Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition

. 2018 ; 2018 () : 3845027. [epub] 20180919

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30327713

Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.

Zobrazit více v PubMed

Otterbein L. E., Soares M. P., Yamashita K., Bach F. H. Heme oxygenase-1: unleashing the protective properties of heme. Trends in Immunology. 2003;24(8):449–455. doi: 10.1016/S1471-4906(03)00181-9. PubMed DOI

Ayuso P., Martínez C., Pastor P., et al. An association study between Heme oxygenase-1 genetic variants and Parkinson’s disease. Frontiers in Cellular Neuroscience. 2014;8:p. 298. doi: 10.3389/fncel.2014.00298. PubMed DOI PMC

Schipper H., Song W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. International Journal of Molecular Sciences. 2015;16(12):5400–5419. doi: 10.3390/ijms16035400. PubMed DOI PMC

Fredenburgh L. E., Merz A. A., Cheng S. Haeme oxygenase signalling pathway: implications for cardiovascular disease. European Heart Journal. 2015;36(24):1512–1518. doi: 10.1093/eurheartj/ehv114. PubMed DOI PMC

Poss K. D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(20):10925–10930. doi: 10.1073/pnas.94.20.10925. PubMed DOI PMC

Fraser S. T., Midwinter R. G., Berger B. S., Stocker R. Heme oxygenase-1: a critical link between iron metabolism, erythropoiesis, and development. Advances in Hematology. 2011;2011:6. doi: 10.1155/2011/473709.473709 PubMed DOI PMC

Mamiya T., Katsuoka F., Hirayama A., et al. Hepatocyte-specific deletion of heme oxygenase-1 disrupts redox homeostasis in basal and oxidative environments. The Tohoku Journal of Experimental Medicine. 2008;216(4):331–339. doi: 10.1620/tjem.216.331. PubMed DOI

Novotny L., Vitek L. Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Experimental Biology and Medicine. 2003;228(5):568–571. doi: 10.1177/15353702-0322805-29. PubMed DOI

Zelenka J., Muchova L., Zelenkova M., et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie. 2012;94(8):1821–1827. doi: 10.1016/j.biochi.2012.04.026. PubMed DOI

Muchova L., Vanova K., Zelenka J., et al. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. Journal of Cellular and Molecular Medicine. 2011;15(5):1156–1165. doi: 10.1111/j.1582-4934.2010.01098.x. PubMed DOI PMC

Yu R. K., Nakatani Y., Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. Journal of Lipid Research. 2009;50:S440–S445. doi: 10.1194/jlr.R800028-JLR200. PubMed DOI PMC

Regina Todeschini A., Hakomori S. I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochimica et Biophysica Acta (BBA) - General Subjects. 2008;1780(3):421–433. doi: 10.1016/j.bbagen.2007.10.008. PubMed DOI PMC

Rahmann H. Brain gangliosides and memory formation. Behavioural Brain Research. 1995;66(1-2):105–116. doi: 10.1016/0166-4328(94)00131-X. PubMed DOI

Wang B. Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition. 2009;29(1):177–222. doi: 10.1146/annurev.nutr.28.061807.155515. PubMed DOI

Pike L. J. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. Journal of Lipid Research. 2006;47(7):1597–1598. doi: 10.1194/jlr.E600002-JLR200. PubMed DOI

Lingwood D., Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50. doi: 10.1126/science.1174621. PubMed DOI

Taira J., Sugishima M., Kida Y., Oda E., Noguchi M., Higashimoto Y. Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1. Biochemistry. 2011;50(32):6824–6831. doi: 10.1021/bi200601t. PubMed DOI

Gavella M., Kveder M., Lipovac V., Jurašin D., Filipovi-Vinceković N. Antioxidant properties of ganglioside micelles. Free Radical Research. 2007;41(10):1143–1150. doi: 10.1080/10715760701618245. PubMed DOI

Gavella M., Kveder M., Lipovac V. Modulation of ROS production in human leukocytes by ganglioside micelles. Brazilian Journal of Medical and Biological Research. 2010;43(10):942–949. doi: 10.1590/S0100-879X2010007500092. PubMed DOI

Avrova N. F., Victorov I. V., Tyurin V. A., et al. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochemical Research. 1998;23(7):945–952. doi: 10.1023/A:1021076220411. PubMed DOI

Petr T., Smíd V., Kučerová V., et al. The effect of heme oxygenase on ganglioside redistribution within hepatocytes in experimental estrogen-induced cholestasis. Physiological Research. 2014;63(3):359–367. PubMed

Šmíd V., Petr T., Váňová K., et al. Changes in liver ganglioside metabolism in obstructive cholestasis - the role of oxidative stress. Folia Biologica. 2016;62(4):148–159. PubMed

Szade A., Nowak W. N., Szade K., et al. Effect of crossing C57BL/6 and FVB mouse strains on basal cytokine expression. Mediators of Inflammation. 2015;2015:10. doi: 10.1155/2015/762419.762419 PubMed DOI PMC

Hamilton P. W. Designing a morphometric study. In: Hamilton P. W., Allen D. C., editors. Quantitative Clinical Pathology. Cambridge, MA, USA: Blackwell Science; 1995.

Majer F., Trnka L., Vítek L., Jirkovská M., Mareček Z., Šmíd F. Estrogen-induced cholestasis results in a dramatic increase of b-series gangliosides in the rat liver. Biomedical Chromatography. 2007;21(5):446–450. doi: 10.1002/bmc.743. PubMed DOI

Yu R. K., Ledeen R. W. Gangliosides of human, bovine, and rabbit plasma. Journal of Lipid Research. 1972;13(5):680–686. PubMed

Suzuki K. The pattern of mammalian brain gangliosides-II evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. Journal of Neurochemistry. 1965;12(7):629–638. doi: 10.1111/j.1471-4159.1965.tb04256.x. PubMed DOI

Folch J., Lees M., Sloane Stanley G. H. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 1957;226(1):497–509. PubMed

Chester M. A. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids—recommendations 1997. European Journal of Biochemistry. 1998;257(2):293–298. PubMed

Jirkovská M., Majer F., Šmídová J., et al. Changes in GM1 ganglioside content and localization in cholestatic rat liver. Glycoconjugate Journal. 2007;24(4-5):231–241. doi: 10.1007/s10719-007-9030-7. PubMed DOI

Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Canadian Journal of Physiology and Pharmacology. 1998;76(12):1057–1065. doi: 10.1139/y98-126. PubMed DOI

Hakomori S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconjugate Journal. 2004;21(3/4):125–137. doi: 10.1023/B:GLYC.0000044844.95878.cf. PubMed DOI

Schnaar R. L. Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Archives of Biochemistry and Biophysics. 2004;426(2):163–172. doi: 10.1016/j.abb.2004.02.019. PubMed DOI

Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1992;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-V. PubMed DOI

Yu R. K., Tsai Y. T., Ariga T. Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochemical Research. 2012;37(6):1230–1244. doi: 10.1007/s11064-012-0744-y. PubMed DOI PMC

Hakomori S. Structure, organization, and function of glycosphingolipids in membrane. Current Opinion in Hematology. 2003;10(1):16–24. doi: 10.1097/00062752-200301000-00004. PubMed DOI

Bektas M., Spiegel S. Glycosphingolipids and cell death. Glycoconjugate Journal. 2004;20(1):39–47. doi: 10.1023/B:GLYC.0000016741.88476.8b. PubMed DOI

Ngamukote S., Yanagisawa M., Ariga T., Ando S., Yu R. K. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. Journal of Neurochemistry. 2007;103(6):2327–2341. doi: 10.1111/j.1471-4159.2007.04910.x. PubMed DOI

Xu Y. H., Barnes S., Sun Y., Grabowski G. A. Multi-system disorders of glycosphingolipid and ganglioside metabolism. Journal of Lipid Research. 2010;51(7):1643–1675. doi: 10.1194/jlr.R003996. PubMed DOI PMC

Lobasso S., Tanzarella P., Vergara D., Maffia M., Cocco T., Corcelli A. Lipid profiling of parkin-mutant human skin fibroblasts. Journal of Cellular Physiology. 2017;232(12):3540–3551. doi: 10.1002/jcp.25815. PubMed DOI

Ishii A., Ikeda T., Hitoshi S., et al. Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology. 2007;17(3):261–276. doi: 10.1093/glycob/cwl076. PubMed DOI

Suzuki Y., Yanagisawa M., Ariga T., Yu R. K. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. Journal of Neurochemistry. 2011;116(5):874–880. doi: 10.1111/j.1471-4159.2010.07042.x. PubMed DOI PMC

Yamamoto A., Haraguchi M., Yamashiro S., et al. Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. Journal of Neurochemistry. 1996;66(1):26–34. PubMed

Dreyfus H., Guérold B., Freysz L., Hicks D. Successive isolation and separation of the major lipid fractions including gangliosides from single biological samples. Analytical Biochemistry. 1997;249(1):67–78. doi: 10.1006/abio.1997.2143. PubMed DOI

Avrova N. F., Zakharova I. O., Tyurin V. A., Tyurina Y. Y., Gamaley I. A., Schepetkin I. A. Different metabolic effects of ganglioside GM1 in brain synaptosomes and phagocytic cells. Neurochemical Research. 2002;27(7/8):751–759. doi: 10.1023/A:1020296605444. PubMed DOI

Vlasova I. A., Zakharova I. O., Sokolova T. V., Avrova N. F. Metabolic effects of ganglioside GM1 on PC12 cells at oxidative stress depend on modulation of activity of tyrosine kinase of trk receptor. Zhurnal Evoliutsionnoĭ Biokhimii i Fiziologii. 2013;49(1):15–23. PubMed

Gavella M., Lipovac V., Rakos R., Colak B. Reduction of oxidative changes in human spermatozoa by exogenous gangliosides. Andrologia. 2005;37(1):17–24. doi: 10.1111/j.1439-0272.2004.00646.x. PubMed DOI

Sohn H., Kim Y. S., Kim H. T., et al. Ganglioside GM3 is involved in neuronal cell death. The FASEB Journal. 2006;20(8):1248–1250. doi: 10.1096/fj.05-4911fje. PubMed DOI

García-Ruiz C., Colell A., París R., Fernández-Checa J. C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. The FASEB Journal. 2000;14(7):847–858. doi: 10.1096/fasebj.14.7.847. PubMed DOI

Rippo M. R., Malisan F., Ravagnan L., et al. GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. The FASEB Journal. 2000;14(13):2047–2054. doi: 10.1096/fj.99-1028com. PubMed DOI

Rippo M. R., Malisan F., Ravagnan L., et al. GD3 ganglioside as an intracellular mediator of apoptosis. European Cytokine Network. 2000;11(3):487–488. PubMed

Matarrese P., Garofalo T., Manganelli V., et al. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy. 2014;10(5):750–765. doi: 10.4161/auto.27959. PubMed DOI PMC

Malisan F., Testi R. The ganglioside GD3 as the Greek goddess Hecate: several faces turned towards as many directions. IUBMB Life. 2005;57(7):477–482. doi: 10.1080/15216540500167179. PubMed DOI

Dhanushkodi A., McDonald M. P. Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration. PLoS One. 2011;6(12, article e29285) doi: 10.1371/journal.pone.0029285. PubMed DOI PMC

Fuentes-Broto L., Martínez-Ballarín E., Miana-Mena J., et al. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids. Free Radical Research. 2009;43(11):1080–1089. doi: 10.1080/10715760903176927. PubMed DOI

Vitek L., Ostrow J. Bilirubin chemistry and metabolism; harmful and protective aspects. Current Pharmaceutical Design. 2009;15(25):2869–2883. doi: 10.2174/138161209789058237. PubMed DOI

Tripodi V., Contin M., Fernández M. A., Lemberg A. Bile acids content in brain of common duct ligated rats. Annals of Hepatology. 2012;11(6):930–934. PubMed

McMillin M., DeMorrow S. Effects of bile acids on neurological function and disease. The FASEB Journal. 2016;30(11):3658–3668. doi: 10.1096/fj.201600275R. PubMed DOI PMC

Mertens K. L., Kalsbeek A., Soeters M. R., Eggink H. M. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:p. 617. doi: 10.3389/fnins.2017.00617. PubMed DOI PMC

Rao Y. P., Stravitz R. T., Vlahcevic Z. R., Gurley E. C., Sando J. J., Hylemon P. B. Activation of protein kinase C alpha and delta by bile acids: correlation with bile acid structure and diacylglycerol formation. Journal of Lipid Research. 1997;38(12):2446–2454. PubMed

Steinberg S. F. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:p. 128. doi: 10.3389/fphar.2015.00128. PubMed DOI PMC

Kreutter D., Kim J. Y., Goldenring J. R., et al. Regulation of protein kinase C activity by gangliosides. Journal of Biological Chemistry. 1987;262(4):1633–1637. PubMed

Xia X. J., Gu X. B., Sartorelli A. C., Yu R. K. Effects of inducers of differentiation on protein kinase C and CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase activities of HL-60 leukemia cells. Journal of Lipid Research. 1989;30(2):181–188. PubMed

Aguilera J., Padrós-Giralt C., Habig W. H., Yavin E. GT1b ganglioside prevents tetanus toxin-induced protein kinase C activation and down-regulation in the neonatal brain in vivo. Journal of Neurochemistry. 1993;60(2):709–713. doi: 10.1111/j.1471-4159.1993.tb03205.x. PubMed DOI

Yu R. K., Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Molecular and Cellular Endocrinology. 2001;177(1-2):19–24. doi: 10.1016/S0303-7207(01)00457-9. PubMed DOI

Chung T. W., Choi H. J., Lee Y. C., Kim C. H. Molecular mechanism for transcriptional activation of ganglioside GM3 synthase and its function in differentiation of HL-60 cells. Glycobiology. 2005;15(3):233–244. doi: 10.1093/glycob/cwh156. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...