The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells

. 2021 Sep 27 ; 10 (10) : . [epub] 20210927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34679668

Grantová podpora
RVO-VFN64165/2021 Ministerstvo Zdravotnictví Ceské Republiky
NV18-07-00342 Agentura Pro Zdravotnický Výzkum České Republiky
21-01799S Grantová Agentura České Republiky
18-25429Y Grantová Agentura České Republiky
INBIO (No. CZ.02.1.01/0.0/0.0/16_026/0008451) European Regional Development Fund
National Program of Sustainability II Project no. LQ1605 Ministerstvo Školství, Mládeže a Tělovýchovy

The 'gold standard' treatment of severe neonatal jaundice is phototherapy with blue-green light, which produces more polar photo-oxidation products that are easily excreted via the bile or urine. The aim of this study was to compare the effects of bilirubin (BR) and its major photo-oxidation product lumirubin (LR) on the proliferation, differentiation, morphology, and specific gene and protein expressions of self-renewing human pluripotent stem cell-derived neural stem cells (NSC). Neither BR nor LR in biologically relevant concentrations (12.5 and 25 µmol/L) affected cell proliferation or the cell cycle phases of NSC. Although none of these pigments affected terminal differentiation to neurons and astrocytes, when compared to LR, BR exerted a dose-dependent cytotoxicity on self-renewing NSC. In contrast, LR had a substantial effect on the morphology of the NSC, inducing them to form highly polar rosette-like structures associated with the redistribution of specific cellular proteins (β-catenin/N-cadherin) responsible for membrane polarity. This observation was accompanied by lower expressions of NSC-specific proteins (such as SOX1, NR2F2, or PAX6) together with the upregulation of phospho-ERK. Collectively, the data indicated that both BR and LR affect early human neurodevelopment in vitro, which may have clinical relevance in phototherapy-treated hyperbilirubinemic neonates.

Zobrazit více v PubMed

Vitek L., Tiribelli C. Bilirubin: The yellow hormone? J. Hepatol. 2021 doi: 10.1016/j.jhep.2021.06.010. PubMed DOI

Stevenson D.K.M.M.J., Watchko J.F., editors. Care of the Jaundiced Neonate. McGraw-Hill; New York, NY, USA: 2012.

Hegyi T., Goldie E., Hiatt M. The protective role of bilirubin in oxygen-radical diseases of the preterm infant. J. Perinatol. 1994;14:296–300. PubMed

Shekeeb S.M., Kumar P., Sharma N., Narang A., Prasad R. Evaluation of oxidant and antioxidant status in term neonates: A plausible protective role of bilirubin. Mol. Cell. Biochem. 2008;317:51–59. doi: 10.1007/s11010-008-9807-4. PubMed DOI

Watchko J.F., Tiribelli C. Bilirubin-induced neurologic damage-mechanisms and management approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI

Brites D., Fernandes A. Bilirubin-induced neural impairment: A special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Sem. Fetal Neonatal Med. 2015;20:14–19. doi: 10.1016/j.siny.2014.12.002. PubMed DOI

Maisels M.J., McDonagh A.F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 2008;358:920–928. doi: 10.1056/NEJMct0708376. PubMed DOI

Jasprova J., Dvorak A., Vecka M., Lenicek M., Lacina O., Valaskova P., Zapadlo M., Plavka R., Klan P., Vitek L. A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC

Lightner D.A., Linnane W.P., III, Ahlfors C.E. Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr. Res. 1984;18:696–700. doi: 10.1203/00006450-198408000-00003. PubMed DOI

Wang J., Guo G., Li A., Cai W.Q., Wang X. Challenges of phototherapy for neonatal hyperbilirubinemia (Review) Exp. Ther. Med. 2021;21:231. doi: 10.3892/etm.2021.9662. PubMed DOI PMC

Faulhaber F.R.S., Procianoy R.S., Silveira R.C. Side effects of phototherapy on neonates. Am. J. Perinatol. 2019;36:252–257. doi: 10.1055/s-0038-1667379. PubMed DOI

Clark J.F., Reilly M., Sharp F.R. Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: A contributor to subarachnoid hemorrhage-induced vasospasm. J. Cereb. Blood Flow Metab. 2002;22:472–478. doi: 10.1097/00004647-200204000-00011. PubMed DOI

Jašprová J., Dal Ben M., Hurný D., Hwang S., Žížalová K., Kotek J., Wong R.J., Stevenson D.K., Gazzin S., Tiribelli C., et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 2018;8:7444. doi: 10.1038/s41598-018-25684-2. PubMed DOI PMC

Dvorak A., Pospisilova K., Zizalova K., Capkova N., Muchova L., Vecka M., Vrzackova N., Krizova J., Zelenka J., Vitek L. The effects of bilirubin and lumirubin on metabolic and oxidative stress markers. Front. Pharmacol. 2021;12:567001. doi: 10.3389/fphar.2021.567001. PubMed DOI PMC

Bohaciakova D., Hruska-Plochan M., Tsunemoto R., Gifford W.D., Driscoll S.P., Glenn T.D., Wu S., Marsala S., Navarro M., Tadokoro T., et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 2019;10:83. doi: 10.1186/s13287-019-1163-7. PubMed DOI PMC

Falk A., Koch P., Kesavan J., Takashima Y., Ladewig J., Alexander M., Wiskow O., Tailor J., Trotter M., Pollard S., et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE. 2012;7:e29597. doi: 10.1371/journal.pone.0029597. PubMed DOI PMC

Koch P., Opitz T., Steinbeck J.A., Ladewig J., Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc. Natl. Acad. Sci. USA. 2009;106:3225–3230. doi: 10.1073/pnas.0808387106. PubMed DOI PMC

Yuan S.H., Martin J., Elia J., Flippin J., Paramban R.I., Hefferan M.P., Vidal J.G., Mu Y., Killian R.L., Israel M.A., et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE. 2011;6:e17540. doi: 10.1371/journal.pone.0017540. PubMed DOI PMC

McDonagh A.F., Assisi F. The ready isomerization of bilirubin IX-a in aqueous solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC

Jasprova J., Dal Ben M., Vianello E., Goncharova I., Urbanova M., Vyroubalova K., Gazzin S., Tiribelli C., Sticha M., Cerna M., et al. The biological effects of bilirubin photoisomers. PLoS ONE. 2016;11:e0148126. doi: 10.1371/journal.pone.0148126. PubMed DOI PMC

Fedorova V., Vanova T., Elrefae L., Pospisil J., Petrasova M., Kolajova V., Hudacova Z., Baniariova J., Barak M., Peskova L., et al. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. 2019;40:101563. doi: 10.1016/j.scr.2019.101563. PubMed DOI

McKelvey-Martin V.J., Green M.H., Schmezer P., Pool-Zobel B.L., De Meo M.P., Collins A. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res. 1993;288:47–63. doi: 10.1016/0027-5107(93)90207-V. PubMed DOI

Chacon E., Acosta D., Lemasters J.J. Primary cultures of cardiac myocytes as in vitro models for pharmacological and toxicological assessments. In: Castell J.V., Gomez-Lechon M.J., editors. In Vitro Methods in Pharmaceutical Research. Academic Press; New York, NY, USA: 1997. pp. 209–223. DOI

Miyamoto Y., Sakane F., Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adhes. Migr. 2015;9:183–192. doi: 10.1080/19336918.2015.1005466. PubMed DOI PMC

Efthymiou A.G., Chen G., Rao M., Chen G., Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin. Biol. Ther. 2014;14:1333–1344. doi: 10.1517/14712598.2014.922533. PubMed DOI PMC

Kamachi Y., Cheah K.S., Kondoh H. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 1999;19:107–120. doi: 10.1128/MCB.19.1.107. PubMed DOI PMC

Kunath T., Saba-El-Leil M.K., Almousailleakh M., Wray J., Meloche S., Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895–2902. doi: 10.1242/dev.02880. PubMed DOI

Slusher T.M., Zamora T.G., Appiah D., Stanke J.U., Strand M.A., Lee B.W., Richardson S.B., Keating E.M., Siddappa A.M., Olusanya B.O. Burden of severe neonatal jaundice: A systematic review and meta-analysis. BMJ Paediatr. Open. 2017;1:e000105. doi: 10.1136/bmjpo-2017-000105. PubMed DOI PMC

Dal Ben M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci. Rep. 2017;7:41032. doi: 10.1038/srep41032. PubMed DOI PMC

Silberberg D.H., Johnson L., Schutta H., Ritter L. Effects of photodegradation products of bilirubin on myelinating cerebellum cultures. J. Pediatr. 1970;77:613–618. doi: 10.1016/S0022-3476(70)80202-5. PubMed DOI

Kim Y.K., Na K.S., Myint A.M., Leonard B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;64:277–284. doi: 10.1016/j.pnpbp.2015.06.008. PubMed DOI

Kurt A., Aygun A.D., Kurt A.N., Godekmerdan A., Akarsu S., Yilmaz E. Use of phototherapy for neonatal hyperbilirubinemia affects cytokine production and lymphocyte subsets. Neonatology. 2009;95:262–266. doi: 10.1159/000171216. PubMed DOI

Gazzin S., Zelenka J., Zdrahalova L., Konickova R., Zabetta C.C., Giraudi P.J., Berengeno A.L., Raseni A., Robert M.C., Vitek L., et al. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatr. Res. 2012;71:653–660. doi: 10.1038/pr.2012.23. PubMed DOI

Genc S., Genc K., Kumral A., Baskin H., Ozkan H. Bilirubin is cytotoxic to rat oligodendrocytes in vitro. Brain Res. 2003;985:135–141. doi: 10.1016/S0006-8993(03)03037-3. PubMed DOI

Silva R.F., Rodrigues C.M., Brites D. Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr. Res. 2002;51:535–541. doi: 10.1203/00006450-200204000-00022. PubMed DOI

Rodrigues C.M.P., Sola S., Silva R.F.M., Brites D. Aging confers different sensitivity to the neurotoxic properties of unconjugated bilirubin. Pediatr. Res. 2002;51:112–118. doi: 10.1203/00006450-200201000-00020. PubMed DOI

Rhine W.D., Schmitter S.P., Yu A.C., Eng L.F., Stevenson D.K. Bilirubin toxicity and differentiation of cultured astrocytes. J. Perinatol. 1999;19:206–211. doi: 10.1038/sj.jp.7200180. PubMed DOI

Kumral A., Genc S., Genc K., Duman N., Tatli M., Sakizli M., Ozkan H. Hyperbilirubinemic serum is cytotoxic and induces apoptosis in murine astrocytes. Biol. Neonate. 2005;87:99–104. doi: 10.1159/000081969. PubMed DOI

Rodrigues C.M., Sola S., Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology. 2002;35:1186–1195. doi: 10.1053/jhep.2002.32967. PubMed DOI

Grojean S., Koziel V., Vert P., Daval J.L. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 2000;166:334–341. doi: 10.1006/exnr.2000.7518. PubMed DOI

Yu Y., Zhu W., Diao H., Zhou C., Chen F.F., Yang J. A comparative study of using comet assay and gammaH2AX foci formation in the detection of N-methyl-N’-nitro-N-nitrosoguanidine-induced DNA damage. Toxicol. In Vitro. 2006;20:959–965. doi: 10.1016/j.tiv.2006.01.004. PubMed DOI PMC

El-Abdin M.Y.Z., El-Salam M.A., Ibrhim M.Y., Koraa S.S.M., Mahmoud E. Phototherapy and DNA changes in full term neonates with hyperbilirubinemia. Egypt. J. Med. Hum. Genet. 2012;13:29–35. doi: 10.1016/j.ejmhg.2011.11.003. DOI

Mesbah-Namin S.A., Shahidi M., Nakhshab M. An increased genotoxic risk in lymphocytes from phototherapy-treated hyperbilirubinemic neonates. Iran. Biomed. J. 2017;21:182–189. doi: 10.18869/acadpub.ibj.21.3.182. PubMed DOI PMC

Ramy N., Ghany E.A., Alsharany W., Nada A., Darwish R.K., Rabie W.A., Aly H. Jaundice, phototherapy and DNA damage in full-term neonates. J. Perinatol. 2016;36:132–136. doi: 10.1038/jp.2015.166. PubMed DOI

Yahia S., Shabaan A.E., Gouida M., El-Ghanam D., Eldegla H., El-Bakary A., Abdel-Hady H. Influence of hyperbilirubinemia and phototherapy on markers of genotoxicity and apoptosis in full-term infants. Eur. J. Pediatr. 2015;174:459–464. doi: 10.1007/s00431-014-2418-z. PubMed DOI

Afifi M.F., Abdel Mohsen A.H., Abdel Naeem E., Abdel Razic M.I. Role of phototherapy, BAX gene expression in hyperbilirubinemia development in full-term neonates. Egypt. J. Med. Hum. Genet. 2020;21:1–6. doi: 10.1186/s43042-019-0037-y. DOI

Solecki D.J., Govek E.E., Tomoda T., Hatten M.E. Neuronal polarity in CNS development. Genes Dev. 2006;20:2639–2647. doi: 10.1101/gad.1462506. PubMed DOI

Wilson P.G., Stice S.S. Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev. 2006;2:67–77. doi: 10.1007/s12015-006-0011-1. PubMed DOI

Grabiec M., Hribkova H., Varecha M., Stritecka D., Hampl A., Dvorak P., Sun Y.M. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res. 2016;17:330–341. doi: 10.1016/j.scr.2016.08.012. PubMed DOI

Banda E., McKinsey A., Germain N., Carter J., Anderson N.C., Grabel L. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes. Stem Cell Dev. 2015;24:1022–1033. doi: 10.1089/scd.2014.0415. PubMed DOI

Rice D., Barone S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000;108((Suppl. S3)):511–533. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...