Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31494448
DOI
10.1016/j.scr.2019.101563
PII: S1873-5061(19)30193-X
Knihovny.cz E-zdroje
- Klíčová slova
- BMP, Differentiation, Human embryonic stem cells, Induced pluripotent stem cells, Neural rosettes, Secondary neurulation,
- MeSH
- buněčná diferenciace * MeSH
- COUP transkripční faktor II genetika metabolismus MeSH
- faktory domény POU genetika metabolismus MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurální trubice cytologie embryologie metabolismus MeSH
- neurulace * MeSH
- pluripotentní kmenové buňky cytologie metabolismus MeSH
- transkripční faktor PAX6 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- COUP transkripční faktor II MeSH
- faktory domény POU MeSH
- homeodoménové proteiny MeSH
- NR2F2 protein, human MeSH Prohlížeč
- transcription factor Brn-2 MeSH Prohlížeč
- transkripční faktor PAX6 MeSH
Development of neural tube has been extensively modeled in vitro using human pluripotent stem cells (hPSCs) that are able to form radially organized cellular structures called neural rosettes. While a great amount of research has been done using neural rosettes, studies have only inadequately addressed how rosettes are formed and what the molecular mechanisms and pathways involved in their formation are. Here we address this question by detailed analysis of the expression of pluripotency and differentiation-associated proteins during the early onset of differentiation of hPSCs towards neural rosettes. Additionally, we show that the BMP signaling is likely contributing to the formation of the complex cluster of neural rosettes and its inhibition leads to the altered expression of PAX6, SOX2 and SOX1 proteins and the rosette morphology. Finally, we provide evidence that the mechanism of neural rosettes formation in vitro is reminiscent of the process of secondary neurulation rather than that of primary neurulation in vivo. Since secondary neurulation is a largely unexplored process, its understanding will ultimately assist the development of methods to prevent caudal neural tube defects in humans.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Citace poskytuje Crossref.org
Geometric Control of Cell Behavior by Biomolecule Nanodistribution