelli A. C., Yu R. K. Effects of inducers of differentiation on protein kinase C and CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase activities of HL-60 leukemia cells. Journal of Lipid Research. 1989;30(2):181–188. PubMed
Aguilera J., Padrós-Giralt C., Habig W. H., Yavin E. GT1b ganglioside prevents tetanus toxin-induced protein kinase C activation and down-regulation in the neonatal brain in vivo. Journal of Neurochemistry. 1993;60(2):709–713. doi: 10.1111/j.1471-4159.1993.tb03205.x. PubMed DOI
Yu R. K., Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Molecular and Cellular Endocrinology. 2001;177(1-2):19–24. doi: 10.1016/S0303-7207(01)00457-9. PubMed DOI
Chung T. W., Choi H. J., Lee Y. C., Kim C. H. Molecular mechanism for transcriptional activation of ganglioside GM3 synthase and its function in differentiation of HL-60 cells. Glycobiology. 2005;15(3):233–244. doi: 10.1093/glycob/cwh156. PubMed DOI