Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future

. 2023 Oct 03 ; 228 (Suppl 4) : S259-S269.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu přehledy, časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37788500

Grantová podpora
ZIA CL090055 Intramural NIH HHS - United States

Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.

Zobrazit více v PubMed

Zhao C, Mendive-Tapia L, Vendrell M. Fluorescent peptides for imaging of fungal cells. Arch Biochem Biophys 2019; 661:187–95. PubMed

Thompson GR III, Young JH. Aspergillus infections. N Engl J Med 2021; 385:1496–509. PubMed

Antimicrobial Resistance Division CoNTD, Global Coordination and Partnership, World Health Organization (WHO). Fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO

Vermeulen E, Lagrou K, Verweij PE. Azole resistance in Aspergillus fumigatus: a growing public health concern. Curr Opin Infect Dis 2013; 26:493–500. PubMed

Kontoyiannis DP, Sumoza D, Tarrand J, Bodey GP, Storey R, Raad II. Significance of aspergillemia in patients with cancer: a 10-year study. Clin Infect Dis 2000; 31:188–9. PubMed

Segal BH. Aspergillosis. N Engl J Med 2009; 360:1870–84. PubMed

Desoubeaux G, Cray C. Rodent models of invasive aspergillosis due to Aspergillus fumigatus: still a long path toward standardization. Front Microbiol 2017; 8:841. PubMed PMC

Hohl TM. Overview of vertebrate animal models of fungal infection. J Immunol Methods 2014; 410:100–12. PubMed PMC

Lai J, Shah S, Knight R, et al. . Evaluation of 2-[18F]-fluorodeoxysorbitol PET imaging in preclinical models of Aspergillus infection. J Fungi (Basel) 2021; 8:25. PubMed PMC

Dadachova E, Rangel DEN. Highlights of the latest developments in radiopharmaceuticals for infection imaging and future perspectives. Front Med (Lausanne) 2022; 9:819702. PubMed PMC

Inzana TJ, Champion A. Use of an inhibition enzyme-linked immunosorbent assay for quantification of capsular polysaccharide or proteins in vaccines. Clin Vaccine Immunol 2007; 14:323–7. PubMed PMC

Jacobsen ID, Luttich A, Kurzai O, Hube B, Brock M. In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy. J Antimicrob Chemother 2014; 69:2785–96. PubMed

Ankrah AO, Span LFR, Klein HC, et al. . Role of FDG PET/CT in monitoring treatment response in patients with invasive fungal infections. Eur J Nucl Med Mol Imaging 2019; 46:174–83. PubMed PMC

Kim D-Y, Pyo A, Ji S, et al. . In vivo imaging of invasive aspergillosis with 18F-fluorodeoxysorbitol positron emission tomography. Nat Commun 2022; 13:1926. PubMed PMC

Petrik M, Haas H, Laverman P, et al. . 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol 2014; 16:102–8. PubMed PMC

Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol 2012; 39:361–9. PubMed PMC

Petrik M, Vlckova A, Novy Z, Urbanek L, Haas H, Decristoforo C. Selected (68)Ga-siderophores versus (68)Ga-colloid and (68)Ga-citrate: biodistribution and small animal imaging in mice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:60–6. PubMed PMC

Petrik M, Zhai C, Novy Z, Urbanek L, Haas H, Decristoforo C. In vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol Imaging Biol 2016; 18:344–52. PubMed PMC

Misslinger M, Petrik M, Pfister J, et al. . Desferrioxamine B-mediated pre-clinical in vivo imaging of infection by the mold fungus Aspergillus fumigatus. J Fungi (Basel) 2021; 7:734. PubMed PMC

Rolle AM, Hasenberg M, Thornton CR, et al. . ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci U S A 2016; 113:E1026–33. PubMed PMC

Davies G, Rolle AM, Maurer A, et al. . Towards translational ImmunoPET/MR imaging of invasive pulmonary aspergillosis: the humanised monoclonal antibody JF5 detects Aspergillus lung infections in vivo. Theranostics 2017; 7:3398–414. PubMed PMC

Henneberg S, Hasenberg A, Maurer A, et al. . Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun 2021; 12:1707. PubMed PMC

Schwenck J, Maurer A, Beziere N, et al. . Antibody-guided molecular imaging of Aspergillus lung infections in leukemia patients. J Nucl Med 2022; 63:1450–1. PubMed

Akhtar MS, Qaisar A, Irfanullah J, et al. . Antimicrobial peptide 99mTc-ubiquicidin 29–41 as human infection-imaging agent: clinical trial. J Nucl Med 2005; 46:567–73. PubMed

Welling MM, Lupetti A, Balter HS, et al. . 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J Nucl Med 2001; 42:788–94. PubMed

Yang Z, Kontoyiannis DP, Wen X, et al. . Gamma scintigraphy imaging of murine invasive pulmonary aspergillosis with a (111)In-labeled cyclic peptide. Nucl Med Biol 2009; 36:259–66. PubMed

Morisse H, Heyman L, Salaun M, et al. . In vivo molecular microimaging of pulmonary aspergillosis. Med Mycol 2013; 51:352–60. PubMed

Siaens R, Eijsink VG, Dierckx R, Slegers G. (123)I-labeled chitinase as specific radioligand for in vivo detection of fungal infections in mice. J Nucl Med 2004; 45:1209–16. PubMed

Siaens R, Eijsink VG, Vaaje-Kolstad G, et al. . Synthesis and evaluation of a 99mTechnetium labeled chitin-binding protein as potential specific radioligand for the detection of fungal infections in mice. Q J Nucl Med Mol Imaging 2006; 50:155–66. PubMed

Fischman AJ, Alpert NM, Livni E, et al. . Pharmacokinetics of 18F-labeled fluconazole in rabbits with candidal infections studied with positron emission tomography. J Pharmacol Exp Ther 1991; 259:1351–9. PubMed

Lupetti A, Welling MM, Mazzi U, Nibbering PH, Pauwels EK. Technetium-99 m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. Eur J Nucl Med Mol Imaging 2002; 29:674–9. PubMed

Reyes AL, Fernandez L, Rey A, Teran M. Development and evaluation of 99mTc-tricarbonyl-caspofungin as potential diagnostic agent of fungal infections. Curr Radiopharm 2014; 7:144–50. PubMed

Fernandez L, Teran M. Development and evaluation of 99mTc-amphotericin complexes as potential diagnostic agents in nuclear medicine. Int J Infect 2017; 4(4):e62150.

Wang Y, Chen L, Liu X, et al. . Detection of Aspergillus fumigatus pulmonary fungal infections in mice with (99 m)Tc-labeled MORF oligomers targeting ribosomal RNA. Nucl Med Biol 2013; 40:89–96. PubMed PMC

Palestro CJ, Glaudemans A, Dierckx R. Multiagent imaging of inflammation and infection with radionuclides. Clin Transl Imaging 2013; 1:385–96. PubMed PMC

Wahl RL, Dilsizian V, Palestro CJ. At last, (18)F-FDG for inflammation and infection!. J Nucl Med 2021; 62:1048–9. PubMed

Weinstein EA, Ordonez AA, DeMarco VP, et al. . Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med 2014; 6:259ra146. PubMed PMC

Ordonez AA, Wintaco LM, Mota F, et al. . Imaging enterobacterales infections in patients using pathogen-specific positron emission tomography. Sci Transl Med 2021; 13:eabe9805. PubMed PMC

Haas H. Iron—a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol 2012; 3:28. PubMed PMC

Schrettl M, Haas H. Iron homeostasis–Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 2011; 14:400–5. PubMed PMC

Schalk IJ, Guillon L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 2013; 44:1267–77. PubMed

Fadeev EA, Luo M, Groves JT. Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. J Am Chem Soc 2004; 126:12065–75. PubMed

Petrik M, Franssen GM, Haas H, et al. . Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 2012; 39:1175–83. PubMed PMC

Skriba A, Pluhacek T, Palyzova A, et al. . Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front Microbiol 2018; 9:2356. PubMed PMC

Petrik M, Umlaufova E, Raclavsky V, et al. . (68)Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur J Nucl Med Mol Imaging 2021; 48:372–82. PubMed PMC

Pfister J, Summer D, Petrik M, et al. . Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, (68)Ga-labelled siderophores. Biomolecules 2020; 10:168. PubMed PMC

Pfister J, Petrik M, Bendova K, et al. . Antifungal siderophore conjugates for theranostic applications in invasive pulmonary aspergillosis using low-molecular TAFC scaffolds. J Fungi (Basel) 2021; 7:558. PubMed PMC

Kaeopookum P, Summer D, Pfister J, et al. . Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol Imaging Biol 2019; 21:1097–106. PubMed PMC

Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: concept, design, and applications. Chem Rev 2020; 120:3787–851. PubMed PMC

Thornton CR. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol 2008; 15:1095–105. PubMed PMC

Marr KA, Laverdiere M, Gugel A, Leisenring W. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis 2005; 40:1762–9. PubMed

Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics 2014; 4:386–98. PubMed PMC

Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 2010; 110:3087–111. PubMed PMC

Ebenhan T, Zeevaart JR, Venter JD, et al. . Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med 2014; 55:308–14. PubMed

Ebenhan T, Sathekge MM, Lengana T, et al. . (68)Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med 2018; 59:334–9. PubMed

Lionakis MS, Lahdenranta J, Sun J, et al. . Development of a ligand-directed approach to study the pathogenesis of invasive aspergillosis. Infect Immun 2005; 73:7747–58. PubMed PMC

Page L, Ullmann AJ, Schadt F, Wurster S, Samnick S. In vitro evaluation of radiolabeled amphotericin B for molecular imaging of mold infections. Antimicrob Agents Chemother 2020; 64:e02377-19. PubMed PMC

Das PJ, Paul P, Mukherjee B, et al. . Pulmonary delivery of voriconazole loaded nanoparticles providing a prolonged drug level in lungs: a promise for treating fungal infection. Mol Pharm 2015; 12:2651–64. PubMed

Lupetti A, Welling MM, Pauwels EK, Nibbering PH. Detection of fungal infections using radiolabeled antifungal agents. Curr Drug Targets 2005; 6:945–54. PubMed

Makela MR, Aguilar-Pontes MV, van Rossen-Uffink D, Peng M, de Vries RP. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Sci Rep 2018; 8:6655. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...