Antifungal Siderophore Conjugates for Theranostic Applications in Invasive Pulmonary Aspergillosis Using Low-Molecular TAFC Scaffolds
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
P 30924
Austrian Science Fund FWF - Austria
PubMed
34356941
PubMed Central
PMC8304796
DOI
10.3390/jof7070558
PII: jof7070558
Knihovny.cz E-resources
- Keywords
- Aspergillus fumigatus, PET/CT, TAFC, antifungal, antifungal susceptibility testing, invasive pulmonary aspergillosis, siderophore, theranostics,
- Publication type
- Journal Article MeSH
Invasive pulmonary aspergillosis (IPA) is a life-threatening form of fungal infection, primarily in immunocompromised patients and associated with significant mortality. Diagnostic procedures are often invasive and/or time consuming and existing antifungals can be constrained by dose-limiting toxicity and drug interaction. In this study, we modified triacetylfusarinine C (TAFC), the main siderophore produced by the opportunistic pathogen Aspergillus fumigatus (A. fumigatus), with antifungal molecules to perform antifungal susceptibility tests and molecular imaging. A variation of small organic molecules (eflornithine, fludioxonil, thiomersal, fluoroorotic acid (FOA), cyanine 5 (Cy5) with antifungal activity were coupled to diacetylfusarinine C (DAFC), resulting in a "Trojan horse" to deliver antifungal compounds specifically into A. fumigatus hyphae by the major facilitator transporter MirB. Radioactive labeling with gallium-68 allowed us to perform in vitro characterization (distribution coefficient, stability, uptake assay) as well as biodistribution experiments and PET/CT imaging in an IPA rat infection model. Compounds chelated with stable gallium were used for antifungal susceptibility tests. [Ga]DAFC-fludioxonil, -FOA, and -Cy5 revealed a MirB-dependent active uptake with fungal growth inhibition at 16 µg/mL after 24 h. Visualization of an A. fumigatus infection in lungs of a rat was possible with gallium-68-labeled compounds using PET/CT. Heterogeneous biodistribution patterns revealed the immense influence of the antifungal moiety conjugated to DAFC. Overall, novel antifungal siderophore conjugates with promising fungal growth inhibition and the possibility to perform PET imaging combine both therapeutic and diagnostic potential in a theranostic compound for IPA caused by A. fumigatus.
Department of Nuclear Medicine Medical University Innsbruck A 6020 Innsbruck Austria
Institute of Molecular Biology Medical University of Innsbruck A 6020 Innsbruck Austria
Institute of Pharmacy Pharmaceutical Chemistry University of Innsbruck A 6020 Innsbruck Austria
See more in PubMed
Bongomin F., Gago S., Oladele R., Denning D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. PubMed DOI PMC
Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:rv13–rv165. doi: 10.1126/scitranslmed.3004404. PubMed DOI
Jenks J., Hoenigl M. Treatment of Aspergillosis. J. Fungi. 2018;4:98. doi: 10.3390/jof4030098. PubMed DOI PMC
Latgé J.-P. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999;12:310–350. doi: 10.1128/CMR.12.2.310. PubMed DOI PMC
Ullmann A.J., Aguado J.M., Arikan-Akdagli S., Denning D.W., Groll A.H., Lagrou K., Lass-Flörl C., Lewis R.E., Munoz P., Verweij P.E., et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018;24:e1–e38. doi: 10.1016/j.cmi.2018.01.002. PubMed DOI
Moura S., Cerqueira L., Almeida A. Invasive pulmonary aspergillosis: Current diagnostic methodologies and a new molecular approach. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:1393–1403. doi: 10.1007/s10096-018-3251-5. PubMed DOI
Van Daele R., Spriet I., Wauters J., Maertens J., Mercier T., Van Hecke S., Brüggemann R. Antifungal drugs: What brings the future? Med. Mycol. 2019;57:S328–S343. doi: 10.1093/mmy/myz012. PubMed DOI
Verweij P.E., Lucas J.A., Arendrup M.C., Bowyer P., Brinkmann A.J.F., Denning D.W., Dyer P.S., Fisher M.C., Geenen P.L., Gisi U., et al. The one health problem of azole resistance in Aspergillus fumigatus: Current insights and future research agenda. Fungal Biol. Rev. 2020;34:202–214. doi: 10.1016/j.fbr.2020.10.003. DOI
Nairz M., Weiss G. Iron in infection and immunity. Mol. Asp. Med. 2020;75:100864. doi: 10.1016/j.mam.2020.100864. PubMed DOI
Haas H. Iron—A Key Nexus in the Virulence of Aspergillus fumigatus. Front. Microbiol. 2012;3:1–10. doi: 10.3389/fmicb.2012.00028. PubMed DOI PMC
Schrettl M., Bignell E., Kragl C., Joechl C., Rogers T., Arst H.N., Haynes K., Haas H. Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. J. Exp. Med. 2004;200:1213–1219. doi: 10.1084/jem.20041242. PubMed DOI PMC
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC
Haas H., Schoeser M., Lesuisse E., Ernst J.F., Parson W., Abt B., Winkelmann G., Oberegger H. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem. J. 2003;371:505–513. doi: 10.1042/bj20021685. PubMed DOI PMC
Petrik M., Haas H., Laverman P., Schrettl M., Franssen G.M., Blatzer M., Decristoforo C. 68Ga-Triacetylfusarinine C and 68Ga-Ferrioxamine E for Aspergillus Infection Imaging: Uptake Specificity in Various Microorganisms. Mol. Imaging Biol. 2014;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC
Raymond-Bouchard I., Carroll C.S., Nesbitt J.R., Henry K.A., Pinto L.J., Moinzadeh M., Scott J.K., Moore M.M. Structural Requirements for the Activity of the MirB Ferrisiderophore Transporter of Aspergillus fumigatus. Eukaryot. Cell. 2012;11:1333–1344. doi: 10.1128/EC.00159-12. PubMed DOI PMC
Petrik M., Franssen G.M., Haas H., Laverman P., Hörtnagl C., Schrettl M., Helbok A., Lass-Flörl C., Decristoforo C. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC
Kaeopookum P., Summer D., Pfister J., Orasch T., Lechner B.E., Petrik M., Novy Z., Matuszczak B., Rangger C., Haas H., et al. Modifying the Siderophore Triacetylfusarinine C for Molecular Imaging of Fungal Infection. Mol. Imaging Biol. 2019;21:1097–1106. doi: 10.1007/s11307-019-01325-6. PubMed DOI PMC
Pfister J., Lichius A., Summer D., Haas H., Kanagasundaram T., Kopka K., Decristoforo C. Live-cell imaging with Aspergillus fumigatus-specific fluorescent siderophore conjugates. Sci. Rep. 2020;10:15519. doi: 10.1038/s41598-020-72452-2. PubMed DOI PMC
Pfister J., Summer D., Petrik M., Khoylou M., Lichius A., Kaeopookum P., Kochinke L., Orasch T., Haas H., Decristoforo C., et al. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules. 2020;10:168. doi: 10.3390/biom10020168. PubMed DOI PMC
Cardenas M.E., Cruz M.C., Del Poeta M., Chung N., Perfect J.R., Heitman J. Antifungal Activities of Antineoplastic Agents:Saccharomyces cerevisiae as a Model System To Study Drug Action. Clin. Microbiol. Rev. 1999;12:583–611. doi: 10.1128/CMR.12.4.583. PubMed DOI PMC
Carmina E. Topical Eflornithine. Am. J. Clin. Dermatol. 2001;2:202. doi: 10.2165/00128071-200102030-00011. PubMed DOI
Levin V.A., Ictech S.E., Hess K.R. Clinical importance of eflornithine (α-difluoromethylornithine) for the treatment of malignant gliomas. CNS Oncol. 2018;7:CNS16. doi: 10.2217/cns-2017-0031. PubMed DOI PMC
Kuemmerle A., Schmid C., Kande V., Mutombo W., Ilunga M., Lumpungu I., Mutanda S., Nganzobo P., Ngolo D., Kisala M., et al. Prescription of concomitant medications in patients treated with Nifurtimox Eflornithine Combination Therapy (NECT) for T.b. gambiense second stage sleeping sickness in the Democratic Republic of the Congo. PLoS Negl. Trop. Dis. 2020;14:e0008028. doi: 10.1371/journal.pntd.0008028. PubMed DOI PMC
Burri C., Brun R. Eflornithine for the treatment of human African trypanosomiasis. Parasitol. Res. 2003;90:S49–S52. doi: 10.1007/s00436-002-0766-5. PubMed DOI
Beckmann N., Schafferer L., Schrettl M., Binder U., Talasz H., Lindner H., Haas H. Characterization of the Link between Ornithine, Arginine, Polyamine and Siderophore Metabolism in Aspergillus fumigatus. PLoS ONE. 2013;8:e67426. doi: 10.1371/journal.pone.0067426. PubMed DOI PMC
Boeke J.D., La Croute F., Fink G.R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. MGG. 1984;197:345–346. doi: 10.1007/BF00330984. PubMed DOI
Kilani J., Fillinger S. Phenylpyrroles: 30 Years, Two Molecules and (Nearly) No Resistance. Front. Microbiol. 2016;7:1–10. doi: 10.3389/fmicb.2016.02014. PubMed DOI PMC
Brandhorst T.T., Klein B.S. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food Chem. Toxicol. 2019;123:561–565. doi: 10.1016/j.fct.2018.11.037. PubMed DOI PMC
Bigham M., Copes R. Thiomersal in vaccines: Balancing the risk of adverse effects with the risk of vaccine-preventable disease. Drug Saf. 2005;28:89–101. doi: 10.2165/00002018-200528020-00001. PubMed DOI
Clements C.J. The evidence for the safety of thiomersal in newborn and infant vaccines. Vaccine. 2004;22:1854–1861. doi: 10.1016/j.vaccine.2003.11.017. PubMed DOI
Magos L., Clarkson T.W. Overview of the clinical toxicity of mercury. Ann. Clin. Biochem. 2006;43:257–268. doi: 10.1258/000456306777695654. PubMed DOI
Zhai C., Summer D., Rangger C., Haas H., Haubner R., Decristoforo C. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J. Label. Compd. Radiopharm. 2015;58:209–214. doi: 10.1002/jlcr.3286. PubMed DOI PMC
Pontecorvo G., Roper J.A., Chemmons L.M., Macdonald K.D., Bufton A.W.J. The Genetics of Aspergillus nidulans. Adv. Genet. 1953;5:141–238. PubMed
Pfister J., Bata R., Hubmann I., Hörmann A.A., Gsaller F., Haas H., Decristoforo C. Siderophore Scaffold as Carrier for Antifungal Peptides in Therapy of Aspergillus Fumigatus Infections. J. Fungi. 2020;6:367. doi: 10.3390/jof6040367. PubMed DOI PMC
Ocak M., Helbok A., Rangger C., Peitl P.K., Nock B.A., Morelli G., Eek A., Sosabowski J.K., Breeman W.A.P., Reubi J.C., et al. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:1426–1435. doi: 10.1007/s00259-011-1818-9. PubMed DOI
Skriba A., Pluhacek T., Palyzova A., Novy Z., Lemr K., Hajduch M., Petrik M., Havlicek V. Early and Non-invasive Diagnosis of Aspergillosis Revealed by Infection Kinetics Monitored in a Rat Model. Front. Microbiol. 2018;9:1–7. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC
Schrettl M., Kim H.S., Eisendle M., Kragl C., Nierman W.C., Heinekamp T., Werner E.R., Jacobsen I., Illmer P., Yi H., et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 2008;70:27–43. doi: 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
Bastos R.W., Rossato L., Valero C., Lagrou K., Colombo A.L., Goldman G.H. Potential of Gallium as an Antifungal Agent. Front. Cell. Infect. Microbiol. 2019;9:1–11. doi: 10.3389/fcimb.2019.00414. PubMed DOI PMC
Miethke M., Marahiel M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC
Braun V., Pramanik A., Gwinner T., Köberle M., Bohn E. Sideromycins: Tools and antibiotics. BioMetals. 2009;22:3–13. doi: 10.1007/s10534-008-9199-7. PubMed DOI PMC
Mislin G.L.A., Schalk I.J. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics. 2014;6:408–420. doi: 10.1039/C3MT00359K. PubMed DOI
Gumienna-Kontecka E., Carver P.L. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic. Volume 19. De Gruyter; Berlin, Germany: 2019. Building a Trojan Horse: Siderophore-Drug Conjugates for the Treatment of Infectious Diseases; pp. 331–358. PubMed
Al Shaer D., Al Musaimi O., de la Torre B.G., Albericio F. Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur. J. Med. Chem. 2020;208:112791. doi: 10.1016/j.ejmech.2020.112791. PubMed DOI
Dietl A.-M., Misslinger M., Aguiar M.M., Ivashov V., Teis D., Pfister J., Decristoforo C., Hermann M., Sullivan S.M., Smith L.R., et al. The Siderophore Transporter Sit1 Determines Susceptibility to the Antifungal VL-2397. Antimicrob. Agents Chemother. 2019;63:1–13. doi: 10.1128/AAC.00807-19. PubMed DOI PMC
Chitambar C.R. Medical Applications and Toxicities of Gallium Compounds. Int. J. Environ. Res. Public Health. 2010;7:2337–2361. doi: 10.3390/ijerph7052337. PubMed DOI PMC
Chitambar C.R. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:2044–2053. doi: 10.1016/j.bbamcr.2016.04.027. PubMed DOI
Goss C.H., Kaneko Y., Khuu L., Anderson G.D., Ravishankar S., Aitken M.L., Lechtzin N., Zhou G., Czyz D.M., McLean K., et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 2018;10:eaat7520. doi: 10.1126/scitranslmed.aat7520. PubMed DOI PMC
Ghosh A., Ghosh M., Niu C., Malouin F., Moellmann U., Miller M.J. Iron transport-mediated drug delivery using mixed-ligand siderophore- β-lactam conjugates. Chem. Biol. 1996;3:1011–1019. doi: 10.1016/S1074-5521(96)90167-2. PubMed DOI
Miller M.J., Zhu H., Xu Y., Wu C., Walz A.J., Vergne A., Roosenberg J.M., Moraski G., Minnick A.A., McKee-Dolence J., et al. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. BioMetals. 2009;22:61–75. doi: 10.1007/s10534-008-9185-0. PubMed DOI PMC
Wencewicz T.A., Long T.E., Möllmann U., Miller M.J. Trihydroxamate Siderophore–Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that Target Staphylococcus aureus. Bioconjug. Chem. 2013;24:473–486. doi: 10.1021/bc300610f. PubMed DOI PMC
Neumann W., Sassone-Corsi M., Raffatellu M., Nolan E.M. Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin–Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. J. Am. Chem. Soc. 2018;140:5193–5201. doi: 10.1021/jacs.8b01042. PubMed DOI PMC
Pandey A., Savino C., Ahn S.H., Yang Z., Van Lanen S.G., Boros E. Theranostic Gallium Siderophore Ciprofloxacin Conjugate with Broad Spectrum Antibiotic Potency. J. Med. Chem. 2019;62:9947–9960. doi: 10.1021/acs.jmedchem.9b01388. PubMed DOI PMC
Glassman P.M., Muzykantov V.R. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. J. Pharmacol. Exp. Ther. 2019;370:570–580. doi: 10.1124/jpet.119.257113. PubMed DOI PMC
Petrik M., Haas H., Dobrozemsky G., Lass-Florl C., Helbok A., Blatzer M., Dietrich H., Decristoforo C. 68Ga-Siderophores for PET Imaging of Invasive Pulmonary Aspergillosis: Proof of Principle. J. Nucl. Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Henneberg S., Hasenberg A., Maurer A., Neumann F., Bornemann L., Gonzalez-Menendez I., Kraus A., Hasenberg M., Thornton C.R., Pichler B.J., et al. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat. Commun. 2021;12:1707. doi: 10.1038/s41467-021-21965-z. PubMed DOI PMC
Ferreira K., Hu H.Y., Fetz V., Prochnow H., Rais B., Müller P.P., Brönstrup M. Multivalent Siderophore–DOTAM Conjugates as Theranostics for Imaging and Treatment of Bacterial Infections. Angew. Chem. Int. Ed. 2017;56:8272–8276. doi: 10.1002/anie.201701358. PubMed DOI
Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future